
1 Overview
ComPDFKit PDF SDK for iOS is a robust PDF library for developers who need to develop applications on iOS,
which offers powerful Objective-C APIs for quickly viewing, annotating, editing, and creating PDFs. It is
feature-rich and battle-tested, making PDF files process and manipulation easier and faster for iOS devices.

1.1 ComPDFKit PDF SDK
ComPDFKit PDF SDK consists of two elements as shown in the following picture.

The two elements for ComPDFKit PDF SDK:

PDF Core API

The Core API can be used independently for document rendering, analysis, text extraction, text search,
form filling, password security, annotation creation and manipulation, and much more.

PDF View

The PDF View is a utility class that provides the functionality for developers to interact with rendering
PDF documents per their requirements. The View Control provides fast and high-quality rendering,
zooming, scrolling, and page navigation features. The View Control is derived from platform-related
viewer classes (e.g. UIView on iOS) and allows for extension to accommodate specific user needs.

1.2 Key Features
Viewer component offers:

Standard page display modes, including Scrolling, Double Page, Crop Mode, and Cover Mode.
Navigation with thumbnails, outlines, and bookmarks.
Text search & selection.
Zoom in and out & Fit-page.
Switch between different themes, including Dark Mode, Sepia Mode, Reseda Mode, and Custom Color
Mode.
Text reflow.

Annotations component offers:

Create, edit, and remove annotations, including Note, Link, Free Text, Line, Square, Circle, Highlight,
Underline, Squiggly, Strikeout, Stamp, Ink, and Sound.
Support for annotation appearances.
Import and export annotations to/from XFDF.
Support for annotation flattening.
Predefine annotations.

Forms component offers:

Create, edit and remove form fields, including Push Button, Check Box, Radio Button, Text Field, Combo
Box, List Box, and Signature.
Fill PDF Forms.
Support for PDF form flattening.

Document Editor component offers:

PDF manipulation, including Split pages, Extract pages, and Merge pages.
Page edit, including Delete pages, Insert pages, Crop pages, Move pages, Rotate pages, Replace pages,
and Exchange pages.
Document information setting.
Extract images.

Content Editor component offers:

Programmatically add and remove text in PDFs and make it possible to edit PDFs like Word. Allow
selecting text to copy, resize, change colors, text alignment, and the position of text boxes.
Undo or redo any change.

Security component offers:

Encrypt and decrypt PDFs, including Permission setting and Password protected.
Create, edit, and remove watermark.
Redact content including images, text, and vector graphics.
Create, edit, and remove header & footer, including dates, page numbers, document name, author
name, and chapter name.
Create, edit, and remove bates numbers.
Create, edit, and remove background that can be a solid color or an image.

Conversion component offers:

PDF to PDF/A.

1.3 License
ComPDFKit PDF SDK is a commercial SDK, which requires a license to grant developer permission to release
their apps. Each license is only valid for one bundle ID in development mode. Other flexible licensing
options are also supported, please contact our marketing team to know more. However, any documents,
sample code, or source code distribution from the released package of ComPDFKit to any third party is
prohibited.

2 Get Started
It is easy to embed ComPDFKit in your iOS app with a few lines of Objective-C code. Take just a few minutes
and get started.

The following sections introduce the structure of the installation package, how to run a demo, and how to
make an iOS app in Objective-C with ComPDFKit PDF SDK.

2.1 Requirements
ComPDFKit requires the latest stable version of Xcode available at the time the release was made. This is a
hard requirement, as each version of Xcode is bundled with a specific version of the iOS Base SDK, which
often defines how UIKit and various other frameworks behave.

iOS 10.0 or higher.
Xcode 12.0 or newer for Objective-C or Swift.

2.2 iOS Package Structure
The package of ComPDFKit PDF SDK for iOS includes the following files:

mailto:support@compdf.com

"Lib" - Include the ComPDFKit.xcframework dynamic library (arm64_armv7, x86_64-simulator) and
associated header files.

"Examples" - A folder containing iOS sample projects.

"Viewer" - A basic PDF viewer, including reading PDFs, changing themes, bookmarks, searching
text, etc.
"Annotations" - A PDF viewer with full types of annotation editing, including adding annotations,
modifying annotations, annotation lists, etc.
"ContentEditor" - A PDF viewer with text and image editing, including modifying text, replacing
images, etc.
"Forms" - A PDF viewer with full types of forms editing, including radio button, combo box, etc.
"DocsEditor" - A PDF viewer with page editing, including inserting/deleting pages, extracting pages,
reordering pages, etc.
"PDFViewer" - A multi-functional PDF program that integrates all of the above features.
"ComPDFKit_Tools" - A default control library for quickly building various function modules of PDF
viewer.
"PDFViewer-Swift" - A folder containing Swift iOS sample projects.

"api_reference_ios" - API reference.

"developer_guide_ios.pdf" - Developer guide.

"release_notes.txt" - Release information.

"legal.txt" - Legal and copyright information.

"TestFile" - A folder containing test files.

2.3 How to Run a Demo
ComPDFKit PDF SDK for iOS provides multiple demos in Objective-C for developers to learn how to call the
SDK on iOS. You can find them in the "Examples" folder.

In this guide, we take "PDFViewer" as an example to show how to run it in Xcode (The demo in Objective-C
uses the "xcworkspace" method, so you can directly open "PDFViewer.xcworkspace").

1. Copy the applied "license_key_ios.xml" file to "Examples" folder to replace (There is already a method
to parse the xml file in demo, please do not modify the storage location and file name).

2. Find "PDFViewer.xcworkspace" in the "Examples" folder and double-click to open it, find the schemes
of "PDFViewer" in Xcode, and select the corresponding simulator (ComPDFKit does not support the
simulator to run M1 chip, but we have made it compatible in Excluded Architectures , you can see

the processing method in 2.4.5 Troubleshooting).

3. Click Product -> Run to run the demo on an iOS device. In this guide, we use an iPhone 14 device as an
example. After building the demo successfully, the "PDF32000_2008.pdf" file will be opened and
displayed.

Note: This is a demo project, presenting completed ComPDFKit PDF SDK functions. The functions might be
different based on the license you have purchased. Please check that the functions you choose work fine in this
demo project.

2.4 How to Make an iOS App in Objective-C with
ComPDFKit

This section will help you to quickly get started with ComPDFKit PDF SDK to make an iOS app in Objective-C
with step-by-step instructions, which include the following steps:

1. Create a new iOS project in Objective-C.
2. Integrate ComPDFKit into your apps.
3. Apply the license key.
4. Display a PDF document.

2.4.1 Create a New iOS Project in Objective-C

In this guide, we use Xcode 12.4 to create a new iOS project.

Fire up Xcode, choose File -> New -> Project..., and then select iOS -> Single View Application. Click Next.

Choose the options for your new project. Please make sure to choose Objective- C as the programming
language. Then, click Next.

Place the project to the location as desired. Then, click Create.

2.4.2 Integrate ComPDFKit into Your Apps

There are two ways to integrate ComPDFKit PDF SDK for iOS into your apps. You can choose what works
best for you based on your requirements.

If you just want to use the default built-in Ul implementations to develop your apps for simplicity and
convenience, you need to include the following files:

“ComPDFKit.xcframework： - Include the ComPDFKit dynamic library (arm64_armv7, x86_64-simulator)
and associated header files.
”Source files“ - Found in the " PDFViewer / Source " folder. They are the default built-in Ul.
"Resource files" - Found in the " PDFViewer / Resources " folder. They are needed for the default built-
in Ul implementations, such as images, strings, and other resources.

If you want to customize your (PDF-related) app’s Ul design, you need to include the following files:

"ComPDFKit.xcframework" - Include the ComPDFKit PDF SDK dynamic library (arm64_armv7, x86_64-
simulator) and associated header files.
"Resource files“ - Found in the " PDFViewer / Resources " folder. They are needed for the default built-

in Ul implementations, such as images, strings, and other resources.

To add the dynamic xcframework "ComPDFKit.xcframework" into the "PDFViewer" project, please follows
the steps below:

1. Right-click the "PDFViewer" project, select Add Files to "PDFViewer"....

Find and choose "ComPDFKit.xcframework" in the download package, and then click Add.

Note: Make sure to check the Copy items if needed option.

Then, the "PDFViewer" project will look like the following picture.

2. Add the dynamic xcframework "ComPDFKit.xcframework" to the Xcode’s Embedded Binaries. Left-
click the project, find Embedded Binaries in the General tab, and choose Embed & Sign.

For earlier versions of Xcode (like Xcode 13), the Bitcode option might be turned on by default, which
requires it to be turned off to run. The precise step to do this are illustrated as shown in the picture
below.

2.4.3 Apply the License Key

1. Import the header file "ComPDFKit/ComPDFKit.h" to AppDelegate.m .

2. Follow the code below and call the method CPDFKit setLicenseKey:@"LICENSE_KEY"

secret:@"LICENSE_SECRET" in - (BOOL)application:(UIApplication *)application

didFinishLaunchingWithOptions:(NSDictionary *)launchOptions . You need to replace the

LICENSE_KEY and LICENSE_SECRET with the license you obtained.

#import <ComPDFKit/ComPDFKit.h>

- (BOOL)application:(UIApplication *)application didFinishLaunchingWithOptions:

(NSDictionary *)launchOptions {

 // Set your license key here. ComPDFKit is commercial software.

 // Each ComPDFKit license is bound to a specific app bundle id.

 // com.compdfkit.pdfviewer

 [CPDFKit setLicenseKey:@"YOUR_LICENSE_KEY_GOES_HERE"

 secret:@"YOUR_LICENSE_SECRET_GOES_HERE"];

 return YES;

}

Compile and run the project. If the console outputs "version information", it means that the license has
been set successfully. Otherwise, please check the "Troubleshooting" section at 2.4.5 or check error logs in
the console to quickly identify and solve the issue.

2.4.4 Display a PDF Document

So far, we have added "ComPDFKit.xcframework" to the "PDFViewer" project, and finished the initialization
of the ComPDFKit PDF SDK. Now, let’s start building a simple PDF viewer with just a few lines of code.

1. Prepare a test PDF file, drag and drop it into the newly created PDFView project. By this way, you can
load and preview the local PDF document using NSBundle . The following image shows an example of

importing a PDF document named “Online5” into the project.

2. Import <ComPDFKit/ComPDFKit.h> at the top of your UIViewController.m subclass

implementation:

3. Create a CPDFDocument object through NSURL, and create a CPDFView to display it. The following

code shows how to load PDF data using a local PDF path and display it by CPDFView .

#import <ComPDFKit/ComPDFKit.h>

4. Add the created CPDFView to the view of the current controller. The sample code shows below.

The code shown here is a collection of the steps mentioned above:

5. Connect your device or simulator, and use shortcut Command_R to run the App. The PDF file will be
opened and displayed.

NSBundle *bundle = [NSBundle mainBundle];

NSString *pdfPath= [bundle pathForResource:@"Online5" ofType:@"pdf"];

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

CGRect rect = self.view.bounds;

CPDFView *pdfView = [[CPDFView alloc] initWithFrame:rect];

pdfView.autoresizingMask = UIViewAutoresizingFlexibleWidth |

UIViewAutoresizingFlexibleHeight;

pdfView.document = document;

 [self.view addSubview:pdfView];

- (void)viewWillAppear:(BOOL)animated {

 [super viewWillAppear:animated];

 NSBundle *bundle = [NSBundle mainBundle];

 NSString *pdfPath= [bundle pathForResource:@"Online5" ofType:@"pdf"];

 NSURL *url = [NSURL fileURLWithPath:pdfPath];

 CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

 CGRect rect = self.view.bounds;

 CPDFView *pdfView = [[CPDFView alloc] initWithFrame:rect];

 pdfView.autoresizingMask = UIViewAutoresizingFlexibleWidth |

UIViewAutoresizingFlexibleHeight;

 pdfView.document = document;

 [self.view addSubview:pdfView];

}

2.4.5 Troubleshooting

1. Bitcode

Even when all configurations are correct, there may still be compilation errors. First, check if bitcode is
disabled. In earlier versions of Xcode (such as Xcode 13), the Bitcode option may be enabled by default.
It needs to be set to No in order to run the app.

2. License

If a License setting error occurs, ensure that the Identity (Bundle ID) setting in General matches the
Bundle ID you provided when contacting us for the license. If an expired License message appears,
please contact the ComPDFKit team to obtain the latest License and Key.

3. Mac with M1 Chip Cannot Run Projects on Simulator

Currently, "ComPDFKit.xcframework" does not provide M-series simulator architecture, so you need to
search for Excluded Architectures in Build Settings in TARGETS, and then double-click it. A pop-up
box will be popped up, click the plus sign (as shown below) to add arm64.

https://www.compdf.com/contact-us

4. No PDF Displayed

Check if the special encoding is required in the path we passed in, or if the local path we passed in
exists.

5. Other Problems

If you meet some other problems when integrating our ComPDFKit PDF SDK for iOS, feel free to
contact ComPDFKit team.

2.5 ARC Compatibility
ComPDFKit PDF SDK requires non-ARC. If you wish to use ComPDFKit PDF SDK in a ARC project, just add the
-fno-objc-arc compiler flag. To do this, go to the Build Phases tab in your target settings, open the Compile
Sources group, and double-click and type -fno-objc-arc into the popover.

2.6 Swift Compatibility
To use the ComPDFKit Objective-C Framework in your Swift project, you have to create a Swift Bridging
Header file in that project. The best way is to create the .h file manually.

1. The First Method

First, add a header file to your project with the name: MyProjectName-Bridging-Header.h. This will be
the single header file where you import any Objective-C code that you need your Swift code to access.

Then, find Swift Compiler - Code Generation section in your project build settings. Add the path to your
bridging header file next to Objective-C Bridging Header from the project root folder. It should be
MyProject/MyProject-Bridging-Header.h.

2. The Second Method:

Import modules. Find the "ComPDFKit.xcframework" folder -> "ios-arm64_armv7" ->
"ComPDFKit.framework" -> "Modules". Then, import the "Modules" folder entirely or just import the
"Module“ files within the ”Modules“ folder. See the picture below for the details.

https://www.compdf.com/contact-us
https://www.codeography.com/2011/10/10/making-arc-and-non-arc-play-nice.html
https://www.jianshu.com/p/b8cccbbd03f3

The subsequent operations can be configured in the same way as the configuration method of
Objective-C.

3 Guides
If you’re interested in all of the features mentioned in Overview section, please go through our guides to
quickly add PDF viewing, annotating, and editing to your application. The following sections list some
examples to show you how to add document functionalities to iOS apps using our Swift and Objective-C
APIs.

3.1 Basic Operations
There are a few commonly used basic operations when working with documents.

3.1.1 Open a Document

Open a Local File

Error Description

CPDFDocumentUnknownError Unknown error.

CPDFDocumentFileError File not found or could not be opened.

CPDFDocumentFormatError File not in PDF format or corrupted.

CPDFDocumentPasswordError Password required or incorrect password.

CPDFDocumentSecurityError Security scheme not supported.

CPDFDocumentPageError Page not found or content error.

Create a New File

Following are the descriptions of error codes in CPDFDocumentErrorDomain :

Note: This is a time-consuming process, so it needs to be executed in a sub-thread. After the document is
successfully opened, the UI that renders the PDF is initialized.

3.1.2 Save a Document

To save a PDF document to path use CPDFDocument::writeToURL: .

If this path is the original path, the PDF document will be saved incrementally. Use the incremental mode if
you are concerned about saving time. If you use this mode, any changes to the document, even deleting
annotations, will result in appending to the PDF file.

Incremental saving, which is enabled by default, is the strategy that ComPDFKit uses to ensure saving is as
fast as possible. This strategy always appends changes to the end of the document, and it never deletes
anything. However, even though this is the fastest way to save a document, it does come with the cost of
increasing the file size with each save. You can read more about incremental saving and full saving of PDFs
here.

// Get the path of a PDF

NSString *pdfPath = @"...";

// Initialize a CPDFDocument object with the path to the PDF file

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

if (document.error && document.error.code != CPDFDocumentPasswordError) {

 return;

}

CPDFDocument *document = [[CPDFDocument alloc] init];

In most cases, the increase in file size is negligible. However, in some cases, you may want to prioritize file
size over saving performance. Below you'll find some strategies to prevent file size from growing
unnecessarily when saving changes to a document.

If the document is saved in a new path (Not the original storage path), there is going to trigger a non-
incremental document save, which will rewrite the entire document instead of appending changes at the
end.

3.2 Viewer
CPDFView scroll view is a scroll view component that can load and display PDF pages on screen on demand.

It can handle various rendering and scaling operations of PDF pages, and maintain the clarity and sharpness
of PDF pages. CPDFView scroll view usually supports multiple different layout modes, such as vertical

scrolling, single page scrolling, and more. These layout modes can be configured according to users' needs
to suit different application scenarios. When using CPDFView scroll view to view PDFs, users can also easily

implement various functions such as zooming in and out, rotating, flipping, dragging, adding bookmarks,
etc. It provides a simple way for developers to quickly embed a highly configurable PDF viewer into any
Windows application.

3.2.1 Display Modes

Scroll Direction

When scrolling through pages of a document in CPDFView , the scrolling direction can be changed by

setting the page display direction.

Vertical scrolling mode (also known as continuous mode) can be enabled by setting the page
display direction to CPDFDisplayDirectionVertical .

Horizontal scrolling mode (also known as non-continuous mode) can be enabled by setting the
page display direction to CPDFDisplayDirectionHorizontal .

You also can configure the scroll direction of CPDFView in CPDFKitConfig .

Double Page

Display two pages side-by-side.

pdfView.displayDirection = CPDFDisplayDirectionVertical;

pdfView.displayDirection = CPDFDisplayDirectionHorizontal;

CPDFKitShareConfig.displayDirection = CPDFDisplayDirectionVertical;

pdfView.displayTwoUp = YES;

Cover Mode

Show cover page during double page.

Crop Mode

Automatically trim PDF files white margins to resize pages. Crop mode can be enabled by setting the
page display crop to Yes .

Note: You must call layoutDocumentView method explicitly if using these CPDFView properties

(displayDirection , displaysPageBreaks , pageBreakMargins , displayTwoUp , displaysAsBook ,

displayCrop).

3.2.2 PDF Navigation

Page Navigation

After loading a PDF document, you can programmatically interact with it, which allows you to scroll to
different pages or destinations. All of the interaction APIs are available on CPDFView .

To scroll to the specified page, use the function CPDFView::goToPageIndex:animated: .

To go to the specified destination including a page and a point on the page specified in page
space, use the function CPDFView::goToDestination:animated: .

To go to the specified rectangle on the specified page, use the function
CPDFView::goToRect:onPage:animated: .

This allows you to scroll the CPDFView object to a specific CPDFAnnotation or CPDFSelection

object, because both of these objects have bounds methods that return an annotation or
selection position in page space.

Note: This method’s rect is specified in page-space coordinates. Page space is a coordinate system with
the origin at the lower-left corner of the current page.

Outlines

PDF outline is a function that creates a directory structure in PDF documents, which allows users to
browse, locate, and navigate to the parts of a document they are interested in more quickly and
conveniently. The outline can be created by nesting, organizing the document content by elements
such as headings, chapters, paragraphs, etc., and adding hyperlinks to each element for easily jumping
to the corresponding position. PDF outline is very useful when reading long documents, saving users'
time and improving reading efficiency.

pdfView.displayTwoUp = YES;

pdfView.displaysAsBook = YES;

pdfView.displayCrop = YES;

The outline structure is a tree-like hierarchy, so the function CPDFDocument::outlineRoot must be

called first to get the root node of the entire outline before accessing the outline. Here, the “root node”
is an abstract object which can only have some child outlines without the next sibling outline and any
data (including outline data, destination data, and operation data). It cannot be displayed on the
application UI since it has no data. If there is no root node, a new one can be created with the function
CPDFDocument::setNewOutlineRoot .

After the root outline is retrieved, the following functions can be called to access other outlines:

To access the parent outline, use the function CPDFOutline::parent .

Bookmarks

Since each bookmark is associated with a specific page, it provides the ability to link to a different page
in a document allowing the user to navigate interactively from one part of the document to another.

To access bookmarks, use the function CPDFDocument::bookmarks .

To access a bookmark for a page, use the function CPDFDocument::bookmarkForPageIndex: .

To add a new bookmark, use the function CPDFDocument::addBookmark:forPageIndex: .

To remove a bookmark, use the function CPDFDocument::removeBookmarkForPageIndex: .

Note: Adding and removing bookmarks will result in corresponding UI changes on the corresponding CPDFView ,

which requires to call setNeedsDisplayForPage: to refresh.

- To access the child outline.

  ```objective-c

  - (NSArray<CPDFOutline *> *)childOutline:(CPDFOutline *)outline {

      NSUInteger numberOfChildren = [outline numberOfChildren];

      NSMutableArray *child = [NSMutableArray array];

      for (int i=0; i<numberOfChildren; i++) {

          [child addObject:[outline childAtIndex:i]];

      }

      return child;

  }

  ```

- To insert a new outline, use the function `CPDFOutline::insertChildAtIndex:`.

- To remove an outline, use the function `CPDFOutline::removeFromParent`.

- To move an outline, use the function `CPDFOutline::insertChild:atIndex:`. When moving

items around within an outline hierarchy, you should retain the item and call

`CPDFOutline::removeFromParent` first.

3.2.3 Text Search & Selection

Text Search

ComPDFKit PDF SDK offers developers an API for programmatic full-text search, as well as UI for
searching and highlighting relevant matches.

There are some optional parameters provided when searching, such as ignoring case, matching whole
words, and other Options parameter settings (It is case-insensitive and does not match whole words by
default).

To asynchronously find all instances of the specified string in the document, use function
CPDFDocument::beginFindString:withOptions: , which returns immediately. It causes delegate

methods to be called when searching begins and ends, on each search hit, and when the search
proceeds to a new page.

typedef NS_OPTIONS(NSInteger, CPDFSearchOptions) {

 CPDFSearchCaseInsensitive = 0,

 /** If not set, it will not match case by default. */

 CPDFSearchCaseSensitive = 1,

 /** If not set, it will not match the whole word by default. */

 CPDFSearchMatchWholeWord = 2,

 /** If not set, it will skip past the current match to look for the next match.

*/

 CPDFSearchConsecutive = 4

};

/**

 * Called when the beginFindString:withOptions: or findString:withOptions:

method begins finding.

 */

- (void)documentDidBeginDocumentFind:(CPDFDocument *)document;

/**

 * Called when the beginFindString:withOptions: or findString:withOptions:

method returns.

 */

- (void)documentDidEndDocumentFind:(CPDFDocument *)document;

/**

 * Called when a find operation begins working on a new page of a document.

 */

- (void)documentDidBeginPageFind:(CPDFDocument *)document pageAtIndex:

(NSUInteger)index;

/**

 * Called when a find operation finishes working on a page in a document.

 */

- (void)documentDidEndPageFind:(CPDFDocument *)document pageAtIndex:

(NSUInteger)index;

/**

 * Called when a string match is found in a document.

To asynchronous find all instances of the specified string in the document, use the function
CPDFDocument::findString:withOptions: . Each hit gets added to an NSArray object as a

CPDFSelection object. If there are no hits, this method returns an empty array. Use this method

when the complete search process will be brief and when you don’t need the flexibility or control
offered by CPDFDocument::beginFindString:withOptions: .

To cancel a search initiated with CPDFDocument::beginFindString:withOptions: , use the

function CPDFDocument::cancelFindString .

To highlight search result, CPDFView offers a way to both add and clear search results, use the

function CPDFView::setHighlightedSelection:animated: .

Text Selection

PDF text contents are stored in CPDFPage objects which are related to a specific page. CPDFPage class

can be used to retrieve information about text in a PDF page, such as single character, single word, text
content within specified character range or bounds and more.

How to get the text bounds on a page by selection:

3.2.4 Zooming

ComPDFKit PDF SDK provides super zoom out and in to unlock more zoom levels, and pinch-to-zoom or
double tap on the specific area to perform a smart page content analysis, or you can programmatically
interact with it by using the following method.

Manual Zooming

You can use CPDFView::setScaleFactor:animated: to zoom the current document.

Disabling Zooming

Zooming can be disabled by setting the scrollEnabled to NO on CPDFView .

 *

 * @discussion To determine the string selection found, use the selection.

 */

- (void)documentDidFindMatch:(CPDFSelection *)selection;

- (CPDFSelection *)selectionForPage:(CPDFPage *)page fromPoint:(CGPoint)fPoint

toPoint:(CGPoint)tPoint {

 NSInteger fCharacterIndex = [page characterIndexAtPoint:fPoint];

 NSInteger tCharacterIndex = [page characterIndexAtPoint:tPoint];

 NSRange range = NSMakeRange(fCharacterIndex, tCharacterIndex - fCharacterIndex

+ 1);

 CPDFSelection *selection = [page selectionForRange:range];

 return selection;

}

pdfView.scrollEnabled = NO;

3.2.5 Themes

Theme color refers to rendering pages in the PDF document with a certain background color to enhance the
visual effect when reading. For example, set the PDF document background to a solid background.

CPDFView has four special color modes: dark mode, sepia mode, reseda mode, and custom color mode.

In dark mode, colors are adjusted to improve reading at night or in a poorly-lit environment, in sepia mode,
background color is set to emulate the look of an old book, in reseda mode, light-green background is
displayed to protect your eyes after long-time reading, and in custom color mode, you can set a custom
color for the background color.

Note: Changing the appearance mode will change the PDF rendering style, but it does not modify the PDF on disk.

To set the color mode:

Themes Constant value

Normal color mode CPDFDisplayModeNormal

Dark mode CPDFDisplayModeNight

Sepia mode CPDFDisplayModeSoft

Reseda mode CPDFDisplayModeGreen

Custom color mode CPDFDisplayModeCustom

1. Find the constant value of the color mode

2. Call CPDFView::setDisplayMode: .

3. If you are using CPDFDisplayModeCustom , call CPDFView::setDisplayModeCustomColor: to set the

background color.

4. Update CPDFView to redraw the contents.

You also can configure the color mode of CPDFView in CPDFKitConfig .

[pdfView layoutDocumentView];

CPDFKitShareConfig.displayMode = CPDFDisplayModeCustom;

CPDFKitShareConfig.displayModeCustomColor = [UIColor whiteColor];

3.2.6 Text Reflow

Rearrange text to fit the device screen size for displaying the same layout by using the following method.

3.2.7 Rendering

The CPDFView class calls drawPage:toContext: as necessary for each visible page that requires rendering.

You can override this method to draw on top of a PDF page. In this case, invoke this method on super and

then perform custom drawing on top of the PDF page. Do not invoke this method, except by invoking it on
super from a subclass.

3.2.8 Custom Menu

When viewing a PDF, after selecting text and long-pressing on a blank area, the PDF context will enter the
corresponding interaction state. A context menu like UIMenuController will be popped up in different

interaction states, and you can perform related operations through the context menu options.

The following are examples of the additional context menus when selecting text and long-pressing on a
blank area:

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

CPDFPage *page = [document pageAtIndex:0];

NSRange range = NSMakeRange(0, page.numberOfCharacters);

NSString *string = [page stringForRange:range];

- (NSArray<UIMenuItem *> *)menuItemsAtPoint:(CGPoint)point forPage:(CPDFPage *)page {

 NSArray *items = [super menuItemsAtPoint:point forPage:page];

 NSMutableArray *menuItems = [NSMutableArray arrayWithArray:items];

 if (self.currentSelection) {

 UIMenuItem *textNoteItem = [[UIMenuItem alloc]

initWithTitle:NSLocalizedString(@"Note", nil)

 action:@selector(textNoteItemAction:)];

 UIMenuItem *textShareItem = [[UIMenuItem alloc]

initWithTitle:NSLocalizedString(@"Share", nil)

action:@selector(textShareItemAction:)];

 UIMenuItem *defineItem = [[UIMenuItem alloc]

initWithTitle:NSLocalizedString(@"Define", nil)

 action:@selector(defineItemAction:)];

 UIMenuItem *linkItem = [[UIMenuItem alloc]

initWithTitle:NSLocalizedString(@"Link", nil)

 action:@selector(linkItemAction:)];

 UIMenuItem *searchItem = [[UIMenuItem alloc]

initWithTitle:NSLocalizedString(@"Search", nil)

 action:@selector(searchItemAction:)];

 [menuItems insertObject:textNoteItem atIndex:0];

 [menuItems addObject:textShareItem];

 [menuItems addObject:defineItem];

 [menuItems addObject:linkItem];

 [menuItems addObject:searchItem];

 } else {

 UIMenuItem *textNoteItem = [[UIMenuItem alloc]

initWithTitle:NSLocalizedString(@"Note", nil)

 action:@selector(textNoteItemAction:)];

 UIMenuItem *textItem = [[UIMenuItem alloc]

initWithTitle:NSLocalizedString(@"Text", nil)

 action:@selector(textItemAction:)];

 UIMenuItem *pasteItem = [[UIMenuItem alloc]

initWithTitle:NSLocalizedString(@"Paste", nil)

action:@selector(pasteItemAction:)];

 [menuItems addObject:textNoteItem];

 [menuItems addObject:textItem];

 NSString *textType = (NSString *)kUTTypeText;

 NSString *urlType = (NSString*)kUTTypeURL;

 NSString *urlFileType = (NSString*)kUTTypeFileURL;

 NSString *jpegImageType = (NSString *)kUTTypeJPEG;

 NSString *pngImageType = (NSString *)kUTTypePNG;

 NSString *rawImageType = @"com.apple.uikit.image";

 BOOL isPasteboardValid = [[UIPasteboard generalPasteboard]

containsPasteboardTypes:[NSArray arrayWithObjects:textType, urlType, urlFileType,

jpegImageType, pngImageType, rawImageType, nil]];

 if (isPasteboardValid) {

 [menuItems addObject:pasteItem];

 }

 }

 return menuItems;

}

3.2.9 Highlight of Form Fields and Hyperlinks

The highlight feature of PDF form fields can help users quickly locate and fill out forms, which greatly
improves work efficiency in scenarios where a large number of forms need to be filled out. At the same
time, the highlight feature of hyperlink annotations allows users to add hyperlinks and annotations to
important information in PDF documents, making it more convenient for other users to quickly find and
understand the information, and also improving the readability and interactivity of PDF documents. these
features make it easier and more efficient for users to use PDF documents for work and study. These
features enable users to use PDF documents more conveniently and efficiently for work and study.

Use [[CPDFKitConfig sharedInstance] setEnableFormFieldHighlight:] to set whether to

highlight form fields.
Use [[CPDFKitConfig sharedInstance] setEnableLinkFieldHighlight:] to set whether to

highlight hyperlinks.

3.2.10 Get the Selected Text

ComPDFKit PDF SDK provides the API to get the currently selected text CPDFView::currentSelection

from the CPDFView . Select text in CPDFView and get the corresponding CPDFSelection , then you can get

the corresponding text in CPDFSelection::string . The code below shows how to get the selected text in

CPDFView .

3.3 Annotations
PDF annotations refer to adding, editing, and sharing various multimedia contents on PDF documents, such
as note, link, free text, shapes, markup, stamps, ink, sound, etc. By adding annotations, users can more
conveniently mark, annotate, revise, comment, sign, and share PDF documents.

PDF annotations are very useful for document communication, review, and revision, and can improve work
efficiency and document quality. At the same time, ComPDFKit PDF SDK provides different annotation
features and tools, and developers can choose suitable features and tools according to their needs.

3.3.1 Annotation Types

ComPDFKit PDF SDK supports all common annotation types:

CPDFSelection *currentSelection = pdfView.currentSelection;

NSString *currentText = [currentSelection string]

Type Description Class

Note

Add notes to PDF documents to mark important
text, tables, images, and more, making it
convenient for you and other readers to read and
understand.

CPDFTextAnnotation

Link
Add hyperlinks to PDF documents to link to web
pages, emails, or specific locations in other
documents.

CPDFLinkAnnotation

Free Text Add text and comments to PDF documents. CPDFFreeTextAnnotation

Shapes: Square,
Circle, and Line

Add graphic elements like shapes, lines, arrows,
or images to PDF documents to emphasize or
illustrate certain content.

CPDFSquareAnnotation

CPDFCircleAnnotation

CPDFLineAnnotation

Markup:
Highlight,
Underline,
Strikeout, and
Squiggly

Add markups to PDF documents to highlight,
emphasize, or illustrate specific content, such as
important paragraphs, lines or words, keywords
or tables, etc.

CPDFMarkupAnnotation

Stamp

Add stamps to PDF documents to identify and
verify the source and authenticity of documents,
using the formats of numbers or images to
represent signers.

CPDFStampAnnotation

Ink

Draw the brush trails freely anywhere in PDF
documents, making it easy for users to add
doodles, charts, sketches, signatures, or other
custom content.

CPDFInkAnnotation

Sound
Add sound and other multimedia content to PDF
documents to enrich the presentation.

CPDFSoundAnnotation

ComPDFKit PDF SDK supports most annotation types defined in PDF Reference and provides APIs for
annotation creation, properties access and modification, appearance setting, and drawing. These standard
annotations can be read and written by many apps, such as Adobe Acrobat and Apple Preview.

3.3.2 Access Annotations

CPDFAnnotation is the base class for all annotations. It has no practical use and cannot instantiate objects,

only subclasses such as CPDFCircleAnnotation and CPDFTextAnnotation are useful. Any unknown or

unsupported annotations will be filtered out when parsing a PDF.

To access the list of annotations by using the following method:

The elements of the array will most likely be typed to subclasses of the CPDFAnnotation class.

3.3.3 Create & Edit Annotations

ComPDFKit PDF SDK includes a wide variety of standard annotations, and each of them is added to the
project in a similar way.

Note

Add a sticky note (text annotation) to a PDF Document page by using the following method.

Link

Add a hyperlink or intra-document link annotation to a PDF Document page by using the following
method.

- (NSArray<CPDFAnnotation *>)annotationsWithDocument:(CPDFDocument *)document {

 NSMutableArray *annotations = [NSMutableArray array];

 for (int i=0; i<document.pageCount; i++) {

 CPDFPage *page = [document pageAtIndex:i];

 [annotations addObjectsFromArray:[page annotations]];

 }

}

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

CPDFPage *page = [document pageAtIndex:0];

CPDFTextAnnotation *text = [[CPDFTextAnnotation alloc] initWithDocument:document];

text.contents = @"test";

text.bounds = CGRectMake(0, 0, 50, 50);

text.color = [UIColor yellowColor];

[page addAnnotation:text];

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

CPDFPage *page = [document pageAtIndex:0];

CPDFDestination *dest = [[CPDFDestination alloc] initWithDocument:document

pageIndex:1];

CPDFLinkAnnotation *link = [[CPDFLinkAnnotation alloc] initWithDocument:document];

link.bounds = CGRectMake(0, 0, 50, 50);

link.destination = dest;

//link.URL = @"https://www.";

[page addAnnotation:link];

Free Text

Add a free text annotation to a PDF Document page by using the following method.

For the created text annotations, ComPDFKit provides an API to begin and end the editing state of text
annotation.

For the text annotations being edited, ComPDFKit also provides an API to modify the font and font
color properties. These do not need to end the editing state of text annotation, and you can directly
modify the properties in the editing process to change the annotation properties.

Shapes

Add a shape annotation to a PDF Document page by using the following method.

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

CPDFPage *page = [document pageAtIndex:0];

CPDFFreeTextAnnotation *freeText = [[CPDFFreeTextAnnotation alloc]

initWithDocument:document];

freeText.contents = @"test";

freeText.bounds = CGRectMake(0, 0, 50, 50);

freeText.font = [UIFont systemFontOfSize:12];

freeText.fontColor = [UIColor redColor];

freeText.alignment = NSTextAlignmentLeft;

[page addAnnotation:freeText];

- (void)editAnnotationFreeText:(CPDFFreeTextAnnotation *)freeText;

- (void)commitEditAnnotationFreeText;

- (void)setEditAnnotationFreeTextFont:(UIFont *)font;

- (void)setEditAnnotationFreeTextColor:(UIColor *)color;

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

CPDFPage *page = [document pageAtIndex:0];

CPDFBorder *border = [[CPDFBorder alloc] initWithStyle:CPDFBorderStyleDashed

 lineWidth:1

 dashPattern:@[@(2), @(1)]];

// Square

CPDFSquareAnnotation *square = [[CPDFSquareAnnotation alloc]

initWithDocument:document];

square.bounds = CGRectMake(0, 0, 50, 50);

square.color = [UIColor redColor];

square.interiorColor = [UIColor yellowColor];

square.opacity = 0.5;

Note: CPDFLineAnnotation properties (startPoint , endPoint) point is specified in page-space

coordinates. Page space is a coordinate system with the origin at the lower-left corner of the current page.

For each line, users can choose separate styles for the start and the end. The styles are defined by the
CPDFLineStyle enumeration.

square.interiorOpacity = 0.5;

square.border = border;

[page addAnnotation:square];

// Circle

CPDFCircleAnnotation *circle = [[CPDFCircleAnnotation alloc]

initWithDocument:document];

circle.bounds = CGRectMake(0, 0, 50, 50);

circle.color = [UIColor redColor];

circle.interiorColor = [UIColor yellowColor];

circle.opacity = 0.5;

circle.interiorOpacity = 0.5;

circle.border = border;

[page addAnnotation:circle];

// Line

CPDFLineAnnotation *line = [[CPDFLineAnnotation alloc] initWithDocument:document];

line.startPoint = CGPointMake(0, 0);

line.endPoint = CGPointMake(50, 50);

line.startLineStyle = CPDFLineStyleNone;

line.endLineStyle = CPDFLineStyleClosedArrow;

line.color = [UIColor redColor];

line.interiorColor = [UIColor yellowColor];

line.opacity = 0.5;

line.interiorOpacity = 0.5;

line.border = border;

[page addAnnotation:line];

Name Description

CPDFLineStyleNone No special line ending.

CPDFLineStyleOpenArrow
Two short lines meeting in an acute angle to form an open
arrowhead.

CPDFLineStyleClosedArrow

Two short lines meeting in an acute angle as in the
LINETYPE_ARROW style and connected by a third line to form a
triangular closed arrowhead filled with the annotation's interior
color.

CPDFLineStyleSquare A square filled with the annotation's interior color.

CPDFLineStyleCircle A circle filled with the annotation's interior color.

CPDFLineStyleDiamond A diamond shape filled with the annotation's interior color.

Markup

Add a highlight annotation to a PDF Document page by using the following method, and add other
markup annotations in a similar way.

Note: Many annotation types are defined as markup annotations because they are used primarily to mark
up PDF documents. Markup annotations may be divided into the following: highlight, underline, strikeout,
and squiggly.

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

CPDFPage *page = [document pageAtIndex:0];

CPDFSelection *selection = ...;

NSMutableArray *quadrilateralPoints = [NSMutableArray array];

for (CPDFSelection *selection in selection.selectionsByLine) {

 CGRect bounds = selection.bounds;

 [quadrilateralPoints addObject:[NSValue

valueWithCGPoint:CGPointMake(CGRectGetMinX(bounds), CGRectGetMaxY(bounds))]];

 [quadrilateralPoints addObject:[NSValue

valueWithCGPoint:CGPointMake(CGRectGetMaxX(bounds), CGRectGetMaxY(bounds))]];

 [quadrilateralPoints addObject:[NSValue

valueWithCGPoint:CGPointMake(CGRectGetMinX(bounds), CGRectGetMinY(bounds))]];

 [quadrilateralPoints addObject:[NSValue

valueWithCGPoint:CGPointMake(CGRectGetMaxX(bounds), CGRectGetMinY(bounds))]];

}

CPDFMarkupAnnotation *highlight = [[CPDFMarkupAnnotation alloc]

initWithDocument:document markupType:CPDFMarkupTypeHighlight];

highlight.color = [UIColor yellowColor];

highlight.quadrilateralPoints = quadrilateralPoints;

[page addAnnotation:highlight];

Stamp

Add standard, text, and image stamps to a PDF document page by using the following method.

Ink

Add an ink annotation to a PDF Document page by using the following method.

Sound

Add a sound annotation to a PDF Document page by using the following method.

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

CPDFPage *page = [document pageAtIndex:0];

// Standard

CPDFStampAnnotation *standard = [[CPDFStampAnnotation alloc]

initWithDocument:document type:0];

[page addAnnotation:standard];

// Text

CPDFStampAnnotation *text = [[CPDFStampAnnotation alloc] initWithDocument:document

text:@"test" detailText:@"detail text" style:CPDFStampStyleRed

shape:CPDFStampShapeArrowLeft];

[page addAnnotation:text];

// Image

CPDFStampAnnotation *image = [[CPDFStampAnnotation alloc] initWithDocument:document

image:[UIImage imageNamed:@""]];

[page addAnnotation:image];

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

CPDFPage *page = [document pageAtIndex:0];

CPDFInkAnnotation *ink = [[CPDFInkAnnotation alloc] initWithDocument:document];

ink.color = [UIColor redColor];

ink.opacity = 0.5;

ink.borderWidth = 2.0;

ink.paths = @[@[[NSValue valueWithPoint:startPoint],[NSValue

valueWithPoint:endPoint]]];

[page addAnnotation:ink];

Note: When adding annotations to the page, if you want to render the corresponding annotation
appearance effect on CPDFView , you need to call CPDFView::setNeedsDisplayForPage: to refresh.

ComPDFKit PDF SDK provides APIs to modify the color appearance of properties in annotations, only the
corresponding RGB values will be used, and additional values are required for transparency to take effect.
The following APIs will introduce how to set the color values and transparency of related properties.

Set the draw color of note:

Set the fill color and font color of free text (opacity controls the transparency of both the fill and font color

of free text):

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

CPDFPage *page = [document pageAtIndex:0];

CPDFSoundAnnotation *soundAnnotation = [[CPDFSoundAnnotation alloc]

initWithDocument:document];

if ([soundAnnotation setMediaPath:@"soundFilePath"]) {

 soundAnnotation.bounds = CGRectMake(0, 0, 50, 50);

 [page addAnnotation:soundAnnotation];

}

/**

 * Method to get / set the opacity for the annotation.

 */

@property (nonatomic,assign) CGFloat opacity;

/**

 * Method to get / set the color for the annotation.

 * @discussion For many annotations ("Circle", "Square") the stroke color. Used for

other annotations as well.

 */

@property (nonatomic,retain) CPDFKitPlatformColor *color;

/**

 * Method to get / set the opacity for the annotation.

 */

@property (nonatomic,assign) CGFloat opacity;

/**

 * Method to get / set the color for the annotation.

 * @discussion For many annotations ("Circle", "Square") the stroke color. Used for

other annotations as well.

 */

@property (nonatomic,retain) CPDFKitPlatformColor *color;

/**

Set the stroke color and fill color of shapes (square, circle, and line):

Set the color of markup (highlight, underline, strikeout, and squiggly):

Note: Setting the value of corresponding color to nil means removing the color. If you need to set the

corresponding color to transparent, just set the corresponding opacity to 0.

 * Method to get / set the font color used in the text field of the annotation.

 */

@property (nonatomic,retain) CPDFKitPlatformColor *fontColor;

/**

 * Method to get / set the opacity for the annotation.

 */

@property (nonatomic,assign) CGFloat opacity;

/**

 * Method to get / set the color for the annotation.

 * @discussion For many annotations ("Circle", "Square") the stroke color. Used for

other annotations as well.

 */

@property (nonatomic,retain) CPDFKitPlatformColor *color;

/**

 * Method to get / set the fill opacity used for drawing the annotation.

 */

@property (nonatomic,assign) CGFloat interiorOpacity;

/**

 * Method to get / set the fill color used for drawing the annotation.

 */

@property (nonatomic,retain) CPDFKitPlatformColor *interiorColor;

/**

 * Method to get / set the opacity for the annotation.

 */

@property (nonatomic,assign) CGFloat opacity;

/**

 * Method to get / set the color for the annotation.

 * @discussion For many annotations ("Circle", "Square") the stroke color. Used for

other annotations as well.

 */

@property (nonatomic,retain) CPDFKitPlatformColor *color;

3.3.4 Delete Annotations

The code below shows how to remove an annotation from a document.

Note: When removing annotations form the page, if you want to see the corresponding change of removing
annotations on CPDFView , you need to call CPDFView::setNeedsDisplayForPage: to refresh.

3.3.5 Annotation Appearances

Annotations may contain properties that describe their appearance — such as annotation color or shape.
However, these don’t guarantee that the annotation will be displayed the same in different PDF viewers. To
solve this problem, each annotation can define an appearance stream that should be used for rendering the
annotation.

ComPDFKit PDF SDK will update the annotation appearance by default when you modify the annotation
properties. You can also manually update the appearance by calling the updateAppearanceStream

method, but you must call the updateAppearanceStream method manually when you modify the bounds

of the FreeText, Stamp, Signature annotation, refer to the following method in the CPDFAnnotation class.

It’s easy to set up an annotation to show a custom appearance stream. This is typically done with stamp
annotations because they have few other properties. A stamp annotation used this way is usually called an
image annotation.

The following part introduces how to set annotation appearance that does not match page rotation.

If set, do not rotate the annotation’s appearance to match the rotation of the page. The upper-left corner of
the annotation bounds shall remain in a fixed location on the page.

In addition, when it comes to the FreeText annotation, refer to the following method in the PDFListView

class.

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

CPDFPage *page = [document pageAtIndex:0];

CPDFAnnotation *annotation = [[page annotations] objectAtIndex:0];

[page removeAnnotation:annotation];

- (void)updateAppearanceStream;

CPDFKitShareConfig.enableAnnotationNoRotate = YES;

- (void)addAnnotationFreeTextAtPoint:(CGPoint)point forPage:(CPDFPage *)page;

- (void)drawPage:(CPDFPage *)page toContext:(CGContextRef)context;

- (void)moveAnnotation:(CPDFAnnotation *)annotation fromPoint:(CGPoint)fromPoint

toPoint:(CGPoint)toPoint forType:(PDFAnnotationDraggingType)draggingType;

3.3.6 Import & Export Annotations

XFDF is an XML-based standard from Adobe XFDF for encoding annotations. An XFDF file will contain a
snapshot of a PDF document’s annotations and forms. It’s compatible with Adobe Acrobat and several other
third-party frameworks. ComPDFKit supports both reading and writing XFDF.

Import from XFDF

You can import annotations and form fields from an XFDF file to a document like so:

Export to XFDF

You can export annotations and form fields from a document to an XFDF file like so:

3.3.7 Flatten Annotations

Annotation flattening refers to the operation that changes annotations into a static area that is part of the
PDF document, just like the other text and images in the document. When flattening an annotation, the
annotation is removed from the document, while its visual representation is kept intact. A flattened
annotation is visible but is non-editable by your users or by your app.

Annotations in a PDF document can be flattened in the ComPDFKit PDF SDK by saving the document and
choosing the Flatten mode.

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

NSString *path = [NSString stringWithString:xfdfPath];

[document importAnnotationFromXFDFPath:path];

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url;

NSString *path = [NSString stringWithString:xfdfPath];

[document exportAnnotationToXFDFPath:path];

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

NSURL *surl = [NSURL fileURLWithPath:savePath];

[document writeFlattenToURL:surl];

3.3.8 Predefine Annotations

ComPDFKit PDF SDK has default values for some annotation properties, such as colors and line widths for
ink annotations.

This is all handled in CPDFKitConfig , which is a global singleton. You can access it with

CPDFKitShareConfig .

The current set of defaults is configured on the first run and saved in NSUserDefaults .

3.4 Forms
A PDF document may contain any number of form fields that allow a user to enter information on a PDF
page. An interactive form (sometimes referred to as an AcroForm) is a collection of fields for gathering
information interactively from the user. Under the hood, PDF form fields are a type of PDF annotation called
widget annotations.

ComPDFKit PDF SDK fully supports reading, filling, creating, and editing PDF forms and provides utility
methods to make working with forms simple and efficient.

// Author

CPDFKitShareConfig.annotationAuthor = @"";

// Color

CPDFKitShareConfig.highlightAnnotationColor = [UIColor yellowColor];

CPDFKitShareConfig.underlineAnnotationColor = [UIColor blueColor];

CPDFKitShareConfig.strikeoutAnnotationColor = [UIColor redColor];

CPDFKitShareConfig.squigglyAnnotationColor = [UIColor blackColor];

CPDFKitShareConfig.shapeAnnotationColor = [UIColor redColor];

CPDFKitShareConfig.shapeAnnotationInteriorColor = nil;

CPDFKitShareConfig.freehandAnnotationColor = [UIColor redColor];

// Opacity

CPDFKitShareConfig.markupAnnotationOpacity = 0.5;

CPDFKitShareConfig.shapeAnnotationOpacity = 1.0;

CPDFKitShareConfig.shapeAnnotationInteriorOpacity = 0.0;

CPDFKitShareConfig.freehandAnnotationOpacity = 1.0;

// Border Width

CPDFKitShareConfig.shapeAnnotationBorderWidth = 1.0;

CPDFKitShareConfig.freehandAnnotationBorderWidth = 1.0;

Type Description Annotation Object

Check
Box

Select one or more options. CPDFButtonWidgetAnnotation

Radio
Button

Select one option from the predefined options. CPDFButtonWidgetAnnotation

Push
Button

Create custom buttons on the PDF document that will
perform an action when pressed.

CPDFButtonWidgetAnnotation

List Box
Select one or more options from the predefined options,
similar to the Combo Box.

CPDFChoiceWidgetAnnotation

Combo
Box

Select one option from a drop-down list of available text
options.

CPDFChoiceWidgetAnnotation

Text Enter text content such as name, address, email, etc. CPDFTextWidgetAnnotation

Signature Sign a PDF document digitally or electronically. CPDFSignatureWidgetAnnotation

3.4.1 Supported Form Fields

ComPDFKit PDF SDK supports all form types specified by the PDF specification, including:

CPDFWidgetAnnotation is the base class for all form fields and a subclass of CPDFAnnotation . Its

subclasses such as (CPDFButtonWidgetAnnotation , CPDFChoiceWidgetAnnotation ,

CPDFTextWidgetAnnotation , CPDFSignatureWidgetAnnotation) are the most important. Any unknown

or unsupported form fields will be filtered out when parsing a PDF.

3.4.2 Create & Edit Form Fields

Create form fields works the same as adding any other annotation, as can be seen in the guides for
programmatically creating annotations.

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

CPDFPage *page = [document pageAtIndex:0];

NSMutableArray *items = [NSMutableArray array];

CPDFChoiceWidgetItem *item1 = [[CPDFChoiceWidgetItem alloc] init];

item1.value = @"1";

item1.string = @"a";

[items addObject:item1];

CPDFChoiceWidgetItem *item2 = [[CPDFChoiceWidgetItem alloc] init];

item2.value = @"2";

item2.string = @"b";

[items addObject:item2];

3.4.3 Delete Form Fields

Deleting form fields works the same as deleting annotations, and check deleting annotations in the guides
to see more.

3.4.4 Fill Form Fields

ComPDFKit PDF SDK fully supports the AcroForm standard, and forms can be viewed and filled inside the
CPDFView .

To fill in a text form element, tap it and then type text using either the onscreen keyboard or an attached
hardware keyboard. Then tap either the Done button above the keyboard or any blank area on the page to
deselect the form element, which will commit the changes.

To set the value of a choice form element (a list or combo box), tap the element, and then select an item
from the list, or type in a custom item.

CPDFChoiceWidgetAnnotation *widget = [[CPDFChoiceWidgetAnnotation alloc]

initWithDocument:document listChoice:YES];

widget.items = items;

[page addAnnotation:widget];

To enable or disable a checkbox form element, tap it to toggle its state. And you can set the selection of a
radio button form element by tapping the desired item.

While a form element is selected (focused), the left and right arrows above the keyboard may be used to
move the focus sequentially between all the form elements on the page.

The following example demonstrates how form fields can be queried and filled with code:

NSURL *url = [NSURL fileURLWithPath:pdfPath];

3.4.5 Flatten PDF Forms

PDF Form flattening works the same as annotation flattening, and refer to annotation flattening in the
guides to see more.

3.5 Document Editor
ComPDFKit provides a wide range of APIs for document editing operations. These are mostly available
through the CPDFDocument and CPDFPage classes.

ComPDFKit benefits include:

PDF Manipulation

Split pages
Merge pages
Extract pages

Page Edit

Delete pages
Insert pages (choose from another document, a blank page, or an image)
Move pages
Rotate pages
Exchange pages
Replace pages
Crop pages

Edit Document Information

Extract Images

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

CPDFPage *page = [document pageAtIndex:0];

NSArray *annotations = [page annotations];

for (CPDFAnnotation *annotation in annotations) {

 if ([annotation isKindOfClass:[CPDFTextWidgetAnnotation class]]) {

 [(CPDFTextWidgetAnnotation *)annotation setStringValue:@""];

 } else if ([annotation isKindOfClass:[CPDFButtonWidgetAnnotation class]]) {

 if (CPDFWidgetRadioButtonControl == [(CPDFButtonWidgetAnnotation *)annotation

controlType]) {

 [(CPDFButtonWidgetAnnotation *)annotation setState:1];

 }

 } else if ([annotation isKindOfClass:[CPDFChoiceWidgetAnnotation class]]) {

 [(CPDFChoiceWidgetAnnotation *)annotation setSelectItemAtIndex:0];

 }

}

3.5.1 PDF Manipulation

Split Pages

CPDFDocument can extract range of pages from one document and put them into another document.

If you run this operation multiple times with different page indexes, you can effectively split a PDF into
as many documents as you require.

To split a PDF document into multiple pages, please use the following method:

1. Create a blank PDF document.

2. Open a PDF document that contains the pages you want to split.

3. Extract specific pages from the PDF document that you just opened, and import them into the
blank PDF document.

4. Save the document.

Merge Pages

ComPDFKit allows you to instantiate multiple CPDFDocument , and you can use the CPDFDocument API

to merge multiple PDF files into a single one.

To merge PDF documents into one file, please use the following method:

1. Create a blank PDF document.

2. Open the PDF documents that contain the pages you want to merge.

CPDFDocument *document = [[CPDFDocument alloc] init];

// File path

NSString *path1 = @"...";

NSURL *url1 = [NSURL fileURLWithPath:path1];

CPDFDocument *document1 = [[CPDFDocument alloc] initWithURL:url1];

// Pages that need to be split, e.g. 2 to 5 pages

NSIndexSet *indexSet = [NSIndexSet indexSetWithIndexesInRange:NSMakeRange(1,

4)];

[document importPages:indexSet fromDocument:document1 atIndex:0];

// Save path

NSString *path = @"...";

NSURL *url = [NSURL fileURLWithPath:path];

[document writeToURL:url];

CPDFDocument *document = [[CPDFDocument alloc] init];

3. Merge all the pages from the documents you just opened, and import them into the blank PDF
document.

4. Save the document.

The sample code above allows you to merge all the pages from the two documents. If you’re looking to
merge or add specific pages from one document to another, you can use importPages of

CPDFDocument::importPages:fromDocument:atIndex: to set specific pages.

Extract Pages

CPDFDocument can extract range of pages from one document and put them into a blank document. If

you run this operation, you can effectively extract a PDF as you require. Refer to split pages for more
details.

3.5.2 Page Edit

Page manipulation is the ability to perform changes to pages.

To delete pages from a PDF document, use the function CPDFDocument::removePageAtIndexSet: .

To insert a blank page into a PDF document, use the function CPDFDocument::insertPage:atIndex: .

To insert an image as an entire page into a PDF document, use the function
CPDFDocument::insertPage:withImage:atIndex: .

To insert a specific page from one document to another, use the function
CPDFDocument::importPages:fromDocument:atIndex: .

To move a page to a new location, use the function
CPDFDocument::movePageAtIndex:withPageAtIndex: .

// File path

NSString *path1 = @"...";

NSURL *url1 = [NSURL fileURLWithPath:path1];

CPDFDocument *document1 = [[CPDFDocument alloc] initWithURL:url1];

// File path

NSString *path2 = @"...";

NSURL *url2 = [NSURL fileURLWithPath:path2];

CPDFDocument *document2 = [[CPDFDocument alloc] initWithURL:url2];

[document importPages:nil fromDocument:document1 atIndex:document.pageCount];

[document importPages:nil fromDocument:document2 atIndex:document.pageCount];

// Save path

NSString *path = @"...";

NSURL *url = [NSURL fileURLWithPath:path];

[document writeToURL:url];

To exchange the location of two document pages, use the function
CPDFDocument::exchangePageAtIndex:withPageAtIndex: .

To replace original document pages with new pages from a different document, use the function
CPDFDocument::removePageAtIndexSet: and

CPDFDocument::importPages:fromDocument:atIndex: .

To rotate a page in a PDF document, refer to the following method in the CPDFPage class.

To crop a page in a PDF document, refer to the following method in the CPDFPage class.

3.5.3 Document Information

To edit document information, refer to the following method in the CPDFDocument class.

// Rotation on a page. Must be 0, 90, 180 or 270 (negative rotations will be

"normalized" to one of 0, 90, 180 or 270).

// Some PDF's have an inherent rotation and so -[rotation] may be non-zero when a

PDF is first opened.

@property (nonatomic,assign) NSInteger rotation;

/**

 * Sets the bounds for the specified box.

 *

 * @discussion If the box does not exist, this method creates it for you.

 * @see CPDFDisplayBox

 */

- (void)setBounds:(CGRect)bounds forBox:(CPDFDisplayBox)box;

typedef NSString *CPDFDocumentAttribute NS_STRING_ENUM;

extern CPDFDocumentAttribute const CPDFDocumentTitleAttribute; // NSString

containing document title.

extern CPDFDocumentAttribute const CPDFDocumentAuthorAttribute; // NSString

containing document author.

extern CPDFDocumentAttribute const CPDFDocumentSubjectAttribute; // NSString

containing document title.

extern CPDFDocumentAttribute const CPDFDocumentCreatorAttribute; // NSString

containing name of app that created document.

extern CPDFDocumentAttribute const CPDFDocumentProducerAttribute; // NSString

containing name of app that produced PDF data.

extern CPDFDocumentAttribute const CPDFDocumentKeywordsAttribute; // NSString

containing document keywords.

extern CPDFDocumentAttribute const CPDFDocumentCreationDateAttribute; // NSString

representing document creation date.

extern CPDFDocumentAttribute const CPDFDocumentModificationDateAttribute; // NSString

representing last document modification date.

3.5.4 Extract Images

To extract images from a PDF document, use function CPDFDocument::extractImageFromPages:toPath: .

Extracting images from a page is time-consuming, and you are advised to perform this operation
asynchronously. In addition, you can use CPDFDocument::cancelExtractImage: to cancel the operation.

The code below will grab all images from the first page of the given PDF document:

3.6 Security
ComPDFKit PDF SDK protects the content of PDF documents from unauthorized access like copying or
printing. It offers developers a way to encrypt and decrypt PDFs, add a password, insert a watermark, and
more. For controlling document security in ComPDFKit PDF SDK, security handlers perform user
authorization and sets various permissions over PDF documents.

3.6.1 PDF Permission

A PDF file can have two different passwords sets, a permissions or owner password and an open or user
password.

/**

 * A dictionary of document metadata.

 *

 * @discussion Metadata is optional for PDF documents. The dictionary may be empty, or

only some of the keys may have associated values.

 */

- (NSDictionary<CPDFDocumentAttribute, id> *)documentAttributes;

- (void)setDocumentAttributes:(NSDictionary<CPDFDocumentAttribute, id>

*)documentAttributes;

NSURL *url = [NSURL fileURLWithPath:@""];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

NSIndexSet *pages = [NSIndexSet indexSetWithIndex:0];

NSString *imagePath = @"";

dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

 [document extractImageFromPages:pages toPath:imagePath];

});

A PDF user password is used to secure access to PDF documents and requires the correct password to view
the content. It is commonly used to protect confidential reports and financial documents. The PDF reader
also displays document rights such as copying and printing permissions when a user password is set. It is
different from the owner's password which controls full access to the document, including modifying
content and adding comments.

A PDF permission password, also called an owner or master password, protects the permissions of a PDF
document. It restricts actions such as making changes or comments and allows control over copying,
printing, and modification. Permission passwords ensure integrity and allow management of advanced
editing and security settings. They protect the user's copyright and differ from user passwords.

Description and permissions description about PDF user password and permissions password:

When the document does not have a permission password nor a user password, the permission is
PermissionsNone .

When there is a permission password without a user password, the permission is PermissionsUser

before the permission password is entered, and the correct permission is PermissionsOwner after

input.
When there is no permission password and there is a user password, the permission is
PermissionsNone before the password is entered, and the correct permission is PermissionsOwner

after the password is entered.
When there is a permission password and an open password, the permission is PermissionsNone

before any user password is entered, the correct permission is PermissionsOwner after entering, and

the correct open password permission is PermissionsUser .

When the permission password is the same as the user password, the permission becomes
PermissionsOwner after entering the password.

If you want to open a document with a user password programmatically, you can use the
CPDFDocument.UnlockWithPassword() API.

The PDF specification defines the permissions shown below:

Printing — print the document.
High-quality printing — print the document in high fidelity.
Copying — copy content from the document.
Document changes — modify the document contents except for document attributes.
Document assembly — insert, delete, and rotate pages.
Commenting — create or modify document annotations, including form field entries.
Form field entry — modify form field entries even if you can't edit document annotations.

To access the corresponding permissions, refer to following methods in the CPDFDocument class.

/**

 * A Boolean value indicating whether the document allows printing.

 */

@property (nonatomic,readonly) BOOL allowsPrinting;

/**

 * A Boolean value indicating whether the document allows printing in high fidelity.

 */

Encrypt

ComPDFKit’s CPDFDocument API can generate a password-protected document. You can use

CPDFDocument to create a new password-protected PDF document on disk based on a current

document. The user password prevents users from viewing the PDF. If you specify it, you also need to
specify an owner password.

Support for 128 and 256 bit AES (Advanced Encryption Standard) encryption.

For example, you can set the encrypt level to AES 256 and configure an 256-bit owner password and
the “printing” permission when saving a document to make sure that users who don’t know that owner
password can only print the document, but not modify it.

@property (nonatomic,readonly) BOOL allowsHighQualityPrinting;

/**

 * A Boolean value indicating whether the document allows copying of content to the

Pasteboard.

 */

@property (nonatomic,readonly) BOOL allowsCopying;

/**

 * A Boolean value indicating whether you can modify the document contents except for

document attributes.

 */

@property (nonatomic,readonly) BOOL allowsDocumentChanges;

/**

 * A Boolean value indicating whether you can manage a document by inserting, deleting,

and rotating pages.

 */

@property (nonatomic,readonly) BOOL allowsDocumentAssembly;

/**

 * A Boolean value indicating whether you can create or modify document annotations,

including form field entries.

 */

@property (nonatomic,readonly) BOOL allowsCommenting;

/**

 * A Boolean value indicating whether you can modify form field entries even if you

can't edit document annotations.

 */

@property (nonatomic,readonly) BOOL allowsFormFieldEntry;

typedef NS_ENUM(NSInteger, CPDFDocumentEncryptionLevel) {

 CPDFDocumentEncryptionLevelRC4 = 0,

 CPDFDocumentEncryptionLevelAES128,

 CPDFDocumentEncryptionLevelAES256,

 CPDFDocumentEncryptionLevelNoEncryptAlgo,

};

NSURL *url = [NSURL fileURLWithPath:@""];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

Decrypt

ComPDFKit PDF SDK fully supports the reading of secured and encrypted PDF documents.

To check whether a document requires a password:

To read a PDF document with password protection, use function
CPDFDocument::unlockWithPassword: . If the password is correct, this method returns YES , a

CPDFDocumentDidUnlockNotification notification is sent. Once unlocked, you cannot use this

function to relock the document.

To remove PDF security, call the CPDFDocument::writeDecryptToURL: method:

NSURL *surl = [NSURL fileURLWithPath:@""];

NSDictionary *options = @{CPDFDocumentOwnerPasswordOption : @"The owner password",

 CPDFDocumentUserPasswordOption : @"The user password",

 CPDFDocumentEncryptionLevelOption :

@(CPDFDocumentEncryptionLevelAES256),

 CPDFDocumentAllowsPrintingOption : @(YES),

 CPDFDocumentAllowsHighQualityPrintingOption : @(NO),

 CPDFDocumentAllowsCopyingOption : @(NO),

 CPDFDocumentAllowsDocumentChangesOption : @(NO),

 CPDFDocumentAllowsDocumentAssemblyOption : @(NO),

 CPDFDocumentAllowsCommentingOption : @(NO),

 CPDFDocumentAllowsFormFieldEntryOption : @(NO)};

[document writeToURL:surl withOptions:options];

NSURL *url = [NSURL fileURLWithPath:@""];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

if (document.error &&

 document.error.code == CPDFDocumentPasswordError) {

 // Password required

}

NSURL *url = [NSURL fileURLWithPath:@""];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

NSURL *surl = [NSURL fileURLWithPath:@""];

[document writeDecryptToURL:surl];

3.6.2 Watermark

A PDF watermark is an element such as a backward layer of transparent text or image added to a PDF
document to maintain confidentiality and copyright protection of the document and to highlight information
about the company or group to which it belongs. Watermarks can be text, images, shapes, a fixed logo, or
dynamically generated text or images.

Adding a watermark to ComPDFKit PDF SDK is very simple and can be done through the API provided by
CPDFWatermark to add a text watermark or an image watermark. You can set the watermark position,

color, transparency, font, size, and other parameters to achieve different needs.

To access the list of watermarks, use the function CPDFDocument::watermarks .

To add a watermark, use the function CPDFDocument::addWatermark: .

To remove the watermark, use the function CPDFDocument::removeWatermark: .

To update the watermark, use function CPDFDocument::updateWatermark .

How to generate a PDF with a watermark on all its pages using the CPDFDocument API:

NSURL *url = [NSURL fileURLWithPath:@""];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

CPDFWatermark *watermark = [[CPDFWatermark alloc] initWithDocument:document

type:CPDFWatermarkTypeText];

if (CPDFWatermarkTypeText == watermark.type) {

 watermark.text = @"test"; // The text for the watermark (image watermark does not

work).

 watermark.textFont = [UIFont fontWithName:@"Helvetica" size:30]; // The text font

for the watermark (image watermark does not work). Default Font : Helvetica 24.

 watermark.textColor = [UIColor redColor]; // The text color for the watermark

(image watermark does not work).

} else {

 watermark.image = [UIImage imageNamed:@""]; // The image for the watermark (text

watermark does not work).

}

watermark.scale = 2.0; // Watermark scaling with default `1`, if it is a picture

watermark `1` represents the original size of the picture, if it is a text watermark

`1` represents the `textFont` font size.

watermark.rotation = 45; // Watermark rotation angle, the range of 0~360, with the

default of 0.

watermark.opacity = 0.6; // Watermark transparency, the range of 0~1, with the default

of 1.

watermark.verticalPosition = CPDFWatermarkVerticalPositionCenter; // Vertical alignment

of the watermark.

watermark.horizontalPosition = CPDFWatermarkHorizontalPositionCenter; // Horizontal

alignment of the watermark.

watermark.tx = 0.0; // The translation relative to the horizontal position. Positive

numbers are shifted to the right, negative numbers are shifted to the left.

pageRange：Watermark continuous page range. If not set, the default is all pages.

pageString：Watermark customized page range, Such as "0,3,5-7".

Note: There is an option to set the range of pages that need to be watermarked pageString or pageRange and

one of the two will work,. By default, all pages will be watermarked.

3.6.3 Background

The background of a PDF document can be provided with a background image or color that is applied to the
entire page of the document. In some cases, the background can use brand-related elements such as a
company logo or trademark to enhance the brand image. In addition, another reason for applying a
background to a PDF document is to improve readability, especially if the document has little content and
the pages appear empty. In these cases, applying some background colors and images can make the page
more appealing and easy to read. In addition, highlighting the background of editable areas in a PDF form
design can make the form more intuitive to use and increase the efficiency of the user filling out the form.
And ensure that the same look and formatting are maintained across multiple platforms and devices.

You can use CPDFDocument to get the CPDFBackground object, and use the API in CPDFBackground to set

the background image or color, etc.

The following example shows you how to set the background of the first three pages of a document to a
cloth-covered black background:

watermark.ty = 0.0; // The translation relative to the vertical position. Positive

numbers are shifted downwards, negative numbers are shifted upwards.

watermark.isFront = YES; // Set watermark to locate in front of the content.

watermark.isTilePage = YES; // Set tiled watermark for the page(image watermark does

not work).

watermark.verticalSpacing = 10; // Set the vertical spacing for the tiled watermark.

watermark.horizontalSpacing = 10; // Set the horizontal spacing for the tiled

watermark.

[document addWatermark:watermark];

NSURL *surl = [NSURL fileURLWithPath:@""];

[document writeToURL:surl];

NSURL *url = [NSURL fileURLWithPath:@""];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

CPDFBackground *background = document.background;

background.type = CPDFBackgroundTypeColor;

background.color = [CPDFKitPlatformColor blackColor]; // Background color (image

background does not work).

background.opacity = 1.0; // Background transparency, the range of 0~1, with the

default of 1.

background.scale = 1.0; // Background tiling scale.

background.rotation = 0; // Background rotation angle, the range of 0~360, the default

is 0 (rotate at the centre of the page).

The following example shows you how to set the background of the first three pages of a document to a
specified image:

Note: Adding a background can only be done once. Each call to CPDFBackground.Update() will cover the

previous background data.

background.horizontalAlignment = 1; // Background vertical alignment. `0` for top

alignment, `1` for centre alignment, `1` for bottom alignment.

background.verticalAlignment = 1; // Horizontal alignment of the background. `0` for

left alignment, `1` for centre alignment, `1` for right alignment.

background.xOffset = 0; // The horizontal offset of the background. Positive numbers

are shifted to the right, negative numbers are shifted to the left.

background.yOffset = 0; // The vertical offset of the background. Positive numbers are

shifted downwards, negative numbers are shifted upwards.

background.pageString = @"0,1,2"; // Background page range, such as "0,3,5-7".

[background update];

NSURL *url = [NSURL fileURLWithPath:@""];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

NSString *imagePath = @"";

CPDFKitPlatformImage *image = [[CPDFKitPlatformImage alloc]

initWithContentsOfFile:imagePath];

CPDFBackground *background = document.background;

[background setImage:image];

background.type = CPDFBackgroundTypeImage;

background.opacity = 1.0; // Background transparency, the range of 0~1, with the

default of 1

background.scale = 1.0; // Background image-repeat

background.rotation = 0; // Background rotation angle, the range of 0~360, the default

is 0（rotate at the centre of the page）

background.horizontalAlignment = 1; // Background vertical alignment. `0` for top

alignment, `1` for centre alignment, `1` for bottom alignment

background.verticalAlignment = 1; // Horizontal alignment of the background. `0` for

left alignment, `1` for centre alignment, `1` for right alignment

background.xOffset = 0; // The horizontal offset of the background. Positive numbers

are shifted to the right, negative numbers are shifted to the left

background.yOffset = 0; // The vertical offset of the background. Positive numbers are

shifted downwards, negative numbers are shifted upwards

background.pageString = @"0,1,2"; // Set the page range of the background by string,

such as "0,3 or 5-7"

[background update];

3.6.4 Page Header and Footer

To add headers and footers, ComPDFKit provides an API to add customized headers and footers on the
top and bottom of each page in a PDF document.

To remove headers and footers, ComPDFKit provides an API to remove existing headers and footers
from a page.

To manage the position of headers and footers, ComPDFKit provides APIs to help developers change
the position and margins of headers and footers to suit the size and layout of the page.

Supporting multiple header and footer types, ComPDFKit provides API support for various types of
headers and footers, such as simple text, page index.

index : Instructions for adding the position of the header and footer: 0 for top left, 1 for top center, 2 for

top right, 3 for bottom left, 4 for bottom center, and 5 for bottom right.

text : The regular expressions that Text supports special formats are: <<\d+,\d+>>|<<\d+>>|<<\d+,>>

<>, 'i' is the starting value of the page number.
<<i,f>>, 'i' is the starting value of the page number, and 'f' is the number of digits in the page number, if the
actual page number is not enough, it will be automatically filled with 0 in front.

 eg: When text is set to "<<1,2>> page", the text displayed on the first page is "01 page".

NSURL *url = [NSURL fileURLWithPath:@""];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

CPDFHeaderFooter *headerFooter = document.headerFooter;

[headerFooter setText:@“1” atIndex:0];

[headerFooter setTextColor:[CPDFKitPlatformColor redColor] atIndex:0];

[headerFooter setFontSize:14.0 atIndex:0];

[headerFooter update];

NSURL *url = [NSURL fileURLWithPath:@""];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

CPDFHeaderFooter *headerFooter = document.headerFooter;

[headerFooter clear];

/**

 * Method to get / set the margins of the header & footer.

 */

@property (nonatomic,assign) CPDFKitPlatformEdgeInsets margin;

The following example shows you how to add text as a page index (1 of n) with the start page 5, the font size 14,
and the red lower-middle footer.

Note: Adding a header or footer can only be done once. Each call to CPDFHeaderFooter.Update() will cover

the previous data.

3.6.5 Bates Number

To add Bates numbers, ComPDFKit provides an API to add customized Bates numbers on the top and bottom
of each page in a PDF document.

To remove Bates numbers , ComPDFKit provides an API to remove existing Bates numbers from the page.

/**

 * Gets the text of the header & footer at the specified index.

 */

- (NSString *)textAtIndex:(NSUInteger)index;

/**

 * Sets the text of the header & footer at the specified index.

 */

- (void)setText:(NSString *)text atIndex:(NSUInteger)index;

NSURL *url = [NSURL fileURLWithPath:@""];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

NSString *text = [NSString stringWithFormat:@"<<5>> of %ld",document.pageCount]

CPDFHeaderFooter *headerFooter = document.headerFooter;

[headerFooter setText:text atIndex:4];

[headerFooter setTextColor:[CPDFKitPlatformColor redColor] atIndex:4];

[headerFooter setFontSize:14.0 atIndex:4];

[headerFooter update];

NSURL *url = [NSURL fileURLWithPath:@""];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

CPDFBates *bates = document.bates;

[bates setText:@"<<#3#5#Prefix-#-Suffix>>" atIndex:0];

[bates setTextColor:[CPDFKitPlatformColor redColor] atIndex:0];

[bates setFontSize:14.0 atIndex:0];

[bates update];

To manage the position of the Bates numbers, ComPDFKit provides an API to help developers change the
position and margins of the Bates numbers to suit the size and layout of the page.

Support multiple types of Bates numbers, ComPDFKit provides API support for a variety of types of Bates
numbers, such as simple text, page index.

index : Add the position of the Bates numbers: 0 for top left, 1 for top centre, 2 for top right, 3 for bottom left, 4

for bottom center, and 5 for bottom right.

text : The regular expressions that Text supports special formats are: <<\d+,\d+>>|<<\d+>>|<<\d+,>>

The first # is followed by the minimum number of digits in the page number. If the number of page digits is
not enough, 0 is added in front.

The second # is followed by the starting value of the page number.
The third # is followed by the Bates prefix.
The fourth # is followed by the Bates suffix.

eg: When text is set to "front<<#3#1#ab#cd>>back", the text displayed on the first page is
"frontab001cdback".

The following example shows you how to add text as a Bates number with the prefix "Prefix-", the suffix "-Suffix",
the start page of 5, the bit count of 3, the font size of 14, and the red lower middle footer.

NSURL *url = [NSURL fileURLWithPath:@""];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

CPDFBates *bates = document.bates;

[bates clear];

/**

 * Method to get / set the margins of the header & footer.

 */

@property (nonatomic,assign) CPDFKitPlatformEdgeInsets margin;

/**

 * Gets the text of the header & footer at the specified index.

 */

- (NSString *)textAtIndex:(NSUInteger)index;

/**

 * Sets the text of the header & footer at the specified index.

 */

- (void)setText:(NSString *)text atIndex:(NSUInteger)index;

Note: Adding a Bates number can only be done once. Each call to CPDFBates.Update() will cover the last Bates

number.

3.6.6 Redaction

Redaction is the process of removing images, text, and vector graphics from a PDF page. This not only involves
obscuring the content, but also removing the data in the document within the specified area.

Redaction typically involves removing sensitive content within documents for safe distribution to courts, patent
and government institutions, the media, customers, vendors, or any other audience with restricted access to the
content. Redaction is a two-step process.

First, redaction annotations have to be created in the areas that should be redacted. This step won’t remove
any content from the document yet; it just marks regions for redaction.
Second, to actually remove the content, the redaction annotations need to be applied. In this step, the page
content within the region of the redaction annotations is irreversibly removed.

This means that the actual removal of content happens only after redaction annotations are applied to the
document. Before applying, the redaction annotations can be edited and removed the same as any other
annotations.

Redacting PDFs programmatically:

Creating Redactions Programmatically

You can create redactions programmatically via CPDFRedactAnnotation . Use the quadrilateralPoints

or bounds property to set the areas that should be covered by the redaction annotation.

You also have a few customization options for what a redaction should look like, both in its marked state,
which is when the redaction has been created but not yet applied, and in its redacted state, which is when the
redaction has been applied. It is impossible to change the appearance once a redaction has been applied
since the redaction annotation will be removed from the document in the process of applying the redaction.

This is how to create a redaction annotation that covers the specified region on the first page of a document:

NSURL *url = [NSURL fileURLWithPath:@""];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

CPDFBates *bates = document.bates;

[bates setText:@"<<#3#5#Prefix-#-Suffix>>" atIndex:4];

[bates setTextColor:[CPDFKitPlatformColor redColor] atIndex:4];

[bates setFontSize:14.0 atIndex:4];

[bates update];

Applying Redactions Programmatically

3.7 Conversion

3.7.1 PDF/A

The conversion option analyzes the content of existing PDF files and performs a sequence of modifications in order
to produce a PDF/A compliant document.

Features that are not suitable for long-term archiving (such as encryption, obsolete compression schemes, missing
fonts, or device-dependent color) are replaced with their PDF/A compliant equivalents. Because the conversion
process applies only necessary changes to the source file, the information loss is minimal.

Converts existing PDF files to PDF/A compliant documents, including PDF/A-1a and PDF/A-1b only.

3.8 Content Editor
Content editor provides the ability to change content so that its data can be improved or re-purposed.

Create, move, or delete text and images.
Edit text and image properties.
Undo or redo any change.

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

CPDFPage *page = [document pageAtIndex:0];

CPDFRedactAnnotation *redact = [[CPDFRedactAnnotation alloc]

initWithDocument:document];

redact.bounds = CGRectMake(0, 0, 50, 50);

redact.overlayText = @"REDACTED";

redact.font = [UIFont systemFontOfSize:12];

redact.fontColor = [UIColor redColor];

redact.alignment = NSTextAlignmentLeft;

redact.interiorColor = [UIColor blackColor];

redact.borderColor = [UIColor yellowColor];

[page addAnnotation:redact];

[redact applyRedaction];

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

[document writePDFAToURL:url withType:CPDFTypePDFA1a];

Customize the menu of text editing.

When editing content, other operations are not supported like adding or deleting annotations, adding watermarks,
modifying form properties, etc.

Content editor supports the following editing modes:

Text Mode. In text mode, the text blocks surrounded by dotted lines will be displayed in the PDF document,
then you can copy, paste, add, or delete text.
Image Mode. In image mode, the images surrounded by dotted lines will be displayed in the PDF document,
then you can delete, crop, rotate, mirror, replace, save images, or set transparency.
Text-Image Mode. In text-image mode, the text blocks and images surrounded by dotted lines will be
displayed in the PDF document, then you can edit text and images.

3.8.1 Initialize the Editing Mode

Before editing, you should initialize editing mode. ComPDFKit provides methods to initialize editing mode. The
following code shows you how to initialize the editing mode:

ComPDFKit provides the ability to customize the look and feel in editing mode. You can modify the display effect
according to your needs, such as the width of text block border, the color of text block border, and more. The
following code shows how to customize the look in edit mode:

3.8.2 Create, Move, or Delete Text and Images

ComPDFKit provides methods to do various operations like creating text/images.

NSURL *url = [NSURL fileURLWithPath:pdfPath];

CPDFDocument *document = [[CPDFDocument alloc] initWithURL:url];

CPDFView *pdfView = [[CPDFView alloc] initWithFrame:self.view.bounds];

// Set the document to display

 pdfView.document = document;

// Begin editing text.

[viewer beginEditingLoadType:CEditingLoadTypeText]

CPDFEditingConfig *editingConfig = [[CPDFEditingConfig alloc]init];

editingConfig.editingBorderWidth = 1.0;

editingConfig.editingBorderColor = [CPDFKitPlatformColor redColor];

pdfView.editingConfig = editingConfig;

ComPDFKit provides methods to set the position of text and image blocks.

ComPDFKit provides methods to delete text blocks and image blocks.

3.8.3 Edit Text and Images Properties

ComPDFKit provides multiple methods to modify text properties. You can modify text font size, name, color,
alignment, italic, bold, transparency, etc.

The following code shows you how to set text to 12pt, red, and bold.

ComPDFKit provides multiple methods to modify image properties. You can modify image properties, such as
rotating, cropping, mirroring, and setting transparency.

The following code shows you how to rotate an image and set it to translucent.

/**

 * Create a blank text block.

 * @param rect The area of the text box.

 * @param attributes The text font properties.

 * @param page The created page number.

 * @return Returns whether the creation is successful.

 */

- (BOOL)createEmptyStringBounds:(CGRect)rect withAttributes:

(NSDictionary<NSAttributedStringKey, id> *)attributes page:(CPDFPage *)page;

/*

* Adds interface of the image.

*/

- (BOOL)createEmptyImage:(CGRect)rect page:(CPDFPage *)page path:(NSString*)imagePath;

/**

* Sets the position of the text (image) block

*/

- (void)setBoundsEditArea:(CPDFEditArea *)editArea withBounds:(CGRect)bounds;

/**

* Delete text (image) block

*/

- (void)deleteEditingArea:(CPDFEditArea *)editArea;

[pdfView setEditingSelectionFontSize:12.0];

[pdfView setEditingSelectionFontColor:[CPDFKitPlatformColor redColor]];

[pdfView setCurrentSelectionIsBold:YES];

The following code shows you how to crop the image.

3.8.4 Undo and Redo Text Editing

The following code shows how to undo and redo a text editing:

You can add listeners for undo and redo status. See the method PDFViewEditingOperationDidChanged: in

3.8.6.

3.8.5 Customize the Menu of Text Editing

When you enter the editing mode, the PDF document will also enter the corresponding interaction status based on
different operations. In different interaction statuses, a context menu like UIMenuController pops up, and the

context menu calls back to different interfaces with different operation classes. Here are the different interaction
statuses:

ComPDFKit provides default menu options for copying, cutting, deleting, pasting, etc.

 [pdfView rotateEditArea:pdfView.editingArea rotateAngle:90];

/**

 * Sets text transparency.

 */

 [pdfView setCharsFontTransparency:0.5];

/**

 * Sets image transparency.

 */

 [pdfView setImageTransparencyEditArea:pdfView.editingArea transparency:0.9];

[self.pdfView enterCropWithEditImageArea:self.editingArea];

if ([pdfView canEditTextUndo]) {

 [pdfView editTextUndo];

}

if ([pdfView canEditTextRedo]) {

 [pdfView editTextRedo];

}

- (NSArray<UIMenuItem *> *)menuItemsEditingAtPoint:(CGPoint)point forPage:(CPDFPage

*)page {

 NSArray * items = [super menuItemsEditingAtPoint:point forPage:page];

 NSMutableArray *menuItems = [NSMutableArray array];

 if (items)

 [menuItems addObjectsFromArray:items];

When selecting a text block or a certain area, you can use editStatus: of CPDFView to get the current text-

editing status. Here are the introductions to each status..

CEditingSelectStateEmpty does not enter the text-editing status.

CEditingSelectStateEditTextArea selects a text block without entering the text-editing status.

CEditingSelectStateEditNoneText enters the text-editing status without selecting text.

CEditingSelectStateEditSelectText enters the text-editing status and selects text.

3.8.6 Listen to the Changes in Block Editing

You can use the following code to add the listener to listen to the changes in text editing status.

 self.menuPoint = point;

 self.menuPage = page;

 if(CEditingSelectStateEmpty == self.editStatus) {

 UIMenuItem *addTextItem = [[UIMenuItem alloc]

initWithTitle:NSLocalizedString(@"Add Text", nil)

 action:@selector(addTextEditingItemAction:)];

 UIMenuItem *addImageItem = [[UIMenuItem alloc]

initWithTitle:NSLocalizedString(@"Add Image", nil)

action:@selector(addImageEditingItemAction:)];

 [menuItems addObject:addImageItem];

 [menuItems addObject:addTextItem];

 }

 return menuItems;

}

/**

 * Callback when the editing changes.

 */

- (void)PDFViewEditingOperationDidChanged:(CPDFView *)pdfView;

/**

 * Callback when the selected block or selected certain area changes.

 */

- (void)PDFViewEditingSelectStateDidChanged:(CPDFView *)pdfView;

/**

 * Callback when the selected text block enters the text-editing mode.

 */

3.8.7 End Text Editing and Save

You can end edit mode at any time. You can exit editing mode using endit . Before using writeToURL to save

changes to an edited document, you should submit the changes by commitEditing before exiting editing mode.

Otherwise, the changes won't be saved.

The code of saving document, see 3.1.2.

4 Support

4.1 Reporting Problems
Thank you for your interest in ComPDFKit PDF SDK, the only easy-to-use but powerful development solution to
integrate high quality PDF rendering capabilities to your applications. If you encounter any technical questions or
bug issues when using ComPDFKit PDF SDK for iOS, please submit the problem report to the ComPDFKit team.
More information as follows would help us to solve your problem:

ComPDFKit PDF SDK product and version.
Your operating system and IDE version.

- (void)PDFEditingViewShouldBeginEditing:(CPDFView *)pdfView textView:(UITextView

*)textView;

/**

 * Callback when the selected text block ends the text-editing status.

 */

- (void)PDFEditingViewShouldEndEditing:(CPDFView *)pdfView textView:(UITextView

*)textView;

/**

 * Callback when entering cropping status and the size of the cropping area changes.

 */

- (void)PDFViewEditingCropBoundsDidChanged:(CPDFView *)pdfView editingArea:

(CPDFEditArea *)editArea;

if (pdfView.isEdited) {

 dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0),

^{

 [pdfView commitEditing];

 dispatch_async(dispatch_get_main_queue(), ^{

 [pdfView endOfEditing];

 });

 });

 }

Detailed descriptions of the problem.
Any other related information, such as an error screenshot.

4.2 Contact Information
Home Link:

https://www.compdf.com

Support & General Contact:

Email: support@compdf.com

Thanks,
The ComPDFKit Team

https://www.compdf.com/
mailto:support@compdf.com

	1 Overview
	1.1 ComPDFKit PDF SDK
	1.2 Key Features
	1.3 License

	2 Get Started
	2.1 Requirements
	2.2 iOS Package Structure
	2.3 How to Run a Demo
	2.4 How to Make an iOS App in Objective-C with ComPDFKit
	2.4.1 Create a New iOS Project in Objective-C
	2.4.2 Integrate ComPDFKit into Your Apps
	2.4.3 Apply the License Key
	2.4.4 Display a PDF Document
	2.4.5 Troubleshooting

	2.5 ARC Compatibility
	2.6 Swift Compatibility

	3 Guides
	3.1 Basic Operations
	3.1.1 Open a Document
	3.1.2 Save a Document

	3.2 Viewer
	3.2.1 Display Modes
	3.2.2 PDF Navigation
	3.2.3 Text Search & Selection
	3.2.4 Zooming
	3.2.5 Themes
	3.2.6 Text Reflow
	3.2.7 Rendering
	3.2.8 Custom Menu
	3.2.9 Highlight of Form Fields and Hyperlinks
	3.2.10 Get the Selected Text

	3.3 Annotations
	3.3.1 Annotation Types
	3.3.2 Access Annotations
	3.3.3 Create & Edit Annotations
	3.3.4 Delete Annotations
	3.3.5 Annotation Appearances
	3.3.6 Import & Export Annotations
	3.3.7 Flatten Annotations
	3.3.8 Predefine Annotations

	3.4 Forms
	3.4.1 Supported Form Fields
	3.4.2 Create & Edit Form Fields
	3.4.3 Delete Form Fields
	3.4.4 Fill Form Fields
	3.4.5 Flatten PDF Forms

	3.5 Document Editor
	3.5.1 PDF Manipulation
	3.5.2 Page Edit
	3.5.3 Document Information
	3.5.4 Extract Images

	3.6 Security
	3.6.1 PDF Permission
	3.6.2 Watermark
	3.6.3 Background
	3.6.4 Page Header and Footer
	3.6.5 Bates Number
	3.6.6 Redaction

	3.7 Conversion
	3.7.1 PDF/A

	3.8 Content Editor
	3.8.1 Initialize the Editing Mode
	3.8.2 Create, Move, or Delete Text and Images
	3.8.3 Edit Text and Images Properties
	3.8.4 Undo and Redo Text Editing
	3.8.5 Customize the Menu of Text Editing
	3.8.6 Listen to the Changes in Block Editing
	3.8.7 End Text Editing and Save

	4 Support
	4.1 Reporting Problems
	4.2 Contact Information

