
Contents

1 Overview 4

4

5
1.1 ComPDFKit

PDF SDK 1.2 Key

Features

1.3 License

6

2 Get Started 6

2.1 Requirements 6

2.2 iOS Package Structure 6

2.3 How to run a demo 7

2.4 How to Make an iOS App in Objective-C with ComPDFKit 8

2.4.1 Create a New iOS Project in Objective-C 8

2.4.2 Integrate ComPDFKit into Your Apps 10

2.4.3 Apply the License Key 13

2.4.4 Display a PDF Document 13

2.5 How to Make an iOS App in Objective-C with Default UI 14

16

17

18

18

2.5.1 Integrate Default UI into Your Apps

2.5.2 How to Initialize the PDFViewController Class

2.5.3 How to Handle PDF Document Loading 2.5.4

How to Use the PDFListView Class

2.5.5 How to Use the PDFKeyboardToolbar Class

19

20

20

2.6 ARC Compatibility

2.7 Swift Compatibility

3 Guides

21

21

21

21

3.1 Basic Operations

3.1.1 Open a Document

3.1.2 Save a Document

3.2 Viewer

22

3.2.1 Display Modes

22

3.2.2 PDF Navigation

23

3.2.3 Text Search & Selection

24

3.2.4 Zooming 26

3.2.5 Themes 26

3.2.6 Text Reflow 27

3.2.7 Rendering 27

3.3 Annotations 27

3.3.1 Annotation Types 27

3.3.2 Access Annotations 28

3.3.3 Create & Edit Annotations 28

3.3.4 Delete Annotations 31

3.3.5 Annotation Appearances 32

3.3.6 Import & Export Annotations 33

3.3.7 Flatten Annotations 33

3.3.8 Predefine Annotations 34

3.4 Forms 34

3.4.1 Supported Form Fields 35

3.4.2 Create & Edit Form Fields 35

3.4.3 Delete Form Fields 36

3.4.4 Fill Form Fields 36

3.4.5 Flatten PDF Forms 38

3.5 Document Editor 38

3.5.1 PDF Manipulation 39

3.5.2 Page Edit 40

3.5.3 Document Information 41

3.5.4 Extract Images 42

3.6 Security 42

3.6.1 PDF Permission 43

3.6.2 Watermark 45

3.6.3 Redaction 46

3.7 Conversion 47

3.7.1 PDF/A 47

3.8 PDF Editing 47

3.8.1 Initialize PDF Editing 47

3.8.2 Customize the Context Menu 48

3.8.3 Set Text Properties 48

3.8.4 Listen to the Changes of Block Editing 49

3.8.5 How to Redo and Undo 49

3.8.6 How to Set the Alignment of the Selected Text 50

3.8.7 How to Set the Font Style of Selected Text 50

4 Support 51

4.1 Reporting Problems 51

4.2 Contact Information 51

1 Overview
ComPDFKit PDF SDK for iOS is a robust PDF library for developers who need to develop applications on iOS,
which offers powerful Objective-C APIs for quickly viewing, annotating, editing, and creating PDFs. It is
feature-rich and battle-tested, making PDF files process and manipulation easier and faster for iOS devices.

1.1 ComPDFKit PDF SDK
ComPDFKit PDF SDK consists of two elements as shown in the following picture.

The two elements for ComPDFKit PDF SDK:

PDF Core API

The Core API can be used independently for document rendering, analysis, text extraction, text search,
form filling, password security, annotation creation and manipulation, and much more.

PDF View

The PDF View is a utility class that provides the functionality for developers to interact with rendering
PDF documents per their requirements. The View Control provides fast and high-quality rendering,
zooming, scrolling, and page navigation features. The View Control is derived from platform-related
viewer classes (e.g. UIView on iOS) and allows for extension to accommodate specific user needs.

1.2 Key Features
Viewer component offers:

Standard page display modes, including Scrolling, Double page, Crop mode, and Cover mode.
Navigation with thumbnails, outlines, and bookmarks.
Text search & selection.
Zoom in and out & Fit-page.
Switch between different themes, including Dark mode, Sepia mode, Reseda mode, and Custom color
mode.
Text reflow.

Annotations component offers:

Create, edit and remove annotations, including Note, Link, Freetext, Line, Square, Circle, Highlight,
Underline, Squiggly, Strikeout, Stamp, Ink, Sound
Support for annotation appearances.
Import and export annotations to/from XFDF.
Support for annotation flattening.
Predefine annotations.

Forms component offers:

Create, edit and remove form fields, including Push Button, Check Box, Radio Button, Text Field, Combo
Box, List Box, and Signature.
Fill PDF Forms.
Support for PDF form flattening.

Document editor component offers:

PDF manipulation, including Split pages, Extract pages, and Merge pages.
Page edit, including Delete pages, Insert pages, Crop pages, Move pages, Rotate pages, Replace pages,
and Exchange pages.
Document information setting.
Extract images.

Edit PDF component offers:

Programmatically add and remove text in PDFs and make it possible to edit PDFs like Word. Allow
selecting text to copy, resize, change colors, text alignment, and the position of text boxes.
Undo or redo any change.

Security component offers:

Encrypt and decrypt PDFs, including Permission setting and Password protected.
Create, edit, and remove watermark.
Redact content including images, text, and vector graphics.
Create, edit, and remove header & footer, including dates, page numbers, document name, author
name, and chapter name.
Create, edit, and remove bates numbers.
Create, edit, and remove background that can be a solid color or an image.

Conversion component offers:

PDF to PDF/A.

1.3 License
ComPDFKit PDF SDK is a commercial SDK, which requires a license to grant developer permission to release
their apps. Each license is only valid for one bundle ID in development mode. Other flexible licensing
options are also supported, please contact our marketing team to know more. However, any documents,
sample code, or source code distribution from the released package of ComPDFKit to any third party is
prohibited.

2 Get Started
It is easy to embed ComPDFKit in your iOS app with a few lines of Objective-C code. Takes just a few minutes
and gets started.

The following sections introduce the structure of the installation package, how to run a demo, and how to
make an iOS app in Objective-C with ComPDFKit PDF SDK.

2.1 Requirements
ComPDFKit requires the latest stable version of Xcode available at the time the release was made. This is a
hard requirement, as each version of Xcode is bundled with a specific version of the iOS Base SDK, which
often defines how UIKit and various other frameworks behave.

iOS 10.0 or higher.
Xcode 12.0 or newer for Objective-C or Swift.

2.2 iOS Package Structure
The package of ComPDFKit PDF SDK for iOS includes the following files as shown in Figure 2-1:

ComPDFKit.xcframework - Include the ComPDFKit dynamic library (arm64_armv7, x86_64-simulator)

mailto:support@compdf.com

Figure 2-1

and associated header files.
PDFViewer - A folder containing iOS sample projects.
PDFViewer-Swift - A folder containing Swift iOS sample projects.
api_reference_ios - API reference.
developer_guide_ios.pdf - Developer guide.
release_notes.txt - Release information.
legal.txt - Legal and copyright information.

2.3 How to run a demo
ComPDFKit PDF SDK for iOS provides one demo in Objective-C for developers to learn how to call the SDK
on iOS. You can find them in the "PDFViewer" folder. In this guide, it takes the "Objective-C" demo as an
example to show how to run it in Xcode.

1. Double-click the "PDFViewer.xcodeproj" found in the "PDFViewer" folder to open the demo in Xcode.

2. Click on "Product -> Run" to run the demo on an iOS device. In this guide, an iPhone 7 Plus device will
be used as an example. After building the demo successfully, on the start screen, click the
"PDF32000_2008.pdf" document, and then it will be opened and displayed.

Note: This is a demo project, presenting completed ComPDFKit PDF SDK functions. The functions might be
different based on the license you have purchased. Please check that the functions you choose work fine in this
demo project.

2.4 How to Make an iOS App in Objective-C with
ComPDFKit
This section will help you to quickly get started with ComPDFKit PDF SDK to make an iOS app in Objective-C
with step-by-step instructions, which include the following steps:

1. Create a new iOS project in Objective-C.
2. Integrate ComPDFKit into your apps.
3. Apply the license key.
4. Display a PDF document.

2.4.1 Create a New iOS Project in Objective-C

In this guide, we use Xcode 12.4 to create a new iOS project.

Fire up Xcode, choose File -> New -> Project..., and then select iOS -> Single View Application as shown in
Figure 2-2. Click Next.

Figure 2-2

Choose the options for your new project as shown in Figure 2-3. Please make sure to choose Objective- C as
the programming language. Then, click Next.

Figure 2-3

Place the project to the location as desired. Then, click Create.

2.4.2 Integrate ComPDFKit into Your Apps

There are two ways to integrate ComPDFKit PDF SDK for iOS into your apps. You can choose what works
best for you based on your requirements.

If you just want to use the default built-in Ul implementations to develop your apps for simplicity and
convenience, you need to include the following files:

ComPDFKit.xcframework - Include the ComPDFKit dynamic library (arm64_armv7, x86_64-simulator)
and associated header files.
Source files - Found in the " PDFViewer / Source " folder. They are the default built-in Ul.
Resource files - Found in the " PDFViewer / Resources " folder. They are needed for the default built-in
Ul implementations, such as images, strings, and other resources.

If you want to customize your (PDF-related) app’s Ul design, you need to include the following files:

ComPDFKit.xcframework - Include the ComPDFKit PDF SDK dynamic library (arm64_armv7, x86_64-
simulator) and associated header files.
Resource files - Found in the " PDFViewer / Resources " folder. They are needed for the default built-in
Ul implementations, such as images, strings, and other resources.

To add the dynamic xcframework "ComPDFKit.xcframework" into the "PDFViewer" project, please follows
the steps below:

Figure 2-4

1. Right-click the "PDFViewer" project, select Add Files to "PDFViewer"... as shown in Figure 2-4.

Figure 2-5

2. Find and choose "ComPDFKit.xcframework" in the download package, and then click Add as shown in
Figure 2-5.

Note: Make sure to check the "Copy items if needed" option.

Figure 2-6

Then, the "PDFViewer" project will look like the Figure 2-6.

Figure 2-7

3. Add the dynamic xcframework "ComPDFKit.xcframework" to the Xcode’s Embedded Binaries. Left-
click the project, find Embedded Binaries in the General tab, and choose "Embed & Sign" as shown in
Figure 2-7.

2.4.3 Apply the License Key

It is important that you set the license key before using any ComPDFKit PDF SDK classes.

2.4.4 Display a PDF Document

So far, we have added "ComPDFKit.xcframework" to the "PDFViewer" project, and finished the initialization
of the ComPDFKit PDF SDK. Now, let’s start building a simple PDF viewer with just a few lines of code.

Then, add the following code to ViewController.m to display a PDF document. It’s really easy to present a
PDF on screen. All you need is to create a CPDFDocument object and then show it with a CPDFView object.

#import <ComPDFKit/ComPDFKit.h>

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:

(NSDictionary *)launchOptions {

 // Set your license key here. ComPDFKit is commercial software.
 // Each ComPDFKit license is bound to a specific app bundle id.
 // com.compdfkit.pdfviewer

 [CPDFKit setLicenseKey:@"YOUR_LICENSE_KEY_GOES_HERE"

 secret:@"YOUR_LICENSE_SECRET_GOES_HERE"];

 return YES;
}

#import <ComPDFKit/ComPDFKit.h>

- (void)viewDidLoad {

 [super viewDidLoad];

 // Get the path of a PDF
 NSString *pdfPath = @"...";

 // Initialize a CPDFDocument object with the path to the PDF file
 NSURL *url = [NSURL fileURLWithPath:pdfPath];
 CPDFDocument *document = [[[CPDFDocument alloc] initWithURL:url] autorelease];
 if (document.error && document.error.code != CPDFDocumentPasswordError) {

 return;
 }

 // Initialize a CPDFView object with the size of the entire screen
 CPDFView *pdfView = [[[CPDFView alloc] initWithFrame:self.view.bounds]

autorelease];

 // Set the document to display
 pdfView.document = document;

2.5 How to Make an iOS App in Objective-C with Default
UI

"PDFViewer" for iOS sample projects comes with a default UI design, including the basic UI for the app and
the feature modules UI, which are implemented using ComPDFKit PDF SDK and are shipped in the "
PDFViewer / Source " folder. Also included is a PDFViewController view controller that contains ready-to-
use UI module implementations.

 // Add the pdfView to the root view
 [self.view addSubview:pdfView];
}

Folder Description

PDFView
PDFListView is a subclass of CPDFView that can add, drag and delete
annotations, and perform custom drawing on top of the PDF page.

PDFViewerMode
Allows user to pick display modes, switch between different themes and set
crop mode.

PDFSlider Allows user to quickly skip through pages.

PDFBOTA
The PDFBOTAViewController class is a container view controller that shows
the bookmarks, outline, thumbtail and annotation list controls. A segmented
control is used to select which child view controller to display.

PDFSearch
Allows user to search, highlight all instances of a search term, and navigate
among search results.

PDFToolbar
PDFToolbar is a subclass of UIView that can configure the annotations
toolbar.

PDFColor Allows user to customize color and opacity set.

PDFFreehand
The PDFFreehandViewController class allows user to change the different
properties of an ink annotation. Users can use it to customize selected
annotations by changing their various appearance properties.

PDFShape
The PDFShapeViewController class allows user to change the different
properties of square, circle, and line annotation. Users can use it to customize
selected annotations by changing their various appearance properties.

PDFLink
The PDFLinkViewController class allows user to change the different
properties of a link annotation. Users can use it to customize selected
annotations by changing their various appearance properties.

PDFNote
The PDFNoteViewController class allows user to read and edit content of
note annotation.

PDFStamp
Allows user to create standard stamp, and custom stamp to change text and
image.

PDFSignature Allows user to add electronic drawn signatures to PDF documents.

PDFKeyboardToolbar
The PDFKeyboardToolbar class shows freetext annotation properties in a
top keyboard view, and users can change the color, font, and opacity with it.

PDFPageEdit
Enables a whole host of document editing features, which includes new page
creation, page reordering, rotation, extraction, and deletion.

2.5.1 Integrate Default UI into Your Apps

To add default UI into the "PDFViewer" project, please follows the steps below:

Figure 2-8

1. Right-click the "PDFViewer" folder, select Add Files to "PDFViewer"... as shown in Figure 2-8.

2. Find and choose "PDFViewController.h", "PDFViewController.m" and "Source" folder in the download
package, and then click Add as shown in Figure 2-9.

Note: Make sure to check the "Copy items if needed" option.

Figure 2-9

Figure 2-10

Then, the "PDFViewer" project will look like the Figure 2-10.

3. To protect user privacy, an iOS app linked on or after iOS 10.0, and that accesses the device’s privacy-
sensitive data, you need to do the following configuration in the “Info.plist“.

2.5.2 How to Initialize the PDFViewController Class

To initialize PDFViewController Class, refer to the following method in the PDFViewController class.

<key>NSCameraUsageDescription</key>

<string>Your consent is required before you could access the function.</string>

<key>NSMicrophoneUsageDescription</key>

<string>Your consent is required before you could access the function.</string>

<key>NSPhotoLibraryAddUsageDescription</key>

<string>Your consent is required before you could access the function.</string>

<key>NSPhotoLibraryUsageDescription</key>

<string>Your consent is required before you could access the function.</string>

PDFViewController *vc = [[[PDFViewController alloc] initWithFilePath:filePath]

autorelease];

2.5.3 How to Handle PDF Document Loading

To handle PDF document loading, refer to the following method in the "PDFViewController.m" file.

2.5.4 How to Use the PDFListView Class

PDFListView is a subclass of CPDFView that contains operations for annotations.

1. Add support for Annotations

Set the annotationMode property to enter a different annotation mode, and click or drag to add a
different annotation in the PDF view. Refer to the following method in the "PDFViewController.m" file.

2. Implementing delegate method

About Implementing delegate method, refer to the following method in the "PDFViewController.m" file.

- (void)loadDocumentWithFilePath:(NSString *)filePath completion:(void (^)(BOOL

result))completion;

- (PDFToolbar *)annotationToolbar;

// Add and modify text annotation

- (void)PDFViewPerformOpenNote:(PDFListView *)pdfView forAnnotation:(CPDFAnnotation

*)annotation;

// Modify annotation color

- (void)PDFViewPerformChangeColor:(PDFListView *)pdfView forAnnotation:

(CPDFAnnotation *)annotation;

// Share markup annotation

- (void)PDFViewPerformShare:(PDFListView *)pdfView forAnnotation:

(CPDFMarkupAnnotation *)annotation;

// Save stamp image

- (void)PDFViewPerformSave:(PDFListView *)pdfView forAnnotation:

(CPDFStampAnnotation *)annotation;

// Add popup for markup annotation

- (void)PDFViewPerformPopup:(PDFListView *)pdfView forAnnotation:

(CPDFMarkupAnnotation *)annotation;

// Add and modify link annotation

- (void)PDFViewPerformEditLink:(PDFListView *)pdfView forAnnotation:

(CPDFLinkAnnotation *)annotation;

// Signature widget add signature

2.5.5 How to Use the PDFKeyboardToolbar Class

PDFKeyboardToolbar is the keyboard toolbar of the Freetext annotation input box.

1. Initialize the PDFKeyboardToolbar class

Initialize the PDFKeyboardToolbar in the CPDFView delegate method, and refer to the following
method in the "PDFViewController.m" file.

- (void)PDFViewPerformSignatureWidget:(PDFListView *)pdfView forAnnotation:

(CPDFSignatureWidgetAnnotation *)annotation;

// Share selection text

- (void)PDFViewPerformShare:(PDFListView *)pdfView forSelection:(CPDFSelection

*)selection;

- (void)PDFViewPerformDefine:(PDFListView *)pdfView forSelection:(CPDFSelection

*)selection;

// Search selection text for Google

- (void)PDFViewPerformGoogleSearch:(PDFListView *)pdfView forSelection:

(CPDFSelection *)selection;

// Search selection text for Wiki

- (void)PDFViewPerformWikiSearch:(PDFListView *)pdfView forSelection:(CPDFSelection

*)selection;

// Add Signture annotation

- (void)PDFViewPerformAddSignture:(PDFListView *)pdfView atPoint:(CGPoint)point

forPage:(CPDFPage *)page;

// Add Stamp annotation

- (void)PDFViewPerformAddStamp:(PDFListView *)pdfView atPoint:(CGPoint)point

forPage:(CPDFPage *)page;

// Add Image annotation

- (void)PDFViewPerformAddImage:(PDFListView *)pdfView atPoint:(CGPoint)point

forPage:(CPDFPage *)page;

- (void)PDFViewPerformTouchEnded:(PDFListView *)pdfView;

// Page jump

- (void)PDFViewPerformWillGoTo:(PDFListView *)pdfView pageIndex:

(NSInteger)pageIndex;

2. Implementing delegate method

About Implementing delegate method, refer to the following method in the "PDFViewController.m" file.

2.6 ARC Compatibility
ComPDFKit PDF SDK requires non-ARC. If you wish to use ComPDFKit PDF SDK in a ARC project, just add the
-fno-objc-arc compiler flag. To do this, go to the Build Phases tab in your target settings, open the Compile
Sources group, and double-click and type -fno-objc-arc into the popover.

2.7 Swift Compatibility
To use the ComPDFKit Objective-C Framework in your Swift project, you have to create a Swift Bridging
Header file in that project. The best way is to create the .h file Manually.

First, add a header file to your project with the name: MyProjectName-Bridging-Header.h. This will be the
single header file where you import any Objective C code you need your Swift code to have access.

- (void)PDFViewShouldBeginEditing:(CPDFView *)pdfView textView:(UITextView

*)textView forAnnotation:(CPDFFreeTextAnnotation *)annotation {

 self.annotationFreeText = annotation;
 PDFKeyboardToolbar *keyboardToolbar = [[[PDFKeyboardToolbar alloc]
initWithFontName:annotation.font.fontName fontSize:annotation.font.pointSize]

autorelease];

 keyboardToolbar.delegate = self;
 [keyboardToolbar refreshFontName:annotation.font.fontName
fontSize:annotation.font.pointSize opacity:annotation.opacity];

 [keyboardToolbar bindToTextView:textView];
}

// keyboard should dissmiss

- (void)keyboardShouldDissmiss:(PDFKeyboardToolbar *)toolbar;

// Modify font name of freetext annotation

- (void)keyboard:(PDFKeyboardToolbar *)toolbar updateFontName:(NSString *)fontName;

// Modify font size of freetext annotation

- (void)keyboard:(PDFKeyboardToolbar *)toolbar updateFontSize:(CGFloat)fontSize;

// Modify text color of freetext annotation

- (void)keyboard:(PDFKeyboardToolbar *)toolbar updateTextColor:(UIColor

*)textColor;

// Modify text opacity of freetext annotation

- (void)keyboard:(PDFKeyboardToolbar *)toolbar updateOpacity:(CGFloat)opacity;

https://www.codeography.com/2011/10/10/making-arc-and-non-arc-play-nice.html
https://www.jianshu.com/p/b8cccbbd03f3
http://rustemsoft.com/addSwiftHeader.htm

Find Swift Compiler - Code Generation section in your project build settings. Add the path to your bridging
header file next to Objective C Bridging Header from the project root folder. It should be
MyProject/MyProject-Bridging-Header.h

How to use iOS Objective C Framework in Swift project?

3 Guides
If you’re interested in all of the features mentioned in Overview section, please go through our guides to
quickly add PDF viewing, annotating, and editing to your application. The following sections list some
examples to show you how to add document functionalities to iOS apps using our Swift and Objective-C
APIs.

3.1 Basic Operations
There are a few commonly used basic operations when working with documents.

3.1.1 Open a Document

Open a Local File

Create a New File

3.1.2 Save a Document

To save a PDF document to path use CPDFDocument::writeToURL: .

If this path is the original path, the PDF document will be saved incrementally. Use the incremental mode if
you are concerned about saving time. If you use this mode, any changes to the document, even deleting
annotations, will result in appending to the PDF file.

// Get the path of a PDF

NSString *pdfPath = @"...";

// Initialize a CPDFDocument object with the path to the PDF file

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[[CPDFDocument alloc] initWithURL:url] autorelease];

if (document.error && document.error.code != CPDFDocumentPasswordError) {

 return;
}

CPDFDocument *document = [[[CPDFDocument alloc] init] autorelease];

https://stackoverflow.com/questions/24002369/how-to-call-objective-c-code-from-swift

3.2 Viewer
The viewer provides fast and battle-tested rendering engine with a wide range of advanced features
including display modes, content selecting, zoom level setting and page navigation, which offers developers
a way to quickly embed a highly configurable PDF viewer in any iOS application.

3.2.1 Display Modes

Scroll Direction

When scrolling through pages of a document in CPDFView , the scrolling direction can be changed by
setting the page display direction.

Vertical scrolling mode (also known as continuous mode) can be enabled by setting the page
display direction to CPDFDisplayDirectionVertical .

Horizontal scrolling mode (also known as non-continuous mode) can be enabled by setting the
page display direction to CPDFDisplayDirectionHorizontal .

You also can configure the scroll direction of CPDFView in CPDFKitConfig .

Two-up Mode

Displays two pages side-by-side.

Cover Mode

Show cover page during two-up.

Crop Mode

Automatically trim PDF files white margins to resize pages. Crop mode can be enabled by setting the
page display crop to Yes .

pdfView.displayDirection = CPDFDisplayDirectionVertical;

pdfView.displayDirection = CPDFDisplayDirectionHorizontal;

CPDFKitShareConfig.displayDirection = CPDFDisplayDirectionVertical;

pdfView.displayTwoUp = YES;

pdfView.displayTwoUp = YES;

pdfView.displaysAsBook = YES;

Note: You must call layoutDocumentView method explicitly if using these CPDFView properties
(displayDirection , displaysPageBreaks , pageBreakMargins , displayTwoUp , displaysAsBook ,
displayCrop).

3.2.2 PDF Navigation

Page Navigation

After loading a PDF document, you can programmatically interact with it, which allows you to scroll to
different pages or destinations. All of the interaction APIs are available on CPDFView .

Scrolls to the specified page, use function CPDFView::goToPageIndex:animated: .

Goes to the specified destination, destinations include a page and a point on the page specified in
page space, use function CPDFView::goToDestination:animated: .

Goes to the specified rectangle on the specified page, use function
CPDFView::goToRect:onPage:animated: .

This allows you to scroll the CPDFView object to a specific CPDFAnnotation or CPDFSelection
object, because both of these objects have bounds methods that return an annotation or
selection position in page space.
Note: This method’s rect is specified in page-space coordinates. Page space is a coordinate system with
the origin at the lower-left corner of the current page.

Outline

Outline allows users to quickly locate and link their point of interest within a PDF document. Each
outline contains a destination or actions to describe where it links to. It is a tree-structured hierarchy,
so function CPDFDocument::outlineRoot must be called first to get the root of the whole outline tree
before accessing the outline tree. Here, “root outline” is an abstract object which can only have some
child outline without the next sibling outline and any data (includes outline data, destination data, and
action data). It cannot be shown on the application UI since it has no data. You can also use function
CPDFDocument::setNewOutlineRoot to create a new root outline.

After the root outline is retrieved, the following functions can be called to access other outline:

To access the parent outline, use function CPDFOutline::parent .

To access the child outline.

pdfView.displayCrop = YES;

To insert a new outline, use function CPDFOutline::insertChildAtIndex: .

To remove an outline, use function CPDFOutline::removeFromParent .

To move an outline, use function CPDFOutline::insertChild:atIndex: . When moving items
around within an outline hierarchy, you should retain the item and call
CPDFOutline::removeFromParent first.

Bookmarks

Since each bookmark is associated with a specific page, it provides the ability to link to a different page
in a document allowing the user to navigate interactively from one part of the document to another.

To access bookmarks, use function CPDFDocument::bookmarks .
To access a bookmark for page, use function CPDFDocument::bookmarkForPageIndex: .
To add a new bookmark, use function CPDFDocument::addBookmark:forPageIndex: .
To remove a bookmark, use function CPDFDocument::removeBookmarkForPageIndex: .

3.2.3 Text Search & Selection

Text Search

ComPDFKit PDF SDK offers developers an API for programmatic full-text search, as well as UI for
searching and highlighting relevant matches.

Asynchronously finds all instances of the specified string in the document, use function
CPDFDocument::beginFindString:withOptions: , which returns immediately. It causes delegate
methods to be called when searching begins and ends, on each search hit, and when the search
proceeds to a new page.

- (NSArray<CPDFOutline *> *)childOutline:(CPDFOutline *)outline {

 NSUInteger numberOfChildren = [outline numberOfChildren];
 NSMutableArray *child = [NSMutableArray array];

 for (int i=0; i<numberOfChildren; i++) {

 [child addObject:[outline childAtIndex:i]];

 }

 return child;
}

/**

* Called when the beginFindString:withOptions: or findString:withOptions:

method begins finding.

 */

- (void)documentDidBeginDocumentFind:(CPDFDocument *)document;

/**

* Called when the beginFindString:withOptions: or findString:withOptions:

method returns.

 */

- (void)documentDidEndDocumentFind:(CPDFDocument *)document;

/**

Synchronously finds all instances of the specified string in the document, use function
CPDFDocument::findString:withOptions: . Each hit gets added to an NSArray object as a
CPDFSelection object. If there are no hits, this method returns an empty array. Use this method
when the complete search process will be brief and when you don’t need the flexibility or control
offered by CPDFDocument::beginFindString:withOptions: .

Cancels a search initiated with CPDFDocument::beginFindString:withOptions: , use function
CPDFDocument::cancelFindString .

Highlighting Search Results, CPDFView offers a way to both add and clear search results, use
function CPDFView::setHighlightedSelection:animated: .

Text Selection

PDF text contents are stored in CPDFPage objects which are related to a specific page. CPDFPage class
can be used to retrieve information about text in a PDF page, such as single character, single word, text
content within specified character range or bounds and more.

How to get the text bounds on a page by selection:

 * Called when a find operation begins working on a new page of a document.

 */

- (void)documentDidBeginPageFind:(CPDFDocument *)document pageAtIndex:

(NSUInteger)index;

/**

 * Called when a find operation finishes working on a page in a document.

 */

- (void)documentDidEndPageFind:(CPDFDocument *)document pageAtIndex:

(NSUInteger)index;

/**

 * Called when a string match is found in a document.

 *

 * @discussion To determine the string selection found, use the selection.

 */

- (void)documentDidFindMatch:(CPDFSelection *)selection;

- (CPDFSelection *)selectionForPage:(CPDFPage *)page fromPoint:(CGPoint)fPoint

toPoint:(CGPoint)tPoint {

 NSInteger fCharacterIndex = [page characterIndexAtPoint:fPoint];

 NSInteger tCharacterIndex = [page characterIndexAtPoint:tPoint];

 NSRange range = NSMakeRange(fCharacterIndex, tCharacterIndex - fCharacterIndex

+ 1);

 CPDFSelection *selection = [page selectionForRange:range];

 return selection;

}

3.2.4 Zooming

ComPDFKit PDF SDK provides super zoom out and in to unlock more zoom levels, and pinch-to-zoom or
double tap on the specific area to perform a smart page content analysis, or you can programmatically
interact with it by using the following method.

Manual Zooming

You can use CPDFView::setScaleFactor:animated: to zoom the current document.

Disabling Zooming

Zooming can be disabled by setting the scrollEnabled to NO on CPDFView .

3.2.5 Themes

CPDFView has four special color modes: dark mode, sepia mode, reseda mode, and custom color mode.

In dark mode, colors are adjusted to improve reading at night or in a poorly-lit environment, in sepia mode,
background color is set to emulate the look of an old book, in reseda mode, light-green background is
displayed to protect your eyes after long-time reading, and in custom color mode, you can set a custom
color for the background color.

Note: Changing the appearance mode will change the PDF rendering style, but it does not modify the PDF on disk.

To set the color mode:

Themes Constant value

Normal color mode CPDFDisplayModeNormal

Dark mode CPDFDisplayModeNight

Sepia mode CPDFDisplayModeSoft

Reseda mode CPDFDisplayModeGreen

Custom color mode CPDFDisplayModeCustom

1. Find the constant value of the color mode

2. Call CPDFView::setDisplayMode: .

3. If you are using CPDFDisplayModeCustom , call CPDFView::setDisplayModeCustomColor: to set the
background color.

4. Update CPDFView to redraw the contents.

pdfView.scrollEnabled = NO;

[pdfView layoutDocumentView];

You also can configure the color mode of CPDFView in CPDFKitConfig .

3.2.6 Text Reflow

Rearrange text to fit the device screen size for displaying the same layout by using the following method.

3.2.7 Rendering

The CPDFView class calls drawPage:toContext: as necessary for each visible page that requires rendering.
You can override this method to draw on top of a PDF page. In this case, invoke this method on super and
then perform custom drawing on top of the PDF page. Do not invoke this method, except by invoking it on
super from a subclass.

3.3 Annotations
In addition to its primary textual content, a PDF file can contain annotations that represent links, form
elements, highlighting circles, textual notes, and so on. Each annotation is associated with a specific location
on a page and may offer interactivity with the user. Annotations allow users to mark up and comment on
PDFs without altering the original author's content.

ComPDFKit PDF SDK supports most annotation types defined in PDF Reference and provides APIs for
annotation creation, properties access and modification, appearance setting, and drawing.

3.3.1 Annotation Types

ComPDFKit PDF SDK supports all common annotation types:

Note
Link
Free Text
Shapes: Square, Circle, and Line

CPDFKitShareConfig.displayMode = CPDFDisplayModeCustom;

CPDFKitShareConfig.displayModeCustomColor = [UIColor whiteColor];

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[[CPDFDocument alloc] initWithURL:url] autorelease];

CPDFPage *page = [document pageAtIndex:0];

NSRange range = NSMakeRange(0, page.numberOfCharacters);

NSString *string = [page stringForRange:range];

Markup: Highlight, Underline, Strikeout, and Squiggly
Stamp
Ink
Sound

These are standard annotations (as defined in the PDF Reference) that can be read and written by many
apps, such as Adobe Acrobat and Apple Preview.

3.3.2 Access Annotations

CPDFAnnotation is the base class for all annotations. A CPDFAnnotation object by itself is not useful, only
subclasses (like CPDFCircleAnnotation , CPDFTextAnnotation) are interesting. In parsing a PDF however,
any unknown or unsupported annotations will be represented as this base class.

To access the list of annotations by using the following method:

The elements of the array will most likely be typed to subclasses of the CPDFAnnotation class.

3.3.3 Create & Edit Annotations

ComPDFKit PDF SDK includes a wide variety of standard annotations, and each of them is added to the
project in a similar way.

Note

To add a sticky note (text annotation) to a PDF Document page by using the following method.

Link

- (NSArray<CPDFAnnotation *>)annotationsWithDocument:(CPDFDocument *)document {

 NSMutableArray *annotations = [NSMutableArray array];

 for (int i=0; i<document.pageCount; i++) {

 CPDFPage *page = [document pageAtIndex:i];
 [annotations addObjectsFromArray:[page annotations]];
 }

}

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[[CPDFDocument alloc] initWithURL:url] autorelease];

CPDFPage *page = [document pageAtIndex:0];

CPDFTextAnnotation *text = [[[CPDFTextAnnotation alloc] initWithDocument:document]

autorelease];

text.contents = @"test";

text.bounds = CGRectMake(0, 0, 50, 50);

text.color = [UIColor yellowColor];

[page addAnnotation:text];

To add a hyperlink or intra-document link annotation to a PDF Document page by using the following
method.

Free Text

To add a free text annotation to a PDF Document page by using the following method.

Shapes

To add a shape annotation to a PDF Document page by using the following method.

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[[CPDFDocument alloc] initWithURL:url] autorelease];

CPDFPage *page = [document pageAtIndex:0];

CPDFDestination *dest = [[[CPDFDestination alloc] initWithDocument:document

pageIndex:1] autorelease];

CPDFLinkAnnotation *link = [[[CPDFLinkAnnotation alloc] initWithDocument:document]

autorelease];

link.bounds = CGRectMake(0, 0, 50, 50);

link.destination = dest;

//link.URL = @"https://www.";

[page addAnnotation:link];

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[[CPDFDocument alloc] initWithURL:url] autorelease];

CPDFPage *page = [document pageAtIndex:0];

CPDFFreeTextAnnotation *freeText = [[[CPDFFreeTextAnnotation alloc]

initWithDocument:document] autorelease];

freeText.contents = @"test";

freeText.bounds = CGRectMake(0, 0, 50, 50);

freeText.font = [UIFont systemFontOfSize:12];

freeText.fontColor = [UIColor redColor];

freeText.alignment = NSTextAlignmentLeft;

[page addAnnotation:freeText];

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[[CPDFDocument alloc] initWithURL:url] autorelease];

CPDFPage *page = [document pageAtIndex:0];

CPDFBorder *border = [[[CPDFBorder alloc] initWithStyle:CPDFBorderStyleDashed

 lineWidth:1
 dashPattern:@[@(2), @(1)]]
autorelease];

// Square

CPDFSquareAnnotation *square = [[[CPDFSquareAnnotation alloc]

initWithDocument:document] autorelease];

Note: CPDFLineAnnotation properties (startPoint , endPoint) point is specified in page-space
coordinates. Page space is a coordinate system with the origin at the lower-left corner of the current page.

Markup

To add a highlight annotation to a PDF Document page by using the following method, and add other
markup annotations in a similar way.

square.bounds = CGRectMake(0, 0, 50, 50);

square.color = [UIColor redColor];

square.interiorColor = [UIColor yellowColor];

square.opacity = 0.5;

square.interiorOpacity = 0.5;

square.border = border;

[page addAnnotation:square];

// Circle

CPDFCircleAnnotation *circle = [[[CPDFCircleAnnotation alloc]

initWithDocument:document] autorelease];

circle.bounds = CGRectMake(0, 0, 50, 50);

circle.color = [UIColor redColor];

circle.interiorColor = [UIColor yellowColor];

circle.opacity = 0.5;

circle.interiorOpacity = 0.5;

circle.border = border;

[page addAnnotation:circle];

// Line

CPDFLineAnnotation *line = [[[CPDFLineAnnotation alloc] initWithDocument:document]

autorelease];

line.startPoint = CGPointMake(0, 0);

line.endPoint = CGPointMake(50, 50);

line.startLineStyle = CPDFLineStyleNone;

line.endLineStyle = CPDFLineStyleClosedArrow;

line.color = [UIColor redColor];

line.interiorColor = [UIColor yellowColor];

line.opacity = 0.5;

line.interiorOpacity = 0.5;

line.border = border;

[page addAnnotation:line];

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[[CPDFDocument alloc] initWithURL:url] autorelease];

CPDFPage *page = [document pageAtIndex:0];

CPDFSelection *selection = ...;

NSMutableArray *quadrilateralPoints = [NSMutableArray array];

for (CPDFSelection *selection in selection.selectionsByLine) {

 CGRect bounds = selection.bounds;

Stamp

To add standard, text, and image stamps to a PDF document page by using the following method.

3.3.4 Delete Annotations

To remove an annotation from a document.

 [quadrilateralPoints addObject:[NSValue
valueWithCGPoint:CGPointMake(CGRectGetMinX(bounds), CGRectGetMaxY(bounds))]];

 [quadrilateralPoints addObject:[NSValue
valueWithCGPoint:CGPointMake(CGRectGetMaxX(bounds), CGRectGetMaxY(bounds))]];

 [quadrilateralPoints addObject:[NSValue
valueWithCGPoint:CGPointMake(CGRectGetMinX(bounds), CGRectGetMinY(bounds))]];

 [quadrilateralPoints addObject:[NSValue
valueWithCGPoint:CGPointMake(CGRectGetMaxX(bounds), CGRectGetMinY(bounds))]];

}

CPDFMarkupAnnotation *highlight = [[[CPDFMarkupAnnotation alloc]

initWithDocument:document markupType:CPDFMarkupTypeHighlight] autorelease];

highlight.color = [UIColor yellowColor];

highlight.quadrilateralPoints = quadrilateralPoints;

[page addAnnotation:highlight];

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[[CPDFDocument alloc] initWithURL:url] autorelease];

CPDFPage *page = [document pageAtIndex:0];

// Standard

CPDFStampAnnotation *standard = [[[CPDFStampAnnotation alloc]

initWithDocument:document type:0] autorelease];

[page addAnnotation:standard];

// Text

CPDFStampAnnotation *text = [[[CPDFStampAnnotation alloc] initWithDocument:document

text:@"test" detailText:@"detail text" style:CPDFStampStyleRed

shape:CPDFStampShapeArrowLeft] autorelease];

[page addAnnotation:text];

// Image

CPDFStampAnnotation *image = [[[CPDFStampAnnotation alloc]

initWithDocument:document image:[UIImage imageNamed:@""]] autorelease];

[page addAnnotation:image];

3.3.5 Annotation Appearances

Annotations may contain properties that describe their appearance — such as annotation color or shape.
However, these don’t guarantee that the annotation will be displayed the same in different PDF viewers. To
solve this problem, each annotation can define an appearance stream that should be used for rendering the
annotation.

ComPDFKit PDF SDK will update the annotation appearance by default when you modify the annotation
properties. You can also manually update the appearance by calling the updateAppearanceStream method,
but you must call the updateAppearanceStream method manually when you modify the bounds of the
FreeText, Stamp, Signature annotation, refer to the following method in the CPDFAnnotation class.

It’s easy to set up an annotation to show a custom appearance stream. This is typically done with stamp
annotations because they have few other properties. A stamp annotation used this way is usually called an
image annotation.

The following part introduces how to set annotation appearance that does not match page rotation.

If set, do not rotate the annotation’s appearance to match the rotation of the page. The upper-left corner of
the annotation bounds shall remain in a fixed location on the page.

In addition, when it comes to the FreeText annotation, refer to the following method in the PDFListView
class.

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[[CPDFDocument alloc] initWithURL:url] autorelease];

CPDFPage *page = [document pageAtIndex:0];

CPDFAnnotation *annotation = [[page annotations] objectAtIndex:0];

[page removeAnnotation:annotation];

- (void)updateAppearanceStream;

CPDFKitShareConfig.enableAnnotationNoRotate = YES;

- (void)addAnnotationFreeTextAtPoint:(CGPoint)point forPage:(CPDFPage *)page;

- (void)drawPage:(CPDFPage *)page toContext:(CGContextRef)context;

- (void)moveAnnotation:(CPDFAnnotation *)annotation fromPoint:(CGPoint)fromPoint

toPoint:(CGPoint)toPoint forType:(PDFAnnotationDraggingType)draggingType;

3.3.6 Import & Export Annotations

XFDF is an XML-based standard from Adobe XFDF for encoding annotations. An XFDF file will contain a
snapshot of a PDF document’s annotations and forms. It’s compatible with Adobe Acrobat and several other
third-party frameworks. ComPDFKit supports both reading and writing XFDF.

Importing from XFDF

You can import annotations and form fields from an XFDF file to a document like so:

Exporting to XFDF

You can export annotations and form fields from a document to an XFDF file like so:

3.3.7 Flatten Annotations

Annotation flattening refers to the operation that changes annotations into a static area that is part of the
PDF document, just like the other text and images in the document. When flattening an annotation, the
annotation is removed from the document, while its visual representation is kept intact. A flattened
annotation is visible but is non-editable by your users or by your app.

Annotations in a PDF document can be flattened in the ComPDFKit PDF SDK by saving the document and
choosing the Flatten mode.

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[[CPDFDocument alloc] initWithURL:url] autorelease];

NSString *path = [NSString stringWithString:xfdfPath];

[document importAnnotationFromXFDFPath:path];

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[[CPDFDocument alloc] initWithURL:url] autorelease];

NSString *path = [NSString stringWithString:xfdfPath];

[document exportAnnotationToXFDFPath:path];

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[[CPDFDocument alloc] initWithURL:url] autorelease];

NSURL *surl = [NSURL fileURLWithPath:savePath];

[document writeFlattenToURL:surl];

3.3.8 Predefine Annotations

ComPDFKit PDF SDK has default values for some annotation properties, such as colors and line widths for
ink annotations.

This is all handled in CPDFKitConfig , which is a global singleton. You can access it with
CPDFKitShareConfig .

The current set of defaults is configured on the first run and saved in NSUserDefaults .

3.4 Forms
A PDF document may contain any number of form fields that allow a user to enter information on a PDF
page. An interactive form (sometimes referred to as an AcroForm) is a collection of fields for gathering
information interactively from the user. Under the hood, PDF form fields are a type of PDF annotation called
widget annotations.

ComPDFKit PDF SDK fully supports reading, filling, creating, and editing PDF forms and provides utility
methods to make working with forms simple and efficient.

// Author

CPDFKitShareConfig.annotationAuthor = @"";

// Color

CPDFKitShareConfig.highlightAnnotationColor = [UIColor yellowColor];

CPDFKitShareConfig.underlineAnnotationColor = [UIColor blueColor];

CPDFKitShareConfig.strikeoutAnnotationColor = [UIColor redColor];

CPDFKitShareConfig.squigglyAnnotationColor = [UIColor blackColor];

CPDFKitShareConfig.shapeAnnotationColor = [UIColor redColor];

CPDFKitShareConfig.shapeAnnotationInteriorColor = nil;

CPDFKitShareConfig.freehandAnnotationColor = [UIColor redColor];

// Opacity

CPDFKitShareConfig.markupAnnotationOpacity = 0.5;

CPDFKitShareConfig.shapeAnnotationOpacity = 1.0;

CPDFKitShareConfig.shapeAnnotationInteriorOpacity = 0.0;

CPDFKitShareConfig.freehandAnnotationOpacity = 1.0;

// Border Width

CPDFKitShareConfig.shapeAnnotationBorderWidth = 1.0;

CPDFKitShareConfig.freehandAnnotationBorderWidth = 1.0;

Type Annotation Object

Check, Radio, and Push Buttons CPDFButtonWidgetAnnotation

List and Combo Boxes CPDFChoiceWidgetAnnotation

Text CPDFTextWidgetAnnotation

Signatures CPDFSignatureWidgetAnnotation

3.4.1 Supported Form Fields

ComPDFKit PDF SDK supports all form types specified by the PDF specification (such as text boxes,
checkboxes, radio buttons, drop-down lists, pushbuttons, and signatures).

CPDFWidgetAnnotation is the base class for all form fields, and CPDFWidgetAnnotation is subclass for
CPDFAnnotation . A CPDFWidgetAnnotation object by itself is not useful, only subclasses
(CPDFButtonWidgetAnnotation , CPDFChoiceWidgetAnnotation , CPDFTextWidgetAnnotation ,
CPDFSignatureWidgetAnnotation) are interesting. In parsing a PDF however, any unknown or
unsupported form fields will be represented as this base class.

We have to differentiate between field types and annotation objects:

3.4.2 Create & Edit Form Fields

Create form fields works the same as adding any other annotation, as can be seen in the guides for
programmatically creating annotations.

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[[CPDFDocument alloc] initWithURL:url] autorelease];

CPDFPage *page = [document pageAtIndex:0];

NSMutableArray *items = [NSMutableArray array];

CPDFChoiceWidgetItem *item1 = [[[CPDFChoiceWidgetItem alloc] init] autorelease];

item1.value = @"1";

item1.string = @"a";

[items addObject:item1];

CPDFChoiceWidgetItem *item2 = [[[CPDFChoiceWidgetItem alloc] init] autorelease];

item2.value = @"2";

item2.string = @"b";

[items addObject:item2];

CPDFChoiceWidgetAnnotation *widget = [[[CPDFChoiceWidgetAnnotation alloc]

initWithDocument:document listChoice:YES] autorelease];

widget.items = items;

[page addAnnotation:widget];

3.4.3 Delete Form Fields

Delete form fields works the same as deleting annotations, and check delete annotations in the guides to
see more.

3.4.4 Fill Form Fields

ComPDFKit PDF SDK fully supports the AcroForm standard, and forms can be viewed and filled inside the
CPDFView .

To fill in a text form element, tap it and then type text using either the onscreen keyboard or an attached
hardware keyboard. Then tap either the Done button above the keyboard or any blank area on the page to
deselect the form element, which will commit the changes.

To set the value of a choice form element (a list or combo box), tap the element, and then select an item
from the list, or type in a custom item.

To enable or disable a checkbox form element, tap it to toggle its state. And you can set the selection of a
radio button form element by tapping the desired item.

While a form element is selected (focused), the left and right arrows above the keyboard may be used to
move the focus sequentially between all the form elements on the page.

The following example demonstrates how form fields can be queried and filled with code:

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[[CPDFDocument alloc] initWithURL:url] autorelease];

3.4.5 Flatten PDF Forms

PDF Form flattening works the same as annotation flattening, and refer to annotation flattening in the
guides to see more.

3.5 Document Editor
ComPDFKit provides a wide range of APIs for document editing operations. These are mostly available
through the CPDFDocument and CPDFPage classes.

ComPDFKit benefits include:

PDF Manipulation

Split pages
Merge pages
Extract pages

Page Edit

Delete pages
Insert pages (choose from another document, a blank page, or an image)
Move pages
Rotate pages
Exchange pages
Replace pages
Crop pages

Edit Document Information

Extract Images

CPDFPage *page = [document pageAtIndex:0];

NSArray *annotations = [page annotations];

for (CPDFAnnotation *annotation in annotations) {

 if ([annotation isKindOfClass:[CPDFTextWidgetAnnotation class]]) {
 [(CPDFTextWidgetAnnotation *)annotation setStringValue:@""];
 } else if ([annotation isKindOfClass:[CPDFButtonWidgetAnnotation class]]) {
 if (CPDFWidgetRadioButtonControl == [(CPDFButtonWidgetAnnotation *)annotation
controlType]) {

 [(CPDFButtonWidgetAnnotation *)annotation setState:1];
 }
 } else if ([annotation isKindOfClass:[CPDFChoiceWidgetAnnotation class]]) {
 [(CPDFChoiceWidgetAnnotation *)annotation setSelectItemAtIndex:0];
 }
}

3.5.1 PDF Manipulation

Split Pages

CPDFDocument can extract ranges of pages from one document and put them into another document.
If you run this operation multiple times with different page indexes, you can effectively split a PDF into
as many documents as you require.

To split a PDF document into multiple pages, please use the following method:

1. Create a blank PDF document.

2. Open a PDF document that contains the pages you want to split.

3. Extract specific pages from the PDF document that you just opened, and import them into the
blank PDF document.

4. Save the document.

Merge Pages

ComPDFKit allows you to instantiate multiple CPDFDocument , and you can use the CPDFDocument API
to merge multiple PDF files into a single one.

To merge PDF documents into one file, please use the following method:

1. Create a blank PDF document.

2. Open the PDF documents that contain the pages you want to merge.

CPDFDocument *document = [[[CPDFDocument alloc] init] autorelease];

// File path

NSString *path1 = @"...";

NSURL *url1 = [NSURL fileURLWithPath:path1];

CPDFDocument *document1 = [[[CPDFDocument alloc] initWithURL:url1]

autorelease];

// Pages that need to be split, e.g. 2 to 5 pages

NSIndexSet *indexSet = [NSIndexSet indexSetWithIndexesInRange:NSMakeRange(1,

4)];

[document importPages:indexSet fromDocument:document1 atIndex:0];

// Save path

NSString *path = @"...";

NSURL *url = [NSURL fileURLWithPath:path];

[document writeToURL:url];

CPDFDocument *document = [[[CPDFDocument alloc] init] autorelease];

3. Merge all the pages from the documents you just opened, and import them into the blank PDF
document.

4. Save the document.

The sample code above allows you to merge all the pages from the two documents. If you’re looking to
merge or add specific pages from one document to another, you can use importPages of
CPDFDocument::importPages:fromDocument:atIndex: to set specific pages.

Extract Pages

CPDFDocument can extract ranges of pages from one document and put them into a blank document.
If you run this operation, you can effectively extract a PDF as you require. Refer to split pages for more
details.

3.5.2 Page Edit

Page manipulation is the ability to perform changes to pages.

To delete pages from a PDF document, use function CPDFDocument::removePageAtIndexSet: .

To insert a blank page into a PDF document, use function CPDFDocument::insertPage:atIndex: .

To insert an image as an entire page into a PDF document, use function
CPDFDocument::insertPage:withImage:atIndex: .

To insert specific page from one document to another, use function
CPDFDocument::importPages:fromDocument:atIndex: .

// File path

NSString *path1 = @"...";

NSURL *url1 = [NSURL fileURLWithPath:path1];

CPDFDocument *document1 = [[[CPDFDocument alloc] initWithURL:url1]

autorelease];

// File path

NSString *path2 = @"...";

NSURL *url2 = [NSURL fileURLWithPath:path2];

CPDFDocument *document2 = [[[CPDFDocument alloc] initWithURL:url2]

autorelease];

[document importPages:nil fromDocument:document1 atIndex:document.pageCount];

[document importPages:nil fromDocument:document2 atIndex:document.pageCount];

// Save path

NSString *path = @"...";

NSURL *url = [NSURL fileURLWithPath:path];

[document writeToURL:url];

To move a page to a new location, use function
CPDFDocument::movePageAtIndex:withPageAtIndex: .

To exchange the location of two document pages, use function
CPDFDocument::exchangePageAtIndex:withPageAtIndex: .

To replace original document pages with new pages from a different document, use function
CPDFDocument::removePageAtIndexSet: and
CPDFDocument::importPages:fromDocument:atIndex: .

To rotate a page in a PDF document, refer to the following method in the CPDFPage class.

To crop a page in a PDF document, refer to the following method in the CPDFPage class.

3.5.3 Document Information

To edit document information, refer to the following method in the CPDFDocument class.

// Rotation on a page. Must be 0, 90, 180 or 270 (negative rotations will be

"normalized" to one of 0, 90, 180 or 270).

// Some PDF's have an inherent rotation and so -[rotation] may be non-zero when a

PDF is first opened.

@property (nonatomic,assign) NSInteger rotation;

/**

 * Sets the bounds for the specified box.

 *

 * @discussion If the box does not exist, this method creates it for you.

 * @see CPDFDisplayBox

 */

- (void)setBounds:(CGRect)bounds forBox:(CPDFDisplayBox)box;

typedef NSString *CPDFDocumentAttribute NS_STRING_ENUM;

extern CPDFDocumentAttribute const CPDFDocumentTitleAttribute; // NSString
containing document title.

extern CPDFDocumentAttribute const CPDFDocumentAuthorAttribute; // NSString
containing document author.

extern CPDFDocumentAttribute const CPDFDocumentSubjectAttribute; // NSString
containing document title.

extern CPDFDocumentAttribute const CPDFDocumentCreatorAttribute; // NSString
containing name of app that created document.

extern CPDFDocumentAttribute const CPDFDocumentProducerAttribute; // NSString
containing name of app that produced PDF data.

extern CPDFDocumentAttribute const CPDFDocumentKeywordsAttribute; // NSString
containing document keywords.

3.5.4 Extract Images

To extract images from a PDF document, use function CPDFDocument::extractImageFromPages:toPath: .

Extracting images from a page is time-consuming, and you are advised to perform this operation
asynchronously. In addition, you can use CPDFDocument::cancelExtractImage: to cancel the operation.

The code below will grab all images from the first page of the given PDF document:

3.6 Security
ComPDFKit PDF SDK protects the content of PDF documents from unauthorized access like copying or
printing. It offers developers a way to encrypt and decrypt PDFs, add a password, insert watermark, and
more. For controlling over document security in ComPDFKit PDF SDK, security handlers perform user
authorization and sets various permissions over PDF documents.

extern CPDFDocumentAttribute const CPDFDocumentCreationDateAttribute; // NSString
representing document creation date.

extern CPDFDocumentAttribute const CPDFDocumentModificationDateAttribute; // NSString
representing last document modification date.

/**

 * A dictionary of document metadata.

 *

 * @discussion Metadata is optional for PDF documents. The dictionary may be empty, or

only some of the keys may have associated values.

 */

- (NSDictionary<CPDFDocumentAttribute, id> *)documentAttributes;

- (void)setDocumentAttributes:(NSDictionary<CPDFDocumentAttribute, id>

*)documentAttributes;

NSURL *url = [NSURL fileURLWithPath:@""];

CPDFDocument *document = [[[CPDFDocument alloc] initWithURL:url] autorelease];

NSIndexSet *pages = [NSIndexSet indexSetWithIndex:0];

NSString *imagePath = @"";

dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

 [document extractImageFromPages:pages toPath:imagePath];
});

3.6.1 PDF Permission

A PDF file can have two different passwords set, a permissions or owner password and an open or user
password.

A user password (also known as an open password) requires a user to type a password to open the PDF.
When you try to open a document with a user password, CPDFView will show a password prompt to unlock
the document. If you want to open a document with a user password programmatically, you can use the
CPDFDocument::unlockWithPassword: API.

An owner password (also known as a permissions password) requires a password to change permission
settings. When an owner password is set, you can configure a set of permissions. For example, you can
configure an owner password and the “printing” permission when saving a document to make sure that
users who don’t know that owner password can only print the document, but not modify it.

The PDF specification defines the permissions shown below:

Printing — print the document.
High-quality printing — print the document in high fidelity.
Copying — copy content from the document.
Document changes — modify the document contents except for document attributes.
Document assembly — insert, delete, and rotate pages.
Commenting — create or modify document annotations, including form field entries.
Form field entry — modify form field entries even if you can't edit document annotations.

To access the corresponding permissions, refer to following methods in the CPDFDocument class.

/**

 * A Boolean value indicating whether the document allows printing.

 */

@property (nonatomic,readonly) BOOL allowsPrinting;

/**

 * A Boolean value indicating whether the document allows printing in high fidelity.

 */

@property (nonatomic,readonly) BOOL allowsHighQualityPrinting;

/**

 * A Boolean value indicating whether the document allows copying of content to the

Pasteboard.

 */

@property (nonatomic,readonly) BOOL allowsCopying;

/**

 * A Boolean value indicating whether you can modify the document contents except for

document attributes.

 */

@property (nonatomic,readonly) BOOL allowsDocumentChanges;

/**

 * A Boolean value indicating whether you can manage a document by inserting, deleting,

and rotating pages.

 */

@property (nonatomic,readonly) BOOL allowsDocumentAssembly;

Encrypt

ComPDFKit’s CPDFDocument API can generate a password-protected document. You can use
CPDFDocument to create a new password-protected PDF document on disk based on a current
document. The user password prevents users from viewing the PDF. If you specify it, you also need to
specify an owner password.

For example, you can configure an owner password and the “printing” permission when saving a
document to make sure that users who don’t know that owner password can only print the document,
but not modify it.

Decrypt

ComPDFKit PDF SDK fully supports the reading of secured and encrypted PDF documents.

To check whether a document requires a password:

/**

 * A Boolean value indicating whether you can create or modify document annotations,

including form field entries.

 */

@property (nonatomic,readonly) BOOL allowsCommenting;

/**

 * A Boolean value indicating whether you can modify form field entries even if you

can't edit document annotations.

 */

@property (nonatomic,readonly) BOOL allowsFormFieldEntry;

NSURL *url = [NSURL fileURLWithPath:@""];

CPDFDocument *document = [[[CPDFDocument alloc] initWithURL:url] autorelease];

NSURL *surl = [NSURL fileURLWithPath:@""];

NSDictionary *options = @{CPDFDocumentOwnerPasswordOption : @"The owner password",

 CPDFDocumentUserPasswordOption : @"The user password",
 CPDFDocumentAllowsPrintingOption : @(YES),
 CPDFDocumentAllowsHighQualityPrintingOption : @(NO),
 CPDFDocumentAllowsCopyingOption : @(NO),
 CPDFDocumentAllowsDocumentChangesOption : @(NO),
 CPDFDocumentAllowsDocumentAssemblyOption : @(NO),
 CPDFDocumentAllowsCommentingOption : @(NO),
 CPDFDocumentAllowsFormFieldEntryOption : @(NO)};
[document writeToURL:surl withOptions:options];

NSURL *url = [NSURL fileURLWithPath:@""];

CPDFDocument *document = [[[CPDFDocument alloc] initWithURL:url] autorelease];

if (document.error &&

 document.error.code == CPDFDocumentPasswordError) {
 // Password required
}

To read a PDF document with password protection, use function
CPDFDocument::unlockWithPassword: . If the password is correct, this method returns YES , a
CPDFDocumentDidUnlockNotification notification is sent. Once unlocked, you cannot use this
function to relock the document.

To remove PDF security, call the CPDFDocument::writeDecryptToURL: method:

3.6.2 Watermark

Adding a non-removable watermark to documents can discourage viewers from sharing your content or
taking screenshots.

To access the list of watermarks, use function CPDFDocument::watermarks .
To add a watermark, use function CPDFDocument::addWatermark: .
To remove the watermark, use function CPDFDocument::removeWatermark: .
To update the watermark, use function CPDFDocument::updateWatermark .

How to generate a PDF with a watermark on all its pages using the CPDFDocument API:

NSURL *url = [NSURL fileURLWithPath:@""];

CPDFDocument *document = [[[CPDFDocument alloc] initWithURL:url] autorelease];

NSURL *surl = [NSURL fileURLWithPath:@""];

[document writeDecryptToURL:surl];

NSURL *url = [NSURL fileURLWithPath:@""];

CPDFDocument *document = [[[CPDFDocument alloc] initWithURL:url] autorelease];

CPDFWatermark *watermark = [[[CPDFWatermark alloc] initWithDocument:document

type:CPDFWatermarkTypeText] autorelease];

watermark.text = @"test";

watermark.scale = 2.0;

watermark.rotation = 45;

watermark.opacity = 0.6;

watermark.verticalPosition = CPDFWatermarkVerticalPositionCenter;

watermark.horizontalPosition = CPDFWatermarkHorizontalPositionCenter;

watermark.tx = 0.0;

watermark.ty = 0.0;

[document addWatermark:watermark];

NSURL *surl = [NSURL fileURLWithPath:@""];

[document writeToURL:surl];

3.6.3 Redaction

Redaction is the process of removing images, text, and vector graphics from a PDF page. This not only
involves obscuring the content, but also removing the data in the document within the specified area.

Redaction typically involves removing sensitive content within documents for safe distribution to courts,
patent and government institutions, the media, customers, vendors, or any other audience with restricted
access to the content. Redaction is a two-step process.

First, redaction annotations have to be created in the areas that should be redacted. This step won’t
remove any content from the document yet; it just marks regions for redaction.
Second, to actually remove the content, the redaction annotations need to be applied. In this step, the
page content within the region of the redaction annotations is irreversibly removed.

This means that the actual removal of content happens only after redaction annotations are applied to the
document. Before applying, the redaction annotations can be edited and removed the same as any other
annotations.

Redacting PDFs programmatically:

Creating Redactions Programmatically

You can create redactions programmatically via CPDFRedactAnnotation . Use the
quadrilateralPoints or bounds property to set the areas that should be covered by the redaction
annotation.

You also have a few customization options for what a redaction should look like, both in its marked
state, which is when the redaction has been created but not yet applied, and in its redacted state,
which is when the redaction has been applied. It is impossible to change the appearance once a
redaction has been applied, since the redaction annotation will be removed from the document in the
process of applying the redaction.

This is how to create a redaction annotation that covers the specified region on the first page of a
document:

Applying Redactions Programmatically

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[[CPDFDocument alloc] initWithURL:url] autorelease];

CPDFPage *page = [document pageAtIndex:0];

CPDFRedactAnnotation *redact = [[[CPDFRedactAnnotation alloc]

initWithDocument:document] autorelease];

redact.bounds = CGRectMake(0, 0, 50, 50);

redact.overlayText = @"REDACTED";

redact.font = [UIFont systemFontOfSize:12];

redact.fontColor = [UIColor redColor];

redact.alignment = NSTextAlignmentLeft;

redact.interiorColor = [UIColor blackColor];

redact.borderColor = [UIColor yellowColor];

[page addAnnotation:redact];

3.7 Conversion

3.7.1 PDF/A

The conversion option analyzes the content of existing PDF files and performs a sequence of modifications
in order to produce a PDF/A compliant document.

Features that are not suitable for long-term archiving (such as encryption, obsolete compression schemes,
missing fonts, or device-dependent color) are replaced with their PDF/A compliant equivalents. Because the
conversion process applies only necessary changes to the source file, the information loss is minimal.

Converts existing PDF files to PDF/A compliant documents, including PDF/A-1a and PDF/A-1b only.

3.8 PDF Editing
PDF editing provides the ability to change content so that its data can be improved or re-purposed.

Edit text.
Remove specific content from existing pages.
Insert or append new content to existing pages.
Undo or redo any change.
Set the text alignment.
Set the text font style.

3.8.1 Initialize PDF Editing

The following code demonstrates how to do PDF editing initialization.

[redact applyRedaction];

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[[CPDFDocument alloc] initWithURL:url] autorelease];

[document writePDFAToURL:url withType:CPDFTypePDFA1a];

3.8.2 Customize the Context Menu

You can rewrite the menuItemsEditingAtPoint:forPage: of CPDFView in the opened PDF preview to set
the options of the context menu, which returns to copy, delete, paste, etc. by default. After completing these
options, you can copy, paste, cut, or delete text as in Microsoft Word. The following code will show you how
to do this.

3.8.3 Set Text Properties

You can use setEditingSelectionFontSize: of CPDFView to set the font size of the currently
selected code block or text. The following code will show you how to do this.

You can use setEditingSelectionFontColor: of CPDFView to set the font color of the currently
selected code block or text. The following code will show you how to do this.

You can use setCurrentSelectionAlignment: of CPDFView to set the alignment of the currently
selected code block or text. The following code will show you how to do this.

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[[CPDFDocument alloc] initWithURL:url] autorelease];

CPDFView *pdfView = [[[CPDFView alloc] initWithFrame:self.view.bounds] autorelease];

// Set the document to display

 pdfView.document = document;

// Begin editing text.

[viewer beginEditingLoadType:CEditingLoadTypeText]

- (NSArray<UIMenuItem *> *)menuItemsEditingAtPoint:(CGPoint)point forPage:(CPDFPage

*)page {

 NSArray * items = [super menuItemsEditingAtPoint:point forPage:page];
 NSMutableArray *menuItems = [NSMutableArray array];
 if (items)
 [menuItems addObjectsFromArray:items];

 return menuItems;
}

 [self setEditingSelectionFontSize:14.0];

 [self setEditingSelectionFontColor:[CPDFKitPlatformColor redColor]];

3.8.4 Listen to the Changes of Block Editing

ComPDFKit PDF SDK offers developers an API for programmatic change of editing status, which is easy to
adjust related UI effects.

When selecting a text block or a certain area, you can use editStatus: of CPDFView to get the current
text-editing status. The following is the introduction to each status.

CEditingSelectStateEmpty Does not enter the text-editing status.

CEditingSelectStateEditTextArea Selects a text block without entering the text-editing status.

CEditingSelectStateEditNoneText Enters the text-editing status without selecting text.

CEditingSelectStateEditSelectText Enters the text-editing status and selects text.

3.8.5 How to Redo and Undo

You can use CPDFViewer 's class to redo and undo. The following code will show you how to do this.

 [self setCurrentSelectionAlignment:NSTextAlignmentCenter];

/**

 * Called when the editing changes.

 */

- (void)PDFViewEditingOperationDidChanged:(CPDFView *)pdfView;

/**

 * Called when the selected block or selected certain area changes.

 */

- (void)PDFViewEditingSelectStateDidChanged:(CPDFView *)pdfView;

/**

 * Called when the selected text block enters the text-editing status.

 */

- (void)PDFEditingViewShouldBeginEditing:(CPDFView *)pdfView textView:(UITextView

*)textView;

/**

 * Called when the selected text block ends the text-editing status.

 */

- (void)PDFEditingViewShouldEndEditing:(CPDFView *)pdfView textView:(UITextView

*)textView;

3.8.6 How to Set the Alignment of the Selected Text

You can use CPDFViewer to set the PDF text alignment. The following code will show you how to do this.

3.8.7 How to Set the Font Style of Selected Text

ComPDFKit PDF SDK provides developers with programming to edit the text font style, which is easy to
adjust the font of related text blocks.

if ([pdfView canEditTextUndo]) {

 [pdfView editTextUndo];
}

if ([pdfView canEditTextRedo]) {

 [pdfView editTextRedo];
}

/**

 * Get the alignment of the selected text.

 */

NSTextAlignment alignment = [self editingSelectionAlignment];

/**

 * Set the alignment of the selected text.

 */

[self setCurrentSelectionAlignment:sender.selectedSegmentIndex];

/**

 * Get the font name of the selected text.

 */

- (NSString *)editingSelectionFontName;

/**

 * Set the font name of the selected text.

 */

- (void)setEditingSelectionFontName:(NSString *)fontName;

/**

 * Get whether the selected text is italic.

 */

- (BOOL)isItalicCurrentSelection;

/**

 * Set the selected text is italic.

4 Support

4.1 Reporting Problems
Thank you for your interest in ComPDFKit PDF SDK, the only easy-to-use but powerful development solution
to integrate high quality PDF rendering capabilities to your applications. If you encounter any technical
questions or bug issues when using ComPDFKit PDF SDK for iOS, please submit the problem report to the
ComPDFKit team. More information as follows would help us to solve your problem:

ComPDFKit PDF SDK product and version.
Your operating system and IDE version.
Detailed descriptions of the problem.
Any other related information, such as an error screenshot.

4.2 Contact Information
Home Link:

https://www.compdf.com

Support & General Contact:

Email: support@compdf.com

Thanks,
The ComPDFKit Team

 */

- (void)setCurrentSelectionIsItalic:(BOOL)isItalic;

/**

 * Get whether the selected text is bold.

 */

- (BOOL)isBoldCurrentSelection;

/**

 * Set the selected text is bold.

 */

- (void)setCurrentSelectionIsBold:(BOOL)isBold;

https://www.compdf.com/
mailto:support@compdf.com

	1 Overview
	1.1 ComPDFKit PDF SDK
	1.2 Key Features
	1.3 License

	2 Get Started
	2.1 Requirements
	2.2 iOS Package Structure
	2.3 How to run a demo
	2.4 How to Make an iOS App in Objective-C with ComPDFKit
	2.4.1 Create a New iOS Project in Objective-C
	2.4.2 Integrate ComPDFKit into Your Apps
	2.4.3 Apply the License Key
	2.4.4 Display a PDF Document

	2.5 How to Make an iOS App in Objective-C with Default UI
	2.5.1 Integrate Default UI into Your Apps
	2.5.2 How to Initialize the PDFViewController Class
	2.5.3 How to Handle PDF Document Loading
	2.5.4 How to Use the PDFListView Class
	2.5.5 How to Use the PDFKeyboardToolbar Class

	2.6 ARC Compatibility
	2.7 Swift Compatibility

	3 Guides
	3.1 Basic Operations
	3.1.1 Open a Document
	3.1.2 Save a Document

	3.2 Viewer
	3.2.1 Display Modes
	3.2.2 PDF Navigation
	3.2.3 Text Search & Selection
	3.2.4 Zooming
	3.2.5 Themes
	3.2.6 Text Reflow
	3.2.7 Rendering

	3.3 Annotations
	3.3.1 Annotation Types
	3.3.2 Access Annotations
	3.3.3 Create & Edit Annotations
	3.3.4 Delete Annotations
	3.3.5 Annotation Appearances
	3.3.6 Import & Export Annotations
	3.3.7 Flatten Annotations
	3.3.8 Predefine Annotations

	3.4 Forms
	3.4.1 Supported Form Fields
	3.4.2 Create & Edit Form Fields
	3.4.3 Delete Form Fields
	3.4.4 Fill Form Fields
	3.4.5 Flatten PDF Forms

	3.5 Document Editor
	3.5.1 PDF Manipulation
	3.5.2 Page Edit
	3.5.3 Document Information
	3.5.4 Extract Images

	3.6 Security
	3.6.1 PDF Permission
	3.6.2 Watermark
	3.6.3 Redaction

	3.7 Conversion
	3.7.1 PDF/A

	3.8 PDF Editing
	3.8.1 Initialize PDF Editing
	3.8.2 Customize the Context Menu
	3.8.3 Set Text Properties
	3.8.4 Listen to the Changes of Block Editing
	3.8.5 How to Redo and Undo
	3.8.6 How to Set the Alignment of the Selected Text
	3.8.7 How to Set the Font Style of Selected Text

	4 Support
	4.1 Reporting Problems
	4.2 Contact Information

