

Comprehensive PDF SDK for Developers

2014-2023 PDF Technologies, Inc. All Rights Reserved.

ComPDFKit PDF SDK
Developer Guides

Contents

1 Overview 4

1.1 ComPDFKit PDF SDK 4

1.2 Key Features 5

1.3 License 7

2 Get Started 7

2.1 Requirements 7

2.2 Windows Package Structure 8

2.3 How to Run a Demo 8

2.4 How to Make a Windows Program in C# with ComPDFKit PDF SDK 11

2.4.1 Create a New Project 11

2.4.2 Add ComPDFKit to Your Project 13

2.4.3 Apply the License Key 24

2.4.4 Display a PDF Document 24

2.4.5 Troubleshooting 26

2.5 UI Customization 27

2.5.1 Overview of "ComPDFKit_Tools" Folder 28

2.5.2 UI Component 30

2.6 Samples 37

3 Guides 38

3.1 Basic Operations 39

3.1.1 Open a Document 39

3.1.2 Save a Document 40

3.2 Viewer 40

3.2.1 Display Modes 41

3.2.2 PDF Navigation 41

3.2.3 Text Search & Selection 42

3.2.4 Zooming 44

3.2.5 Themes 44

3.2.6 Custom Menu 45

3.2.7 Highlight of Form Fields and Hyperlinks 46

3.2.8 Get the Selected Text 46

3.3 Annotations 46

3.3.1 Annotation Types 46

3.3.2 Access Annotations 47

3.3.3 Create & Edit Annotations 48

3.3.4 Delete Annotations 54

3.3.5 Annotation Appearances 55

3.3.6 Import & Export Annotations 55

3.3.7 Flatten Annotations 56

3.4 Forms 56

3.4.1 Supported Form Fields 56

3.4.2 Create & Edit Form Fields 57

3.4.3 Fill Form Fields 57

3.4.4 Delete Form Fields 60

3.4.5 Flatten PDF Forms 60

3.5 Document Editor 60

3.5.1 PDF Manipulation 61

3.5.2 Page Edit 62

3.5.3 Document Information 63

3.5.4 Extract Images 63

3.6 Security 64

3.6.1 PDF Permission 64

3.6.2 Background 67

3.6.3 Page Header and Footer 68

3.6.4 Bates Number 69

3.7 Redaction 71

3.8 Watermark 72

3.9 Conversion 73

3.9.1 PDF/A 73

3.10 Content Editor 73

3.10.1 Initialize the Editing Mode 74

3.10.2 Create, Move, or Delete Text and Images 74

3.10.3 Edit Text and Images Properties 75

3.10.4 Undo and Redo Text Editing 76

3.10.5 End Text Editing and Save 76

3.11 Compare Documents 76

3.11.1 Overlay Comparison 77

3.11.2 Content Comparison 78

3.12 Digital Signatures 78

3.12.1 Overview 78

3.12.2 Concepts Related to Digital Signatures 80

3.12.3 Create Digital Certificates 82

3.12.4 Create Digital Signatures 83

3.12.5 Read Digital Signature Information 85

3.12.6 Verify Digital Certificates 86

3.12.7 Verify Digital Signatures 87

3.12.8 Trust Certificate 87

3.12.9 Remove Digital Signatures 88

3.11.10 Trouble Shooting 88

4 Support 89

4.1 Reporting Problems 89

4.2 Contact Information 89

1 Overview
ComPDFKit PDF SDK for Windows is a powerful PDF library that ships with an easy-to-use C# interface.
Developers can seamlessly integrate PDF rendering, navigation, creation, searching, annotation, PDF text
extraction, form data collection, and editing capabilities into their applications and services.

1.1 ComPDFKit PDF SDK
ComPDFKit PDF SDK consists of two elements as shown in the following picture.

The two elements for ComPDFKit:

PDF Core API

The ComPDFKit.Desk can be used independently for document rendering, analysis, text extraction, text
search, form filling, annotation creation and manipulation, and much more.

PDF View

The ComPDFKit.Viewer is a utility class that provides the functionality for developers to interact with
rendering PDF documents per their requirements. The View Control provides fast and high-quality
rendering, zooming, scrolling, and page navigation features.

1.2 Key Features
Viewer component offers:

Standard page display modes, including Single Page, Double Page, Scrolling, and Cover Mode.

Navigation with thumbnails, outlines, and bookmarks.
Text search & selection.
Zoom in and out & Fit-page.
Switch between different themes, including Dark Mode, Sepia Mode, Reseda Mode, and Custom Color
Mode.
Text reflow.

Annotations component offers:

Create, edit, and remove annotations, including Note, Link, Free Text, Line, Square, Circle, Highlight,
Underline, Squiggly, Strikeout, Stamp, Ink, and Sound.
Support for annotation appearances.
Import and export annotations to/from XFDF.
Support for annotation flattening.

Forms component offers:

Create, edit, and remove form fields, including Push Button, Check Box, Radio Button, Text Field,
Combo Box, List Box, and Signature.
Fill PDF Forms.
Support for PDF form flattening.

Document Editor component offers:

PDF manipulation, including Split pages, Extract pages, and Merge pages.
Page edit, include: Delete pages, Insert pages, Move pages, Rotate pages, Replace pages, and Exchange
pages.
Document information setting.
Extract images.

Content Editor component offers:

Programmatically add and remove text in PDFs and make it possible to edit PDFs like Word. Allow
selecting text to copy, resize, change colors, text alignment, and the position of text boxes.
Support editing PDF images like moving, rotating, scaling, mirroring, cropping, replacing, copying, and
extracting.
Undo or redo any change.

Security component offers:

Encrypt and decrypt PDFs, including Permission setting and Password protected.
Create and remove watermark.
Redact content including images, text, and vector graphics.
Create, edit, and remove header & footer, including dates, page numbers, document name, author
name, and chapter name.
Create, edit, and remove bates numbers.
Create, edit, and remove background that can be a solid color or an image.

Redaction component offers:

Redact content including images, text, and vector graphics to remove sensitive information or private
data, which cannot be restored once applied.
Create redaction by selecting an area or searching for a specific text.

Edit and save redaction annotations.

Watermark component offers:

Add, remove, edit, update, and get the watermarks.
Support text and image watermarks.

Conversion component offers:

PDF to PDF/A.

Document Comparison component offers:

Compare different versions of a document, including overlay comparison and content comparison.

Digital Signatures component offers:

Sign PDF documents with digital signatures.
Create and verify digital certificates.
Create and verify digital digital signatures.
Create self-sign digital ID and edit signature appearance.
Support PKCS12 certificates.
Trust certificates.

1.3 License
ComPDFKit PDF SDK is a commercial SDK, which requires a license to grant developer permission to release
their apps. Each license is only valid for one device ID in development mode. Other flexible licensing options
are also supported, please contact our marketing team to know more. However, any documents, sample
code, or source code distribution from the released package of ComPDFKit PDF SDK to any third party is
prohibited.

2 Get Started
It is easy to embed ComPDFKit PDF SDK in your Windows application with a few lines of C# code. Take just a
few minutes and get started.

The following sections introduce the requirements, structure of the installation package, and how to make a
Windows PDF Reader in C# with ComPDFKit PDF SDK.

2.1 Requirements
Windows 7, 8, 10, and 11 (32-bit and 64-bit).
Visual Studio 2017 or higher (Make sure the .NET Desktop Development is installed).
.NET Framework 4.5 or higher.

2.2 Windows Package Structure

mailto:support@compdf.com

2.2 Windows Package Structure
You can contact us and access our PDF SDK installation package. The SDK package includes the following
files.

"Examples" - A folder containing Windows sample projects.

"Viewer" - A basic PDF viewer, including reading PDFs, changing themes, bookmarks, searching
text, etc.
"Annotations" - A PDF viewer with full types of annotation editing, including adding annotations,
modifying annotations, annotation lists, etc.
"ContentEditor" - A PDF viewer with text and image editing, including modifying text, replacing
images, etc.
"Forms" - A PDF viewer with full types of forms editing, including radio button, combo box, etc.
"DocsEditor" - A PDF viewer with page editing, including inserting/deleting pages, extracting pages,
reordering pages, etc.
"PDFViewer" - A multi-functional PDF program that integrates all of the above features.
"ComPDFKit_Tools" - A default control library for quickly building various function modules of PDF
viewer.
"license_key_win.xml" - A xml file containing key and secret.
"TestFile" - A folder containing test files.
"Samples" - -A folder containing console application.

"lib" - Include the ComPDFKit dynamic library (x86,x64).

"nuget" - Include the ComPDFKit.NetFramework nuget package file.

"api_reference_windows.chm" - API reference.

"developer_guide_windows.pdf" - Developer guide.

"legal.txt" - Legal and copyright information.

"release_notes.txt" - Release information.

2.3 How to Run a Demo
ComPDFKit PDF SDK for Windows provides multiple demos in C# for developers to learn how to call the SDK
on Windows. You can find them in the "Examples" folder.

In this guide, we take "PDFViewer" as an example to show how to run it in Visual Studio 2022.

1. Copy your "license_key_windows.txt" to the "Examples" folder (The file is the license to make your
project run).

2. Find "Examples.sln" in the "Examples" folder and open it in Visual Studio 2022.

https://www.compdf.com/contact-us

3. Select "PDFViewer" and right-click to set it as a startup project.

4. Run the project and then you can open the multifunctional "PDFViewer" demo.

Note: This is a demo project, presenting completed ComPDFKit PDF SDK functions. The functions might be
different based on the license you have purchased. Please check that the functions you choose work fine in this
demo project.

2.4 How to Make a Windows Program in C# with
ComPDFKit PDF SDK

2.4.1 Create a New Project

1. Fire up Visual Studio 2022, click Create a new project.

2. Choose WPF App (.NET Framework) and click Next.

3. Configure your project: Set your project name and choose the location to store your program. The
project name is called "ComPDFKit Demo" in this example. This sample project uses .NET Framework
4.6.1 as the programming framework.

4. Click the Create button. Then, the new project will be created.

2.4.2 Add ComPDFKit to Your Project

There are two ways to add ComPDFKit to your Project: Nuget Repository and Local Package , you can
choose one or the other according to your needs.

Nuget Repository

1. Open your project’s solution, and in the Solution Explorer, right-click on References and click on the
menu item Manage NuGet Packages…. This will open the NuGet Package Manager for your solution.

2. Search for ComPDFKit.NetFramework , and you’ll find the package on nuget.org.

3. On the right side, in the panel describing the package, click on the Install button to install the package.

https://www.nuget.org/packages/ComPDFKit.NetFramework/

4. Once that is complete, you’ll see a reference to the package in the Solution Explorer under References.

Local Package

Rather than targeting a package held at nuget.org, you may set up a configuration to point to a local
package. This can be useful for some situations, for example, your build machines don’t have access to the
internet.

1. You can find "ComPDFKit.NetFramework....nupkg" file in the SDK Package

2. Create or edit a "nuget.config" file in the same directory as your solution file (e.g. "ComPDFKit
Demo.sln").

https://nuget.org/

The contents of the file should contain an XML element, packageSources — which describes where to
find NuGet packages — as a child of a root node named configuration . If the file already exists, add
the extra packageSources entry shown below. If the file is blank, copy and paste the entirety of the
following contents:

Edit the value of the contents to correctly refer to the location of the directory containing the
"ComPDFKit.NetFramework....nupkg" package — for example, C:\Users\me\nugetPackages\ . Now
save the file, and close and reopen your solution for Visual Studio to force a read of the NuGet
configuration.

3. Open your project’s solution, and in the Solution Explorer, right-click on References and click on the
menu item Manage NuGet Packages…. This will open the NuGet Package Manager for your solution.

<?xml version="1.0" encoding="utf-8"?>

<configuration>

 <packageSources>

 <add key="ComPDFKitSource" value="path\to\directoryContainingNupkg" />

 </packageSources>

</configuration>

4. On the right-hand side of the manager in the Package source dropdown window, choose the entry
ComPDFKitSource (or whatever you decided to name it). You should then see the entry for
"ComPDFKit.NetFramework".

5. On the right side, in the panel describing the package, click on the Install button to install the package.

6. Once that’s complete, you’ll see a reference to the package in the Solution Explorer under References.

Alternatively, you can manually integrate ComPDFKit's dynamic libraries into your project.

1. Open the ComPDFKit SDK package that you have extracted, and go to the "lib" folder. Copy the "x64"
folder, "x86" folder, "ComPDFKit.Desk.dll" file, and "ComPDFKit.Viewer.dll" file to the folder with the
same name as your project that you created in 2.4.1. In this project, the folder is named "ComPDFKit
Demo". Now, your folder should look like this:

2. Then click the button Show All Files in the Solution Explorer menu. Find and right click the files you
added before, and choose Include In Project.

Now the structure of your project will look like this:

3. To use the APIs of ComPDFKit PDF SDK in your project, follow the instructions and add them to
Reference. Right click the project that you need to add ComPDFKit PDF SDK and click Add. Then, click
Reference.

In the Reference dialog, choose Browse, click another Browse button in the bottom right corner, and
navigate to the "ComPDFKit Demo" folder which is in your project. Select "ComPDFKit.Desk.dll" and
"ComPDFKit.Viewer.dll" dynamic library. Then, click OK.

Right click "ComPDFKit.dll" -> click Properties.

Please make sure to set the property Copy to Output Directory of "ComPDFKit.dll" to Copy if newer.
Otherwise, you should copy it to the same folder with the executable file manually before running the
project.

2.4.3 Apply the License Key

You can contact ComPDFKit team to get a trial license. Before using any ComPDFKit PDF SDK classes, a
required operation is to set the license key. Add the following method — LicenseVerify() to
“MainWindow.xaml.cs”.

2.4.4 Display a PDF Document

We have finished all prepare steps. Let's display a PDF file.

Add the following code to “MainWindow.xaml” and “MainWindow.xaml.cs” to display a PDF document.
Please make sure to replace "ComPDFKit_Demo" with the name of your project. Now, all you need to do is
to create a CPDFViewer object, and then display the CPDFViewer object in the Grid (component) named
“PDFGrid” using the OpenPDF_Click method.

Now your "MainWindow.xaml" should look like the following code.

bool LicenseVerify()

{

 if (!CPDFSDKVerifier.LoadNativeLibrary())
 return false;

 LicenseErrorCode verifyResult =
CPDFSDKVerifier.LicenseVerify("license_key_windows.txt", true);

 return (verifyResult == LicenseErrorCode.E_LICENSE_SUCCESS);
}

<Window x:Class="ComPDFKit_Demo.MainWindow"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
 xmlns:d="http://schemas.microsoft.com/expression/blend/2008"
 xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006"
 xmlns:local="clr-namespace:ComPDFKit_Demo"
 mc:Ignorable="d"
 Title="MainWindow" Height="450" Width="800" UseLayoutRounding="True">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="*"/>
 <RowDefinition Height="52"/>
 </Grid.RowDefinitions>
 <Grid Name="PDFGrid" Grid.Row="0" />
 <Button Content="Open PDF" Grid.Row="1" HorizontalAlignment="Left" Margin="10"
Click="OpenPDF_Click"/>

 </Grid>
</Window>

https://www.compdf.com/contact-us

Now your “MainWindow.xaml.cs” should look like the following code. Please note: You need to enter your
license key. All the places that need to be modified in the code have been marked with comments in the
code below. You just need to replace the string content below the comments by yourself.

using ComPDFKit.NativeMethod;

using ComPDFKit.PDFDocument;

using ComPDFKitViewer.PdfViewer;

using Microsoft.Win32;

using System.Windows;

namespace ComPDFKit_Demo

{

 public partial class MainWindow : Window

 {
 public MainWindow()
 {
 InitializeComponent();
 LicenseVerify();
 }

 bool LicenseVerify()
 {
 bool result = CPDFSDKVerifier.LoadNativeLibrary();
 if (!result)
 return false;

 // You should fill in your key and secret into the string below.
 string key = "Input your key instead of this string";
 string secret = "Input your secret instead of this string";
 LicenseErrorCode verifyResult = CPDFSDKVerifier.LicenseVerify(key, secret);
 if (verifyResult != LicenseErrorCode.LICENSE_ERR_SUCCESS)
 return false;

 return true;
 }

 private void OpenPDF_Click(object sender, RoutedEventArgs e)
 {
 // Get the path of a PDF file.
 var dlg = new OpenFileDialog();
 dlg.Filter = "PDF Files (*.pdf)|*.pdf";
 if (dlg.ShowDialog() == true)
 {
 // Use the PDF file path to open the document in CPDFViewer.
 CPDFViewer pdfViewer = new CPDFViewer();
 pdfViewer.InitDocument(dlg.FileName);
 if (pdfViewer.Document != null &&
 pdfViewer.Document.ErrorType ==
CPDFDocumentError.CPDFDocumentErrorSuccess)

Now run the project and you will see the PDF file that you want to display. The PDF Viewer has been created
successfully.

2.4.5 Troubleshooting

1. If "System.IO.FileNotFoundException" occurred in the LicenseVerify() function like this:

 {
 pdfViewer.Load();
 PDFGrid.Children.Add(pdfViewer);
 }
 }
 }
 }
}

Check your WPF project and ensure that you chose WPF App(.NET Framework) instead of WPF
Application when creating the project.

2. Other Problems

If you meet some other problems when integrating our ComPDFKit PDF SDK for Windows, feel free to
contact ComPDFKit team.

2.5 UI Customization
The folder of “ComPDFKit_Tools” includes the UI components to help conveniently integrate ComPDFKit PDF
SDK. We have also built six standalone function programs, namely Viewer, Annotations, ContentEditor,
Forms, DocsEditor, and Digital Signature, using this UI component library. Additionally, we have
developed a program called PDFViewer that integrates all the above-mentioned example features for

https://www.compdf.com/contact-us

Folder SubFolder Description

Common

BaseControl

Basic components used to compose other
components, such as the value component to
control the value of opacity, font size, border width,
etc.

Convert Data converter

Helper

Static classes and static methods that provide
assistance for common functions, such as a static
method that can invoke a file open dialog and get
the selected PDF file path: GetFilePathOrEmpty.

PasswordControl
Include the UI components and interaction of
typing file passwords.

PropertyControl
Include the UI components and interaction of
handling specified data type inputting.

PDFView

PDFBookmark
Include the UI components and interaction of
editing bookmarks and jumping pages.

PDFInfo
Include the UI components and interaction of
document information.

PDFDisplaySettings
Include the UI components and interaction of PDF
viewing like setting themes, display modes, etc.

PDFOutline
Include the UI components and interaction of
jumping and displaying the PDF outline.

PDFSearch
Include the UI component and interaction for
searching PDFs and generating the search list.

reference.

In this section, we will introduce how to use it from the following parts:

1. Overview of "ComPDFKit_Tools" Folder: Show the folder structure and the main features included in
the corresponding component.

2. UI Components: Introduce the UI components and how to use them easily and fast.

2.5.1 Overview of "ComPDFKit_Tools" Folder

There are seven modules in "ComPDFKit_Tools": "Common", "Viewer", "Annotations", "ContentEditor",
"Forms", "DocsEditor", and "Digital Signatures". Each of them includes the code and UI components like the
following table to process PDFs.

PDFThumbnail Include the UI component and interaction of PDF
thumbnails.

Annotations

PDFAnnotationBar

Include the toolbar that indicates the required
annotation type and order. Clicking on the
navigation bar will pass the corresponding
comment type enumeration through an event.

PDFAnnotationPanel
When creating or modifying annotations, specific
property panels are displayed, and controls for
handling data are provided.

PDFAnnotationList
Include the UI component and interaction of
displaying all annotations in a list, selecting and
deleting specific annotations/all annotations.

ContentEditor

PDFImageEditControl
Include the toolbar to edit PDF images and
undo/redo the processing of editing PDF images.

PDFTextEditControl
Include the toolbar to edit PDF text and undo/redo
the processing of editing PDF text.

Forms

FormBarControl
Include the UI component and interaction of
specifying needed form fields and the order of
displaying the form field types in UI.

FormPropertyControl
Include the property panel and interaction to set
the properties of forms.

Docs Editor

PDFPageEditBar
Include the toolbar for creating, replacing, rotating,
extracting, and deleting PDF pages

PDFPageEdit
Include the UI component and interaction of
document editing like thumbnails, drag, right-click
menu, etc.

PDFPageExtract
Include the popup window of page extraction. It
only processes and transfers the data. You can
refer to PDFPageEdit for inserting pages.

PDFPageInsert
Include the popup window of page insertion. It only
processes and transfers the data. You can refer to
PDFPageEdit for inserting pages.

AddCertificationDialog
Include the popup window to create new
certificates or using existing certificates.

CPDFSignatureListControl

Include the UI component and interaction of
displaying the list of digital signatures and their
status, with options to navigate to a specific
signature location or open a signature status

Digital
Signatures

popup.

VerifyDigitalSignatureControl
Include the popup window to display the signature
status.

SignatureStatusBarControl
Include the popup window to display all the
signature statuses in this file.

FillDigitalSignatureDialog
Include the popup window to create the signature
appearance.

ViewCertificateDialog
Include the popup window to view the signature
certificates.

2.5.2 UI Component

This section mainly introduces the connection between the UI components and API configuration of
"ComPDFKit_Tools", which can not only help you quickly get started with the default UI but also help you
view the associated API configuration. These UI components could be used and modified to create your
customize UI.

Part 1:

Number Name Functionality Description

1-1 Title bar CPDFTitleBarControl
The toolbar at the top of the PDF view window: Include
the help center and file center.

1-2
Open file
button

/ Control to switch a new document.

1-3 Save button / Control to save the current file.

1-4
Right panel
button

CPDFBOTABarControl Control the display status of the property panel.

1-5
Page scalling
control

CPDFScalingControl Control to change the zoom ratio of PDF.

1-6 Mode switcher / Switch the feature modules.

1-7 Search button CPDFBOTABarControl Enter the searching mode.

1-8
Display settings
button

CPDFDisplaySettingsControl Control to show or hide the setting panel.

1-9
Left panel
button

CPDFAnnotationControl、
FromPropertyControl、
PDFContentEditControl

Control the displaying status of property panel.

1-10 PDF info button CPDFInfoControl Control the popup window of document information.

1-11
Page turning
control

PageNumberControl Control to jump to other specific pages quickly.

1-12 PDFViewControl PDFViewControl
Basic interactions like zooming PDF view with mouse and
executing page jumping or push button actions.

The picture above shows the main UI components associated with the API of Viewer, which are also the
fundamental UI components of "ComPDFKit_Tools". The following table shows the details of the connection
between UI components and APIs.

Part 2:

The picture above shows the UI components associated with the API of outline, bookmark, thumbnail,
annotation list, and searching. The following table shows the details of the connection between UI
components and APIs.

Number Name Functionality Description

1-1 Thumbnails CPDFThumbnailControl Enter the thumbnails of PDFs.

1-2 Outlines CPDFOutlineControl Enter the outlines of PDFs.

1-3 Bookmark CPDFBookmarkControl Enter the bookmark list of PDFs.

1-4 Annotation List CPDFThumbnailControl Enter the annotation list of PDFs.

1-5 Search CPDFSearchControl Enter the PDF keywords searching.

Number Name Functionality Description

1-1
Annotation
bar

CPDFAnnotationBarControl
Annotated toolbar, allowing specifying the annotation types
and the order of displaying the annotation types in UI.

1-2 Undo redo / Undo/redo the processing of annotations.

1-3
Annotation
panel

CPDFAnnotationControl Preset annotation properties for creating annotation.

Part 3:

The picture above shows the UI components associated with the API of annotation. The following table
shows the details of the connection between UI components and APIs.

 Part 4:

Number Name Functionality Description

1-1
Content
edit bar

/

The tool bar of content editor. Enter a state of creating
text and only text editing, after clicking on text editing.
After clicking on image editing, you can add images. After
adding the images, you will enter the default mode, in
which both images and text can be edited.

1-2
Undo
redo

/ Undo redo the processing of editing PDF text/images.

1-3
Content
edit
panel

PDFContentEditControl
Preset text properties for adding text. After clicking on text
or image, you will get the attributes of the currently
selected object and can modify them.

The picture above shows the UI components associated with the API of the content editor. The following
table shows the details of the connection between UI components and APIs.

Number Name Functionality Description

1-1 Forms edit bar CPDFFormBarControl Tool bar of PDF forms.

1-2 Undo redo / Undo/redo the processing of forms.

1-3 Forms panel FromPropertyControl Set the properties of forms.

Part 5:

The picture above shows the UI components associated with the API of forms. The following table shows the
details of the connection between UI components and APIs.

Number Name Functionality Description

1-1
Docs
edit
bar

CPDFPageEditBarControl、
CPDFPageExtractWindow、
CPDFPageInsertWindow

Tool bar of document editor.

1-2
Docs
editor

CPDFPageEditControl
Show the thumbnails of PDF pages and
interaction for editing PDF pages.

Part 6:

The picture above shows the UI components associated with the API of the document editor. The following
table shows the details of the connection between UI components and APIs.

Part 7:

Number Name Functionality Description

1-1 Signature bar
AddCertificationDialog、
FillDigitalSignatureDialog

Add signature field, and verify all the
signatures.

1-2
Signature status
bar

SignatureStatusBarControl
Show the status of all the digital
signatures.

1-3 Signature list ViewCertificateDialog
A list to display all the digital signatures
in PDFs.

The picture above shows the UI components associated with the API of the digital signature. The following
table shows the details of the connection between UI components and APIs.

2.6 Samples
The Samples use preset parameters and documentation to call the API of ComPDFKit PDF SDK for each
function without UI interaction or parameter settings. This is achieved through modular code examples. The
functions include creating, getting, and deleting various types of annotations and forms, extracting text and
images, encrypting and decrypting documents, adding watermarks and bates numbers, and more.

These projects not only demonstrate the best practices for each function but also provide detailed
introductions. The impact of each function on PDF documents can be observed in the output directory. With
the help of the Samples, you can quickly learn how to use the functions you need and apply them to your
projects.

Name Description

Bookmark Create a new bookmark, and access the existing bookmark.

Outline Create a new outline, and get existing outline information.

PDFToImage Convert PDF pages to PNG.

TextSearch Perform full-text search and highlight keywords.

Annotation
Print the annotation list information, set the annotations (including
markup, note, ink, free text, circle, square, line, stamp, and sound
annotations), and delete the annotations.

AnnotationImportExport Export and import annotations with an xfdf file.

InteractiveForms
Print form list information, set up interactive forms (including text,
checkbox, radio button, button, list, combo boxes, signing and deleting
forms), and fill out form information.

PDFPage
Manipulate PDF pages, including inserting, splitting, merging, rotating, and
replacing, etc.

ImageExtract Extract images from a PDF document.

DocumentInfo Display the information of PDF files like the author, created time, etc.

Watermark Create text/image watermarks and delete watermarks.

Background Create a color/image background and delete the background.

Bates Create and remove bates numbers.

PDFRedact
Create redaction to remove sensitive information or private data, which
cannot be viewed and searched once applied.

Encrypt
Set passwords to encrypt PDFs and set document permissions. Allow
decrypting PDFs.

PDFA Convert PDF to PDF/A-1a and PDF/A-1b.

Flatten Flatten PDF annotations and forms, and merge all layouts as one layout.

DocumentCompare Compare different documents and show the result in new documents.

DigitalSignatures
Create, fill, and verify the signatures and certificates. Read the details of
signatures and certificates. Remove digital signatures.

3 Guides
If you’re interested in all of the features mentioned in Overview section, please go through our guides to
quickly add PDF viewing, annotating, and editing to your application. The following sections list some
examples to show you how to add document functionalities to Windows apps using our C# APIs.

3.1 Basic Operations
There are a few commonly used basic operations when working with documents.

3.1.1 Open a Document

Open a Local File

Create a New File

Following are the descriptions of error codes in CPDFDocumentError :

// Get the path of a PDF

string filePath ="";

var dlg = new OpenFileDialog();

dlg.Filter = "PDF Files (*.pdf)|*.pdf";

if (dlg.ShowDialog() == true)

{

 filePath = dlg.FileName;
}

else

{

 return;
}

// Initialize a CPDFDocument object with the path to the PDF file

CPDFDocument document = CPDFDocument.InitWithFilePath(filePath);

if(document==null)

{

 return;
}

if(document.ErrorType != CPDFDocumentError.CPDFDocumentErrorSuccess

 && document.ErrorType != CPDFDocumentError.CPDFDocumentPasswordError)
{

 return;
}

CPDFDocument document = CPDFDocument.CreateDocument();

Error Description

CPDFDocumentErrorSuccess Open PDF file successfully.

CPDFDocumentUnknownError Unknown error.

CPDFDocumentFileError File not found or could not be opened.

CPDFDocumentFormatError File not in PDF format or corrupted.

CPDFDocumentPasswordError Password required or incorrect password.

CPDFDocumentSecurityError Security scheme not supported.

CPDFDocumentPageError Page not found or content error.

3.1.2 Save a Document

To save a PDF document to path use CPDFDocument.WriteToLoadedPath() , the PDF document will be
saved incrementally. Use this method if you are concerned about saving time. If you use this method, any
changes to the document, even deleting annotations, will result in appending to the PDF file.

Incremental saving, which is enabled by default, is the strategy that ComPDFKit uses to ensure saving is as
fast as possible. This strategy always appends changes to the end of the document, and it never deletes
anything. However, even though this is the fastest way to save a document, it does come with the cost of
increasing the file size with each save. You can read more about incremental saving and full saving of PDFs
here.

In most cases, the file size increase is negligible. However, there might be some cases in which you want to
prioritize file size over saving performance. Below you’ll find a strategy to prevent the file size from growing
unnecessarily when saving changes to a document.

To save as a PDF document to path use CPDFDocument.WriteToFilePath(string filePath) , the PDF
document will be saved non-incremental. If you use this method, will rewrite the entire document instead of
appending changes at the end.

3.2 Viewer
CPDFViewer scroll view is a scroll view component that can load and display PDF pages on screen on
demand. It can handle various rendering and scaling operations of PDF pages, and maintain the clarity and
sharpness of PDF pages. CPDFViewer scroll view usually supports multiple different layout modes, such as
vertical scrolling, single page scrolling, and more. These layout modes can be configured according to users'
needs to suit different application scenarios. When using CPDFViewer scroll view to view PDFs, users can
also easily implement various functions such as zooming in and out, rotating, flipping, dragging, adding
bookmarks, etc. It provides a simple way for developers to quickly embed a highly configurable PDF viewer
into any Windows application.

3.2.1 Display Modes

View Mode

CPDFViewer supports a number of view modes, you can use CPDFViewer.ChangeViewMode(ViewMode
newMode) to set View mode values are as follows:

ViewMode::Single : Display one page at a time, swiping left and right to change pages.

ViewMode::SingleContinuous : Display one page at a time, scrolling up and down to change pages.

ViewMode::Double : Display two pages at a time, with odd-numbered pages on left, swiping left and
right to change pages.

ViewMode::DoubleContinuous : Display pages in two columns, with odd-numbered pages on left,
scrolling up and down to change pages.

ViewMode::Book : Display two pages at a time, with odd-numbered pages on right, swiping left and
right to change pages.

ViewMode::BookContinuous : Display pages in two columns, with odd-numbered pages on right,
scrolling up and down to change pages.

Crop Mode

Automatically trim PDF white margins to resize pages. Crop mode can be enabled by setting the page
crop mode to true .

3.2.2 PDF Navigation

Page Navigation

After loading a PDF document, you can programmatically interact with it, which allows you to scroll to
different pages or destinations. All of the interaction APIs are available on CPDFViewer , which is the
core PDF viewer.

To scroll to the specified page, use the function CPDFViewer.GoToPage(int pageIndex) .
To go to the specified destination including a page and a point on the page specified in page
space, use the function CPDFViewer.GoToPage(int pageIndex, Point pagePoint) .

Outlines

PDF outline is a function that creates a directory structure in PDF documents, which allows users to
browse, locate, and navigate to the parts of a document they are interested in more quickly and
conveniently. The outline can be created by nesting, organizing the document content by elements
such as headings, chapters, paragraphs, etc., and adding hyperlinks to each element for easily jumping
to the corresponding position. PDF outline is very useful when reading long documents, saving users'
time and improving reading efficiency.

CPDFViewer.SetCropMode(true);

The outline structure is a tree-like hierarchy, so the function CPDFDocument.GetOutlineRoot() must
be called first to get the root node of the entire outline before accessing the outline. Here, the "root
node" is an abstract object which can only have some child outlines without the next sibling outline and
any data (including outline data, destination data, and operation data).

After the root outline is retrieved, the following functions can be called to access other outlines:

To access the parent outline, use the function CPDFOutline.GetParent() .
To access the child outline, use the function CPDFDocument.GetOutlineList() .
To insert a new outline, use the function CPDFOutline.InsertChildAtIndex(CPDFDocument
document, int index) .
To remove an outline, use the function CPDFOutline.RemoveFromParent(CPDFDocument
document) .
To move an outline, use the function CPDFOutline.MoveChildAtIndex(CPDFDocument document,
CPDFOutline child, int index) .
re

Bookmarks

Since each bookmark is associated with a specific page, it provides the ability to link to a different page
in a document allowing the user to navigate interactively from one part of the document to another.

To access bookmarks, use the function CPDFDocument.GetBookmarkList() .
To access a bookmark for a page, use the function CPDFDocument.BookmarkForPageIndex(int
pageIndex) .
To add a new bookmark, use the function CPDFDocument.AddBookmark(CPDFBookmark
bookmark) .
To remove a bookmark, use the function CPDFDocument.RemoveBookmark(int pageIndex) .

3.2.3 Text Search & Selection

Text Search

ComPDFKit PDF SDK offers developers an API for programmatic full-text search.

There are some optional parameters provided when searching, such as ignoring case, matching whole
words, and other Options parameter settings (It is case-insensitive and does not match whole words by
default).

To search text inside a document, create an instance of CPDFTextSearcher , passing in the loaded
CPDFTextPage via its initializer. Searching can be triggered via calling
CPDFTextSearcher.FindStart(CPDFTextPage textPage, string keyword, C_Search_Options

searchOption,int startIndex) . To do the searching, use function
CPDFTextSearcher.FindNext(CPDFPage page,CPDFTextPage textPage,ref CRect rect,ref

string content,ref int startIndex) .

Before triggering a search, you can configure various search options:

C_Search_Options::Search_Case_Insensitive : Case insensitive.
C_Search_Options::Search_Case_Sensitive : Case sensitive.
C_Search_Options::Search_Match_Whole_Word : Match whole word.

How to get the text area on a page by searching:

Text Selection

PDF text contents are stored in CPDFPage objects which are related to a specific page. CPDFPage class
can be used to retrieve information about text in a PDF page, such as single character, single word, text
content within specified character range or bounds and more.

How to get the text bounds on a page by selection:

void SearchForPage(CPDFPage page,string searchKeywords, C_Search_Options option,ref

List<Rect> rects, ref List<string> strings)

{

 rects = new List<Rect>();
 strings = new List<string>();
 int findIndex = 0;

 CPDFTextPage textPage = page.GetTextPage();
 CPDFTextSearcher searcher = new CPDFTextSearcher();

 if (searcher.FindStart(textPage, searchKeywords, option, 0))
 {
 CRect textRect = new CRect();
 string textContent = "";
 while (searcher.FindNext(page, textPage, ref textRect, ref textContent, ref
findIndex))

 {
 strings.Add(textContent);
 rects.Add(new Rect(textRect.left, textRect.top, textRect.width(),
textRect.height()));

 }
 }
}

void SelectForPage(CPDFPage page, Point fromPoint, Point toPoint, ref List<Rect>

rects, ref string textContent)

{

 CPDFTextPage textPage = page.GetTextPage();
 textContent = textPage.GetSelectText(fromPoint, toPoint);
 rects = textPage.GetCharsRectAtPos(fromPoint, toPoint, new Point(10, 10));
}

3.2.4 Zooming

ComPDFKit PDF SDK provides super zoom out and in to unlock more zoom levels, you can programmatically
interact with it by using the following method.

Page Fit Mode

You can set page fit mode in your CPDFViewer.ChangeFitMode(FitMode newMode) by using.
CPDFViewer supports the following page fit modes:

FitMode::FitWidth : The zoom is set so that the page's width matches the viewer's width.
FitMode::FitHeight : The zoom is set so that the page's height matches the viewer's height.
FitMode::FitSize : The zoom is set so that the entire page is visible without scrolling.
FitMode::FitFree : The viewer's zoom is not adjusted based on the page.

Manual Zooming

You can use CPDFViewer.Zoom(double newZoom) to zoom the current document after setting page fit
mode to FitMode::FitFree .

3.2.5 Themes

Theme color refers to rendering pages in the PDF document with a certain background color to enhance the
visual effect when reading. For example, set the PDF document background to a solid background.

CPDFViewer has four special color modes: dark mode, sepia mode, reseda mode, and custom color mode.

In dark mode, colors are adjusted to improve reading at night or in a poorly-lit environment, in sepia mode,
background color is set to emulate the look of an old book, in reseda mode, light-green background is
displayed to protect your eyes after long-time reading, and in custom color mode, you can set a custom
color for the background color.

Note: Changing the appearance mode will change the PDF rendering style, but it does not modify the PDF on disk.

To set the color mode:

Themes Constant value

Normal color mode Draw_Mode_Normal

Night mode Draw_Mode_Dark

Sepia mode Draw_Mode_Soft

Reseda mode Draw_Mode_Green

Custom color mode Draw_Mode_Custom

1. Find the constant value of the color mode

2. Call CPDFViewer.SetDrawMode(DrawModes drawMode) .

3. If you are using Draw_Mode_Custom , call CPDFViewer.SetDrawMode(DrawModes.Draw_Mode_Custom,
uint customBgColor) to set the background color.

3.2.6 Custom Menu

When viewing a PDF, CPDFViewer will enter the corresponding interaction state according to the right-click
event of mouse. The corresponding menu will be popped up in different interaction states, and you can
perform related operations through the menu options.

The following are examples of the commonly used right-click menus of mouse:

CPDFViewer pdfViewer = new CPDFViewer();

pdfViewer.InitDocument("filePath");

pdfViewer.SetMouseMode(MouseModes.PanTool);

pdfViewer.AnnotCommandHandler += PdfViewer_AnnotCommandHandler;

private void PdfViewer_AnnotCommandHandler(object sender, AnnotCommandArgs e)

{

 switch (e.CommandType)
 {
 case CommandType.Context:
 e.Handle = true;
 e.PopupMenu = new ContextMenu();
 e.PopupMenu.Items.Add(new MenuItem() { Header = "Copy", Command =
ApplicationCommands.Copy, CommandTarget = (UIElement)sender });

 e.PopupMenu.Items.Add(new MenuItem() { Header = "Cut", Command =
ApplicationCommands.Cut, CommandTarget = (UIElement)sender });

 e.PopupMenu.Items.Add(new MenuItem() { Header = "Paste", Command =
ApplicationCommands.Paste, CommandTarget = (UIElement)sender });

 e.PopupMenu.Items.Add(new MenuItem() { Header = "Delete", Command =
ApplicationCommands.Delete, CommandTarget = (UIElement)sender });

 break;
 case CommandType.Copy:
 e.DoCommand();
 break;
 case CommandType.Cut:
 case CommandType.Paste:
 case CommandType.Delete:
 e.DoCommand();
 break;
 default:
 break;
 }
}

3.2.7 Highlight of Form Fields and Hyperlinks

The highlight feature of PDF form fields can help users quickly locate and fill out forms, which greatly
improves work efficiency in scenarios where a large number of forms need to be filled out. At the same
time, the highlight feature of hyperlink annotations allows users to add hyperlinks and annotations to
important information in PDF documents, making it more convenient for other users to quickly find and
understand the information, and also improving the readability and interactivity of PDF documents. these
features make it easier and more efficient for users to use PDF documents for work and study. These
features enable users to use PDF documents more conveniently and efficiently for work and study.

Use CPDFViewer.SetFormFieldHighlight(bool isHighlight) to set whether to highlight form
fields.
Use CPDFViewer.SetShowLink(bool showLink) to set whether to highlight hyperlinks.

3.2.8 Get the Selected Text

ComPDFKit PDF SDK provides the API to get the currently selected text CPDFViewer.GetSelectedText()
from the CPDFViewer .

3.3 Annotations
PDF annotations refer to adding, editing, and sharing various multimedia contents on PDF documents, such
as note, link, free text, shapes, markup, stamps, ink, sound, etc. By adding annotations, users can more
conveniently mark, annotate, revise, comment, sign, and share PDF documents.

PDF annotations are very useful for document communication, review, and revision, and can improve work
efficiency and document quality. At the same time, ComPDFKit PDF SDK provides different annotation
features and tools, and developers can choose suitable features and tools according to their needs.

3.3.1 Annotation Types

ComPDFKit PDF SDK supports all common annotation types:

Type Description Class

Note

Add notes to PDF documents to mark important
text, tables, images, and more, making it
convenient for you and other readers to read
and understand.

CPDFTextAnnotation

Link
Add hyperlinks to PDF documents to link to web
pages, emails, or specific locations in other
documents.

CPDFLinkAnnotation

Free Text Add text and comments to PDF documents. CPDFFreetextAnnotation

Shapes: Square,
Circle, and Line

Add graphic elements like shapes, lines, arrows,
or images to PDF documents to emphasize or
illustrate certain content.

CPDFSquareAnnotation

CPDFCircleAnnotation

CPDFLineAnnotation

Markup:
Highlight,
Underline,
Strikeout, and
Squiggly

Add markups to PDF documents to highlight,
emphasize, or illustrate specific content, such as
important paragraphs, lines or words, keywords
or tables, etc.

CPDFHighlightAnnotation

CPDFUnderlineAnnotation

CPDFStrikeoutAnnotation

CPDFSquigglyAnnotation

Stamp

Add stamps to PDF documents to identify and
verify the source and authenticity of documents,
using the formats of numbers or images to
represent signers.

CPDFStampAnnotation

Ink

Draw the brush trails freely anywhere in PDF
documents, making it easy for users to add
doodles, charts, sketches, signatures, or other
custom content.

CPDFInkAnnotation

Sound
Add sound and other multimedia content to PDF
documents to enrich the presentation.

CPDFSoundAnnotation

ComPDFKit PDF SDK supports most annotation types defined in PDF Reference and provides APIs for
annotation creation, properties access and modification, appearance setting, and drawing. These standard
annotations can be read and written by many apps, such as Adobe Acrobat and Apple Preview.

3.3.2 Access Annotations

CPDFAnnotation is the base class for all annotations. It has no practical use and cannot instantiate objects,
only subclasses such as CPDFCircleAnnotation and CPDFTextAnnotation are useful. Any unknown or
unsupported annotations will be filtered out when parsing a PDF.

To access the list of annotations by using the following method:

The elements of the array will most likely be typed to subclasses of the CPDFAnnotation class.

3.3.3 Create & Edit Annotations

ComPDFKit PDF SDK includes a wide variety of standard annotations, and each of them is added to the
project in a similar way.

Note

Add a sticky note (text annotation) to a PDF Document page by using the following method.

Link

Add a hyperlink or intra-document link annotation to a PDF Document page by using the following
method.

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

int pageCount = document.PageCount;

if(pageCount>0)

{

 for(int pageIndex = 0;pageIndex < pageCount;pageIndex++)
 {
 List<CPDFAnnotation>annotations =
document.PageAtIndex(pageIndex).GetAnnotations();

 if(annotations != null && annotations.Count != 0)
 {
 foreach(CPDFAnnotation annotation in annotations)
 {
 // do something
 }
 }
 }
}

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

CPDFPage page = document.PageAtIndex(0);

CPDFTextAnnotation text = page.CreateAnnot(C_ANNOTATION_TYPE.C_ANNOTATION_TEXT) as

CPDFTextAnnotation;

text.SetContent("test");

text.SetRect(new CRect(0,50,50,0));

byte[] color = {255,0,0};

text.SetColor(color);

text.UpdateAp();

Free Text

Add a free text annotation to a PDF Document page by using the following method.

Shapes

Add a shape annotation to a PDF Document page by using the following method.

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

CPDFPage page = document.PageAtIndex(0);

CPDFDestination dest = new CPDFDestination();

CPDFLinkAnnotation link = page.CreateAnnot(C_ANNOTATION_TYPE.C_ANNOTATION_LINK) as

CPDFLinkAnnotation;

link.SetRect(new CRect(0,50,50,0));

link.SetDestination(document,dest);

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

CPDFPage page = document.PageAtIndex(0);

CPDFFreeTextAnnotation freeText =

page.CreateAnnot(C_ANNOTATION_TYPE.C_ANNOTATION_FREETEXT) as

CPDFFreeTextAnnotation;

freeText.SetContent("test");

freeText.SetRect(new CRect(0, 50, 50, 0));

CTextAttribute textAttribute = new CTextAttribute();

textAttribute.FontName = "Helvetica";

textAttribute.FontSize = 12;

byte[] fontColor = { 255, 0, 0 };

textAttribute.FontColor = fontColor;

freeText.SetFreetextDa(textAttribute);

freeText.SetFreetextAlignment(C_TEXT_ALIGNMENT.ALIGNMENT_LEFT);

freeText.UpdateAp();

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

CPDFPage page = document.PageAtIndex(0);

float[] dashArray = {2,1};

byte[] lineColor = {255,0,0};

byte[] bgColor = {0,255,0};

// Square.

CPDFSquareAnnotation square =

page.CreateAnnot(C_ANNOTATION_TYPE.C_ANNOTATION_SQUARE) as CPDFSquareAnnotation;
square.SetRect(new CRect(0,50,50,0));

square.SetLineColor(lineColor);

square.SetBgColor(bgColor);

square.SetTransparency(120);

square.SetLineWidth(1);

Note: CPDFLineAnnotation properties (Points) point is specified in page-space coordinates. Page space
is a coordinate system with the origin at the lower-left corner of the current page.

For each line, users can choose separate styles for the start and the end. The styles are defined by the
C_LINE_TYPE enumeration.

square.SetBorderStyle(C_BORDER_STYLE.BS_DASHDED,dashArray);

square.UpdateAp();

// Circle.

CPDFCircleAnnotation circle =

page.CreateAnnot(C_ANNOTATION_TYPE.C_ANNOTATION_CIRCLE) as CPDFCircleAnnotation;

circle.SetRect(new CRect(0,50,50,0));

circle.SetLineColor(lineColor);

circle.SetBgColor(bgColor);

circle.SetTransparency(120);

circle.SetLineWidth(1);

circle.SetBorderStyle(C_BORDER_STYLE.BS_DASHDED,dashArray);

circle.UpdateAp();

// Line.

CPDFLineAnnotation line = page.CreateAnnot(C_ANNOTATION_TYPE.C_ANNOTATION_LINE) as

CPDFLineAnnotation;

line.SetLinePoints(new CPoint(0,0),new CPoint(50,50));

line.SetLineType(C_LINE_TYPE.LINETYPE_NONE,C_LINE_TYPE.LINETYPE_CLOSEDARROW);

line.SetLineColor(lineColor);

line.SetTransparency(120);

line.SetLineWidth(1);

line.SetBorderStyle(C_BORDER_STYLE.BS_DASHDED,dashArray);

line.UpdateAp();

Name Description

LINETYPE_UNKNOWN Non-standard or invalid ending.

LINETYPE_NONE No special line ending.

LINETYPE_ARROW
Two short lines meeting in an acute angle to form an open
arrowhead.

LINETYPE_CLOSEDARROW

Two short lines meeting in an acute angle as in the
LINETYPE_ARROW style and connected by a third line to form a
triangular closed arrowhead filled with the annotation's interior
color.

LINETYPE_SQUARE A square filled with the annotation's interior color.

LINETYPE_CIRCLE A circle filled with the annotation's interior color.

LINETYPE_DIAMOND A diamond shape filled with the annotation's interior color.

LINETYPE_BUTT A short line at the endpoint perpendicular to the line itself.

LINETYPE_ROPENARROW Two short lines in the reverse direction from LINETYPE_ARROW.

LINETYPE_RCLOSEDARROW
A triangular closed arrowhead in the reverse direction from
LINETYPE_CLOSEDARROW.

LINETYPE_SLASH
A short line at the endpoint approximately 30 degrees clockwise
from perpendicular to the line itself.

Markup

Add a highlight annotation to a PDF Document page by using the following method, and add other
markup annotations in similar way.

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

CPDFPage page = document.PageAtIndex(0);

CPDFTextPage textPage = page.GetTextPage();

List<Rect> rectList = textPage.GetCharsRectAtPos(new Point(0,0),new

Point(500,500),new Point(10,10));

List<CRect> cRectList = new List<CRect>();

foreach(var rect in rectList)

{

 cRectList.Add(new CRect((float)rect.Left, (float)rect.Top, (float)rect.Right,
(float)rect.Bottom));

}

CPDFHighlightAnnotation highlight =

page.CreateAnnot(C_ANNOTATION_TYPE.C_ANNOTATION_HIGHLIGHT) as

CPDFHighlightAnnotation;

byte[]color = {0,255,0};

Note: Many annotation types are defined as markup annotations because they are used primarily to mark
up PDF documents. Markup annotations may be divided into the following: highlight, underline, strikeout,
and squiggly.

Stamp

Add standard, text, and image stamps to a PDF document page by using the following method.

Ink

Add an ink annotation to a PDF Document page by using the following method.

highlight.SetColor(color);

highlight.SetTransparency(120);

highlight.SetQuardRects(cRectList);

highlight.UpdateAp();

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

CPDFPage page = document.PageAtIndex(0);

// Standard.

CPDFStampAnnotation standard =

page.CreateAnnot(C_ANNOTATION_TYPE.C_ANNOTATION_STAMP) as CPDFStampAnnotation;

standard.SetStandardStamp("Approved");

standard.UpdateAp();

// Text.

CPDFStampAnnotation text = page.CreateAnnot(C_ANNOTATION_TYPE.C_ANNOTATION_STAMP)

as CPDFStampAnnotation; ;

text.SetTextStamp("test", "detail text", C_TEXTSTAMP_SHAPE.TEXTSTAMP_LEFT_TRIANGLE,

C_TEXTSTAMP_COLOR.TEXTSTAMP_RED);

text.UpdateAp();

// Image.

CPDFStampAnnotation image = page.CreateAnnot(C_ANNOTATION_TYPE.C_ANNOTATION_STAMP)

as CPDFStampAnnotation; ;

byte[] imageData = new byte[500 * 500];

image.SetImageStamp(imageData, 500, 500);

image.UpdateAp();

Sound

Add a sound annotation to a PDF Document page by using the following method.

ComPDFKit PDF SDK provides APIs to modify the color appearance of properties in annotations, only the
corresponding RGB values will be used, and additional values are required for transparency to take effect.
The following APIs will introduce how to set the color values and transparency of related properties.

Set the draw color of note:

Set the stroke color and fill color of free text (opacity controls the transparency of both the stroke and fill
color of free text):

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

CPDFPage page = document.PageAtIndex(0);

CPDFInkAnnotation ink = page.CreateAnnot(C_ANNOTATION_TYPE.C_ANNOTATION_INK) as

CPDFInkAnnotation;

List<List<CPoint>> pointList = new List<List<CPoint>>();

ink.SetInkPath(pointList);

ink.SetInkRect(new CRect(0, 50, 50, 0));

byte[] color = { 0, 255, 0 };

ink.SetInkColor(color);

ink.SetTransparency(120);

ink.SetThickness(4);

ink.UpdateAp();

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

CPDFPage page = document.PageAtIndex(0);

CPDFSoundAnnotation sound = page.CreateAnnot(C_ANNOTATION_TYPE.C_ANNOTATION_SOUND)

as CPDFSoundAnnotation;

sound.SetRect(new CRect(0, 50, 50, 0));

sound.SetSoundPath("soundFilePath");

sound.UpdateAp();

// Property to get / Method to set the opacity for the note annotation.

public byte Transparency { get; private set; }

public override bool SetTransparency(byte transparency);

// Property to get / Method to set color for the note annotation.

public byte[] Color { get; private set; }

public bool SetColor(byte[] color);

Set the stroke color and fill color of shapes (square, circle, and line):

Set the color of markup (highlight, underline, strikeout, and squiggly):

3.3.4 Delete Annotations

The code below shows how to remove an annotation from a document.

// Property to get / Method to set the opacity for the freetext annotation.

public byte Transparency { get; private set; }

public override bool SetTransparency(byte transparency);

// Property to get / Method to set the line color for the free text annotation.

public byte[] LineColor { get; private set; }

public bool SetLineColor(byte[] lineColor);

// Property to get / Method to set and clear the background color for the free text

annotation.

public byte[] BgColor { get; private set; }

public bool SetBgColor(byte[] bgColor)

public bool ClearBgColor();

// Property to get / Method to set the opacity for the shapes annotation.

public byte Transparency { get; private set; }

public override bool SetTransparency(byte transparency);

// Property to get / Method to set the line color for the shapes annotation.

public byte[] LineColor { get; private set; }

public bool SetLineColor(byte[] lineColor);

// Property to get / Method to set and clear the fill color for the shapes annotation.

public byte[] BgColor { get; private set; }

public bool SetBgColor(byte[] bgColor);

public bool ClearBgColor();

// Property to get / Method to set the opacity for the markup annotation.

public byte Transparency { get; private set; }

public override bool SetTransparency(byte transparency);

// Property to get / Method to set color for the markup annotation.

public byte[] Color { get; private set; }

public bool SetColor(byte[] color);

3.3.5 Annotation Appearances

Annotations may contain properties that describe their appearance — such as annotation color or shape.
However, these don’t guarantee that the annotation will be displayed the same in different PDF viewers. To
solve this problem, each annotation can define an appearance stream that should be used for rendering the
annotation.

When you modify the annotation properties, you must call the UpdateAp() method in the
CPDFAnnotation class.

3.3.6 Import & Export Annotations

XFDF is an XML-based standard from Adobe XFDF for encoding annotations. An XFDF file will contain a
snapshot of a PDF document’s annotations and forms. It’s compatible with Adobe Acrobat and several other
third-party frameworks. ComPDFKit supports both reading and writing XFDF.

Import from XFDF

You can import annotations and form fields from an XFDF file to a document like so:

Export to XFDF

You can export annotations and form fields from a document to an XFDF file like so:

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

CPDFPage page = document.PageAtIndex(0);

List<CPDFAnnotation>annotList = page.GetAnnotations();

annotList[0].RemoveAnnot();

- bool UpdateAp();

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

document.ImportAnnotaitonFromXFDFPath("xfdfPath","tempPath");

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

document.ExportAnnotationToXFDFPath("xfdfPath","tempPath");

Type Description Annotation Object

Check Box Select one or more options. CPDFCheckBoxWidget

Radio
Button

Select one option from the predefined options. CPDFRadioButtonWidget

Push
Button

Create custom buttons on the PDF document that will
perform an action when pressed.

CPDFPushButtonWidget

List Box
Select one or more options from the predefined options,
similar to the Combo Box.

CPDFListBoxWidget

Combo
Boxes

Select one option from a drop-down list of available text
options.

CPDFComboBoxWidget

Text Enter text content such as name, address, email, etc. CPDFTextWidget

Signatures Sign a PDF document digitally or electronically. CPDFSignatureWidget

3.3.7 Flatten Annotations

Annotation flattening refers to the operation that changes annotations into a static area that is part of the
PDF document, just like the other text and images in the document. When flattening an annotation, the
annotation is removed from the document, while its visual representation is kept intact. A flattened
annotation is visible but is non-editable by your users or by your app.

Annotations in a PDF document can be flattened in the ComPDFKit by saving the document and choosing
the Flatten mode.

3.4 Forms
A PDF document may contain any number of form fields that allow a user to enter information on a PDF
page. An interactive form (sometimes referred to as an AcroForm) is a collection of fields for gathering
information interactively from the user. Under the hood, PDF form fields are a type of PDF annotation called
widget annotations.

ComPDFKit PDF SDK fully supports reading, filling, and editing PDF forms and provides utility methods to
make working with forms simple and efficient.

3.4.1 Supported Form Fields

ComPDFKit PDF SDK supports all form types specified by the PDF specification, including:

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

document.WriteFlattenToFilePath("savePath");

CPDFWidget is the base class for all form fields and also a subclass of CPDFAnnotation . Its subclasses such
as (CPDFCheckBoxWidget , CPDFRadioButtonWidget , CPDFPushButtonWidget , CPDFListBoxWidget ,
CPDFComboBoxWidget , CPDFTextWidget , CPDFSignatureWidget) are the most important. Any unknown
or unsupported form fields will be filtered out when parsing a PDF.

3.4.2 Create & Edit Form Fields

Creating form fields works the same as adding any other annotation, as can be seen in the guides for
programmatically creating annotations.

3.4.3 Fill Form Fields

ComPDFKit PDF SDK fully supports the AcroForm standard, and forms can be viewed and filled inside the
CPDFView .

To fill in a text form element, tap it and then type text using either the onscreen keyboard or an attached
hardware keyboard. Then tap either the Done button above the keyboard or any blank area on the page to
deselect the form element, which will commit the changes.

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

CPDFPage page = document.PageAtIndex(0);

CPDFListBoxWidget listbox = page.CreateWidget(C_WIDGET_TYPE.WIDGET_LISTBOX) as

CPDFListBoxWidget;

listbox.AddOptionItem(0, "1", "a");

listbox.AddOptionItem(1, "2", "b");

To set the value of a choice form element (a list or combo box), tap the element, and then select an item
from the list, or type in a custom item.

To enable or disable a checkbox form element, tap it to toggle its state. And you can set the selection of a
radio button form element by tapping the desired item.

While a form element is selected (focused), the left and right arrows above the keyboard may be used to
move the focus sequentially between all the form elements on the page.

The following example demonstrates how form fields can be queried and filled with code:

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

CPDFPage page = document.PageAtIndex(0);

List<CPDFAnnotation> annotList = page.GetAnnotations();

foreach (CPDFAnnotation annot in annotList)

{

 if (annot.Type==C_ANNOTATION_TYPE.C_ANNOTATION_WIDGET)
 {
 CPDFWidget widget = annot as CPDFWidget;
 switch(widget.WidgeType)
 {
 case C_WIDGET_TYPE.WIDGET_TEXTFIELD:
 {
 CPDFTextWidget text = widget as CPDFTextWidget;
 text.SetText("test");
 text.UpdateFormAp();
 }
 break;

3.4.4 Delete Form Fields

Deleting form fields works the same as deleting annotations, and check deleting annotations in the guides
to see more.

3.4.5 Flatten PDF Forms

PDF Form flattening works the same as annotation flattening, refer to annotation flattening in the guides to
see more.

3.5 Document Editor
ComPDFKit PDF SDK provides a wide range of APIs for document editing operations. These are mostly
available through the CPDFDocument and CPDFPage classes.

ComPDFKit PDF SDK benefits include:

PDF Manipulation

Split pages
Merge pages
Extract pages

 case C_WIDGET_TYPE.WIDGET_RADIOBUTTON:
 {
 CPDFRadioButtonWidget radio = widget as CPDFRadioButtonWidget;
 radio.SetChecked(true);
 radio.UpdateFormAp();
 }
 break;

 case C_WIDGET_TYPE.WIDGET_LISTBOX:
 {
 CPDFListBoxWidget listBox = widget as CPDFListBoxWidget;
 listBox.SelectItem(0);
 listBox.UpdateFormAp();
 }
 break;

 default:
 break;
 }
 }
}

Page Edit

Delete pages
Insert pages (choose from another document, a blank page, or an image)
Move pages
Rotate pages
Exchange pages
Replace pages
Crop pages

Access Document Information

Extract Images

3.5.1 PDF Manipulation

Split Pages

CPDFDocument can extract range of pages from one document and put them into another document.
If you run this operation multiple times with different page indexes, you can effectively split a PDF into
as many documents as you require.

To split a PDF document into multiple pages, please use the following method:

1. Create a blank PDF document.

2. Open a PDF document that contains the pages you want to split.

3. Extract specific pages from the PDF document that you just opened, and import them into the
blank PDF document.

4. Save the document.

Merge Pages

ComPDFKit PDF SDK allows you to instantiate multiple CPDFDocument , and you can use the
CPDFDocument API to merge multiple PDF files into a single one.

To merge PDF documents into one file, please use the following method:

1. Create a blank PDF document.

CPDFDocument document = CPDFDocument.CreateDocument();

CPDFDocument document1 = CPDFDocument.InitWithFilePath("filePath");

// Pages that need to be split, e.g. 2 to 5 pages

document.ImportPagesAtIndex(document1,"2-5",0);

// Save path

document.WriteToFilePath("savePath");

2. Open the PDF documents that contain the pages you want to merge.

3. Merge all the pages from the documents you just opened, and import them into the blank PDF
document.

4. Save the document.

The sample code above allows you to merge all the pages from the two documents. If you’re looking to
merge or add specific pages from one document to another, you can use pageRange of
CPDFDocument.ImportPagesAtIndex(CPDFDocument otherDocument, string pageRange,int

pageIndex) to set specific pages.

Extract Pages

CPDFDocument can extract range of pages from one document and put them into a blank document. If
you run this operation, you can effectively extract a PDF as you require. Refer to split pages for more
details.

3.5.2 Page Edit

Page manipulation is the ability to perform changes to pages.

To delete pages from a PDF document, use the function CPDFDocument.RemovePages(int[]
pageIndexs) .

To insert a blank page into a PDF document, use the function CPDFDocument.InsertPage(int
pageIndex, double width, double height, string imagePath="") .

To insert an image as an entire page into a PDF document, use the function
CPDFDocument.InsertPage(int pageIndex, double width, double height, string imagePath) .

To insert a specific page from one document to another, use the function
CPDFDocument.ImportPagesAtIndex(CPDFDocument otherDocument, string pageRange,int

pageIndex) .

CPDFDocument document = CPDFDocument.CreateDocument();

// File path

CPDFDocument document1 = CPDFDocument.InitWithFilePath("filePath");

// File path

CPDFDocument document2 = CPDFDocument.InitWithFilePath("filePath2");

document.ImportPagesAtIndex(document1,"1-10",document.PageCount);

document.ImportPagesAtIndex(document2,"1-10",document.PageCount);

// Save path

document.WriteToFilePath("savePath");

To move a page to a new location, use the function CPDFDocument.MovePage(int startIndex, int
endIndex) .

To exchange the location of two document pages, use the function CPDFDocument.ExchangePage(int
firstIndex, int secondIndex) .

To replace original document pages with new pages from a different document, use the function
CPDFDocument.RemovePages(int[] pageIndexs) and
CPDFDocument.ImportPagesAtIndex(CPDFDocument otherDocument, string pageRange,int

pageIndex) .

To rotate a page in a PDF document, refer to the following method in the CPDFPage class.

3.5.3 Document Information

To access document information, refer to the following method in the CPDFDocument class.

3.5.4 Extract Images

To extract images from a PDF document, use the function CPDFDocument.ExtractImage(string
pageRange, string filePath) .

The code below will grab all images from the first page of the given PDF document:

3.6 Security

// Rotation on a page. Must be 0, 1, 2, or 3(negative rotations will be

"normalized" to one of 0, 1, 2, or 3).

// Some PDFs have an inherent rotation and so -[rotation] may be non-zero when a

PDF is first opened.

CPDFPage.RotatePage(int pageIndex, int rotation).

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

CPDFInfo info = document.GetInfo();

string title = info.Title; //document title.
string author = info.Author; //document author.
string subject = info.Subject; //document subject.
string creator = info.Creator; //name of app that created document.
string producer = info.Producer; //name of app that produced PDF data.
string keywords = info.Keywords; //document keywords.
string creationDate = info.CreationDate; //document creation date.

string modificationDate = info.ModificationDate; //last document modification date.

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

document.ExtractImage("1-10", "saveFolderPath");

3.6 Security
ComPDFKit PDF SDK protects the content of PDF documents from unauthorized access like copying or
printing. It offers developers a way to encrypt and decrypt PDFs, add a password, insert a watermark, and
more. For controlling document security in ComPDFKit PDF SDK, security handlers perform user
authorization and set various permissions over PDF documents.

3.6.1 PDF Permission

A PDF file can have two different password sets, a permissions or owner password and an open or user
password.

A PDF user password is used to secure access to PDF documents and requires the correct password to view
the content. It is commonly used to protect confidential reports and financial documents. The PDF reader
also displays document rights such as copying and printing permissions when a user password is set. It is
different from the owner's password which controls full access to the document, including modifying
content and adding comments.

A PDF permission password, also called an owner or master password, protects the permissions of a PDF
document. It restricts actions such as making changes or comments and allows control over copying,
printing, and modification. Permission passwords ensure integrity and allow management of advanced
editing and security settings. They protect the user's copyright and differ from user passwords.

Description and permissions description about PDF user password and permissions password:

When the document does not have a permission password nor a user password, the permission is
PermissionsNone .
When there is a permission password without a user password, the permission is PermissionsNone
before the permission password is entered, and the correct permission is PermissionsOwner after
input.
When there is no permission password and there is a user password, the permission is
PermissionsNone before the password is entered, and the correct permission is PermissionsUser
after the password is entered.
When there is a permission password and an open password, the permission is PermissionsNone
before any user password is entered, the correct permission is PermissionsOwner after entering, and
the correct open password permission is PermissionsUser .

When the permission password is the same as the user password, the permission becomes
PermissionsOwner after entering the password.

If you want to open a document with a user password programmatically, you can use the
CPDFDocument.UnlockWithPassword() API.

The PDF specification defines the permissions are shown below:

Printing — Print the document.
High-quality printing — Print the document in high fidelity.
Copying — Copy content from the document.
Document changes — Modify the document contents except for document attributes.

Document assembly — Insert, delete, and rotate pages.
Commenting — Create or modify document annotations, including form field entries.
Form field entry — Modify form field entries even if you can't edit document annotations.

To access the corresponding permissions, use the function CPDFDocument.GetPermissionsInfo() .

Encrypt

/// <summary>

/// A Boolean value indicating whether the document allows printing.

/// </summary>

public bool AllowsPrinting { get; set; }

/// <summary>

/// A Boolean value indicating whether the document allows printing in high fidelity.

/// </summary>

public bool AllowsHighQualityPrinting { get; set; }

/// <summary>

/// A Boolean value indicating whether the document allows copying of content to the

Pasteboard.

/// </summary>

public bool AllowsCopying { get; set; }

/// <summary>

/// A Boolean value indicating whether you can modify the document contents except for

document attributes.

/// </summary>

public bool AllowsDocumentChanges { get; set; }

/// <summary>

/// A Boolean value indicating whether you can manage a document by inserting,

deleting, and rotating pages.

/// </summary>

public bool AllowsDocumentAssembly { get; set; }

/// <summary>

/// A Boolean value indicating whether you can create or modify document annotations,

including form field entries.

/// </summary>

public bool AllowsCommenting { get; set; }

/// <summary>

/// A Boolean value indicating whether you can modify form field entries even if you

can't edit document annotations.

/// </summary>

public bool AllowsFormFieldEntry { get; set; }

ComPDFKit’s CPDFDocument API can generate a password-protected document. You can use
CPDFDocument to create a new password-protected PDF document on disk based on a current
document. The user password prevents users from viewing the PDF. If you specify it, you also need to
specify an owner password.

If the encryption level is set to CPDFDocumentEncryptionLevelNoEncryptAlgo , it is equivalent to
encrypting with the RC4 algorithm; if the document encryption level obtained is
CPDFDocumentNoEncryptAlgo , it means that the document is not encrypted.

Support for 128 and 256 bit AES (Advanced Encryption Standard) encryption.

For example, you can set the encrypt level to AES 256 and configure a 256-bit owner password and the
“printing” permission when saving a document to make sure that users who don’t know that owner
password can only print the document, but not modify it.

Decrypt

ComPDFKit PDF SDK fully supports the reading of secured and encrypted PDF documents.

To check whether a document requires a password:

To read a PDF document with password protection, use the function
CPDFDocument.UnlockWithPassword(string password) . If the password is correct, this method
returns true . Once unlocked, you cannot use this function to relock the document.

To remove PDF security, call the CPDFDocument.Decrypt(string filePath) method:

public enum CPDFDocumentEncryptionLevel

{

 CPDFDocumentRC4,
 CPDFDocumentAES128,
 CPDFDocumentAES256,
 CPDFDocumentNoEncryptAlgo
}

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

CPDFPermissionsInfo permission = new CPDFPermissionsInfo();

permission.AllowsPrinting = true;

CPDFDocumentEncryptAlgo algorithm = CPDFDocumentEncryptAlgo.CPDFDocumentAES256;

document.Encrypt("UserPassword", "ownerPassword", permission,algorithm);

document.WriteToFilePath("savePath");c

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

if(document != null && document.ErrorType ==

CPDFDocumentError.CPDFDocumentPasswordError)

{

 // Password required
}

3.6.2 Background

The background of a PDF document can be provided with a background image or color that is applied to the
entire page of the document. In some cases, the background can use brand-related elements such as a
company logo or trademark to enhance the brand image. In addition, another reason for applying a
background to a PDF document is to improve readability, especially if the document has little content and
the pages appear empty. In these cases, applying some background colors and images can make the page
more appealing and easy to read. In addition, highlighting the background of editable areas in a PDF form
design can make the form more intuitive to use and increase the efficiency of the user filling out the form.
And ensure that the same look and formatting are maintained across multiple platforms and devices.

You can use CPDFDocument to get the CPDFBackground object, and use the API in CPDFBackground to set
the background image or color, etc.

The following example shows you how to set the background of the first three pages of a document to a
cloth-covered black background:

The following example shows you how to set the background of the first three pages of a document to a
specified image:

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

document.Decrypt("savePath");

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

CPDFBackground background = document.GetBackground();

background.SetBackgroundType(C_Background_Type.BG_TYPE_COLOR);

byte[] color = { 0, 0, 0 };

background.SetColor(color);

background.SetOpacity(255);

background.SetScale(1);

background.SetRotation(0);

background.SetHorizalign(C_Background_Horizalign.BG_HORIZALIGN_CENTER);

background.SetVertalign(C_Background_Vertalign.BG_VERTALIGN_CENTER);

background.SetXOffset(0);
background.SetYOffset(0);
background.SetPages("1-3");

background.Update();

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

CPDFBackground background = document.GetBackground();

background.SetBackgroundType(C_Background_Type.BG_TYPE_IMAGE);

int imageWidth = 100;

int imageHeight = 100;

Note: Adding a background can only be done once. Each call to CPDFBackground.Update() will cover the
previous background data.

3.6.3 Page Header and Footer

To add headers and footers, ComPDFKit provides an API to add customized headers and footers on the
top and bottom of each page in a PDF document.

To remove headers and footers, ComPDFKit provides an API to remove existing headers and footers
from a page.

To manage the position of headers and footers, ComPDFKit provides APIs to help developers change
the position and margins of headers and footers to suit the size and layout of the page.

byte[] image = new byte[imageWidth*imageHeight];

background.SetImage(image,imageWidth,imageHeight,C_Scale_Type.center);

background.SetOpacity(255);

background.SetScale(1);

background.SetRotation(0);
background.SetHorizalign(C_Background_Horizalign.BG_HORIZALIGN_CENTER);

background.SetVertalign(C_Background_Vertalign.BG_VERTALIGN_CENTER);
background.SetXOffset(0);
background.SetYOffset(0);
background.SetPages("1-3");

background.Update();

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

CPDFHeaderFooter headerFooter = document.GetHeaderFooter();

headerFooter.SetText(0, @"<<#3#5#Prefix-#-Suffix>>");

byte[] color = { 255, 0, 0 };

headerFooter.SetTextColor(0, color);

headerFooter.SetFontSize(0, 14);

headerFooter.SetPages("1-3");

headerFooter.Update();

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

CPDFHeaderFooter headerFooter = document.GetHeaderFooter();

headerFooter.Clear();

// Method to get the margins of the header & footer.

CPDFHeaderFooter.GetMargin();

// Method to set the margins of the header & footer.

CPDFHeaderFooter.SetMargin(float[] margins);

Supporting multiple header and footer types, ComPDFKit provides API support for various types of
headers and footers, such as simple text, page index.

index : Instructions for adding the position of the header and footer: 0 for top left, 1 for top center, 2 for
top right, 3 for bottom left, 4 for bottom center, and 5 for bottom right.

text : The regular expressions that Text supports special formats are: <<\d+,\d+>>|<<\d+>>|<<\d+,>>

<<i>>: 'i' is the starting value of the page number.
<<i,f>>: 'i' is the starting value of the page number, and 'f' is the number of digits in the page number, if
the actual page number is not enough, it will be automatically filled with 0 in front.

 eg: When text is set to "<<1,2>> page", the text displayed on the first page is "01 page".

The following example shows you how to add text as a page index (1 of n) with the start page 5, the font size
14, and the red lower-middle footer.

Note: Adding a header or footer can only be done once. Each call to CPDFHeaderFooter.Update() will cover
the previous data.

3.6.4 Bates Number

To add Bates numbers, ComPDFKit provides an API to add customized Bates numbers on the top and
bottom of each page in a PDF document.

// Gets the text of the header & footer at the specified index.

CPDFHeaderFooter.GetText(int index)

// Sets the text of the header & footer at the specified index.

CPDFHeaderFooter.SetText(int index,string text)

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

CPDFHeaderFooter headerFooter = document.GetBates();

headerFooter.SetText(4, @"<<#3#5#Prefix-#-Suffix>>");

byte[] color = { 255, 0, 0 };

headerFooter.SetTextColor(4, color);

headerFooter.SetFontSize(4, 14);

headerFooter.Update();

To remove Bates numbers , ComPDFKit provides an API to remove existing Bates numbers from the
page.

To manage the position of the Bates numbers, ComPDFKit provides an API to help developers change
the position and margins of the Bates numbers to suit the size and layout of the page.

Support multiple types of Bates numbers, ComPDFKit provides API support for a variety of types of
Bates numbers, such as simple text, page index.

index : Add the position of the Bates numbers: 0 for top left, 1 for top center, 2 for top right, 3 for bottom
left, 4 for bottom center, and 5 for bottom right.

text : The regular expressions that Text supports special formats are: <<#\d+#\d+#{0,1}[^#]#{0,1}[^#]>>

The first # is followed by the minimum number of digits in the page number. If the number of page
digits is not enough, 0 is added in front.
The second # is followed by the starting value of the page number.
The third # is followed by the Bates prefix.
The fourth # is followed by the Bates suffix.

eg: When text is set to "front<<#3#1#ab#cd>>back", the text displayed on the first page is
"frontab001cdback".

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

CPDFBates bates = document.GetBates();

bates.SetText(0, @"<<#3#5#Prefix-#-Suffix>>");

byte[] color = { 255, 0, 0 };

bates.SetTextColor(0, color);

bates.SetFontSize(0,14);

bates.SetPages("0-" + (document.PageCount - 1));

bates.Update();

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

CPDFBates bates = document.GetBates();

bates.Clear();

// Method to get the margins of the bates.

CPDFBates.GetMargin();

// Method to set the margins of the bates.

CPDFBates.SetMargin(float[] margins);

// Get the text of the header & footer at the specified index.

CPDFBates.GetText(int index)

// Set the text of the header & footer at the specified index.

CPDFBates.SetText(int index,string text)

The following example shows you how to add text as a Bates number with the prefix "Prefix-", the suffix "-
Suffix", the start page of 5, the bit count of 3, the font size of 14, and the red lower middle footer.

Note: Adding a Bates number can only be done once. Each call to CPDFBates.Update() will cover the last
Bates number.

3.7 Redaction
Redaction is the process of removing images, text, and vector graphics from a PDF page. This not only
involves obscuring the content, but also removing the data in the document within the specified area.

Redaction typically involves removing sensitive content within documents for safe distribution to courts,
patent and government institutions, the media, customers, vendors, or any other audience with restricted
access to the content. Redaction is a two-step process.

First, redaction annotations have to be created in the areas that should be redacted. This step won’t
remove any content from the document yet; it just marks regions for redaction.
Second, to actually remove the content, the redaction annotations need to be applied. In this step, the
page content within the region of the redaction annotations is irreversibly removed.

This means that the actual removal of content happens only after redaction annotations are applied to the
document. Before applying, the redaction annotations can be edited and removed the same as any other
annotations.

Redacting PDFs programmatically:

Creating Redactions Programmatically

You can create redactions programmatically via CPDFRedactAnnotation . Use the SetQuardRects or
SetRect method to set the areas that should be covered by the redaction annotation.

You also have a few customization options for what a redaction should look like, both in its marked
state, which is when the redaction has been created but not yet applied, and in its redacted state,
which is when the redaction has been applied. It is impossible to change the appearance once a
redaction has been applied since the redaction annotation will be removed from the document in the
process of applying the redaction.

This is how to create a redaction annotation that covers the specified region on the first page of a
document:

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

CPDFBates bates = document.GetBates();

bates.SetText(4, @"<<#3#5#Prefix-#-Suffix>>");

byte[] color = { 255, 0, 0 };

bates.SetTextColor(4, color);

bates.SetFontSize(4, 14);

bates.Update();

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

Applying Redactions Programmatically

3.8 Watermark
A PDF watermark is an element such as a backward layer of transparent text or image added to a PDF
document to maintain confidentiality and copyright protection of the document and to highlight information
about the company or group to which it belongs. Watermarks can be text, images, shapes, a fixed logo, or
dynamically generated text or images.

Adding a watermark to ComPDFKit PDF SDK is very simple and can be done through the API provided by
CPDFWatermark to add a text watermark or an image watermark. You can set the watermark position, color,
transparency, font, size, and other parameters to achieve different needs.

To add a watermark, use the function CPDFDocument.InitWatermark(C_Watermark_Type type) .
To remove all the watermarks in a PDF document, use function CPDFDocument.DeleteWatermarks() .

How to generate a PDF with a watermark on all its pages using the CPDFDocument API:

CPDFPage page = document.PageAtIndex(0);

CPDFRedactAnnotation redact =

page.CreateAnnot(C_ANNOTATION_TYPE.C_ANNOTATION_REDACT) as CPDFRedactAnnotation;

redact.SetRect(new CRect(0, 50, 50, 0));

redact.SetOverlayText("REDACTED");

CTextAttribute textDa = new CTextAttribute();

textDa.FontName = "Helvetica";

textDa.FontSize = 12;

byte[] fontColor = { 255, 0, 0 };

textDa.FontColor = fontColor;

redact.SetTextDa(textDa);

redact.SetTextAlignment(C_TEXT_ALIGNMENT.ALIGNMENT_LEFT);

byte[] fillColor = { 255, 0, 0 };

redact.SetFillColor(fillColor);

byte[] outlineColor = { 0, 255, 0 };

redact.SetOutlineColor(outlineColor);

redact.UpdateAp();

document.ApplyRedaction();

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

CPDFWatermark watermark = document.InitWatermark(C_Watermark_Type.WATERMARK_TYPE_TEXT);

watermark.SetText("test");

watermark.SetFontName("Helvetica");

byte[] color = { 255, 0, 0 };

3.9 Conversion

3.9.1 PDF/A

The conversion option analyzes the content of existing PDF files and performs a sequence of modifications
in order to produce a PDF/A compliant document.

Features that are not suitable for long-term archiving (such as encryption, obsolete compression schemes,
missing fonts, or device-dependent color) are replaced with their PDF/A compliant equivalents. Because the
conversion process applies only necessary changes to the source file, the information loss is minimal.

Converts existing PDF files to PDF/A compliant documents, including PDF/A-1a and PDF/A-1b only.

3.10 Content Editor
Content editor provides the ability to change content so that its data can be improved or re-purposed.

Create, move, or delete text and images.
Edit text and image properties.
Undo or redo any change.

When editing content, other operations are not supported like adding or deleting annotations, adding
watermarks, modifying form properties, etc.

Content editor supports the following editing modes:

Text Mode. In text mode, the text blocks surrounded by dotted lines will be displayed in the PDF
document, then you can copy, paste, add, or delete text.

watermark.SetTextRGBColor(color);

watermark.SetScale(2);

watermark.SetRotation(0);

watermark.SetOpacity(120);

watermark.SetVertalign(C_Watermark_Vertalign.WATERMARK_VERTALIGN_CENTER);

watermark.SetHorizalign(C_Watermark_Horizalign.WATERMARK_HORIZALIGN_CENTER);

watermark.SetVertOffset(0);

watermark.SetHorizOffset(0);

watermark.SetFront(true);

watermark.SetFullScreen(false);

watermark.SetVerticalSpacing(10);

watermark.SetHorizontalSpacing(10);

watermark.CreateWatermark();

document.WriteToFilePath("savePath");

CPDFDocument document = CPDFDocument.InitWithFilePath("filePath");

document.WritePDFAToFilePath(CPDFType.CPDFTypePDFA1a,"savePath");

Image Mode. In image mode, the images surrounded by dotted lines will be displayed in the PDF
document, then you can delete, crop, rotate, mirror, replace, save images, or set transparency.
Text-Image Mode. In text-image mode, the text blocks and images surrounded by dotted lines will be
displayed in the PDF document, then you can edit text and images.

3.10.1 Initialize the Editing Mode

Before editing, you should initialize editing mode. ComPDFKit provides methods to initialize editing mode.
The following code shows you how to initialize the editing mode:

3.10.2 Create, Move, or Delete Text and Images

ComPDFKit provides methods to do various operations like creating text/images.

You can use the mouse and keyboard to manipulate text or image areas on CPDFViewer as in Microsoft
Word, if you want to copy, paste, cut, or delete text or images, you can use the CPDFViewer 's
PDFEditCommandHandler event. The following code will show you how to do this.

You can use CPDFViewer 's SetPDFEditCreateType method to insert the text and image. The following
code will show you how to do this.

CPDFViewer viewer = new CPDFViewer();

viewer.InitDocument("***");

viewer.SetMouseMode(MouseModes.PDFEdit);

viewer.SetPDFEditType(CPDFEditType.EditText|CPDFEditType.EditImage);

viewer.PDFEditCommandHandler += Viewer_PDFEditCommandHandler;

private void Viewer_PDFEditCommandHandler(object sender, TextEditCommand e)

{

 e.Handle = true;
 e.PopupMenu = new ContextMenu();
 e.PopupMenu.Items.Add(new MenuItem() { Header = "Copy", Command =
ApplicationCommands.Copy, CommandTarget = (UIElement)sender });

 e.PopupMenu.Items.Add(new MenuItem() { Header = "Cut", Command =
ApplicationCommands.Cut, CommandTarget = (UIElement)sender });

 e.PopupMenu.Items.Add(new MenuItem() { Header = "Paste", Command =
ApplicationCommands.Paste, CommandTarget = (UIElement)sender });

 e.PopupMenu.Items.Add(new MenuItem() { Header = "Delete", Command =
ApplicationCommands.Delete, CommandTarget = (UIElement)sender });

 e.PopupMenu.Items.Add(new MenuItem() { Header = "Select All", Command =
ApplicationCommands.SelectAll, CommandTarget = (UIElement)sender });

}

3.10.3 Edit Text and Images Properties

ComPDFKit provides multiple methods to modify text properties. You can modify text font size, name, color,
alignment, italic, bold, transparency, etc.

You can use CPDFViewer 's PDFEditActiveHandler event to set the text and image properties. The
following code shows you how to set text to 12pt, red, and bold.

ComPDFKit provides multiple methods to modify image properties. You can modify image properties, such
as rotating, cropping, mirroring, and setting transparency.

The following code shows you how to rotate an image and set it to translucent.

//Insert text.

viewer.SetPDFEditCreateType(CPDFEditType.EditText);

//Insert image.

viewer.SetPDFEditCreateType(CPDFEditType.EditImage);

viewer.PDFEditActiveHandler += Viewer_PDFEditActiveHandler;

private void Viewer_PDFEditActiveHandler(object sender, PDFEditEvent e)

{

 //Text properties.
 if (e.EditType == CPDFEditType.EditText)
 {
 e.FontColor = Colors.Red;
 e.FontSize = 12;
 e.TextAlign = TextAlignType.AlignJustify;
 e.FontWeight = FontWeights.Bold;
 e.FontStyle = FontStyles.Italic;
 e.FontFamily = new FontFamily("TimesNewRoman");
 e.Transparency = 255;
 e.UpdatePDFEditByEventArgs();
 }
}

viewer.PDFEditActiveHandler += Viewer_PDFEditActiveHandler;

private void Viewer_PDFEditActiveHandler(object sender, PDFEditEvent e)

{

 //Image properties.
 if (e.EditType == CPDFEditType.EditImage)
 {
 e.VerticalMirror = true;
 e.HorizontalMirror = true;
 e.ClipImage = true;
 e.Rotate = 90;
 e.ReplaceImagePath = "***";

3.10.4 Undo and Redo Text Editing

You can use CPDFViewer 's UndoManager class to undo and redo when editing text. The following code will
show you how to do this.

3.10.5 End Text Editing and Save

You can end the editing mode at any time. You can use CPDFViewer 's SetMouseMode to exit the editing
mode. To save the changes of editing text, use WriteToLoadedPath or WriteToFilePath .

3.11 Compare Documents
ComPDFKit provides two methods to compare documents:

Overlay Comparison
Content Comparison

 e.Transparency = 255;
 e.UpdatePDFEditByEventArgs();
 }
}

//Undo

if (viewer.UndoManager.CanUndo)

{

 viewer.UndoManager.Undo();
}

//Redo

if (viewer.UndoManager.CanRedo)

{

 viewer.UndoManager.Redo();
}

//Exit the editing mode to PanTool mode

viewer.SetMouseMode(MouseModes.PanTool);

if(viewer.UndoManager.CanSave)

{

 //save changes to local file
 viewer.Document.WriteToLoadedPath();
}

3.11.1 Overlay Comparison

Overlay Comparison is used to visually compare pages of different documents. It’s helpful for things such as
construction plans and detailed drawings, as well as other content that requires precise placement.

This can be done in ComPDFKit using CPDFCompareOverlay . The process of preparing documents and
comparing them involves a few steps to specify how the comparison should happen.

Generating the Comparison Document

You can use CPDFCompareOverlay to generate a comparison document. First, initialize it with the two
versions of a document to be compared, then call the Compare function first and the
ComparisonDocument function next as arguments:

By default, the CPDFCompareOverlay will generate a comparison document according to the order of
pages, starting from the first page of both versions of the document. If the page you want to compare
has moved, or if it’s not the first page, you can specify explicit indices using extra pageRange
arguments:

Changing the Stroke Colors

One of the most important steps of generating a comparison document is the ability to change the
stroke colors, which makes it easier to see the differences between two versions of a document.

Setting a different stroke color is usually necessary when trying to compare documents, as this will
enable you to make any differences between pages more obvious. This will only affect stroke objects in
the PDF, and it will leave the color of other elements, such as text or images, unchanged.

The stroke colors of both versions of a document can be changed using the
SetOldDocumentStrokeColor and SetNewDocumentStrokeColor properties.

You can also change the blend mode used to overlay the new version of a document on top of the old
one by changing the SetBlendMode property.

Trying out various stroke colors and blend modes will result in different-looking comparison
documents, and you can make sure the final result fits your needs.

CPDFDocument oldDocument = CPDFDocument.InitWithFilePath("***");

CPDFDocument newDocument = CPDFDocument.InitWithFilePath("***");

CPDFCompareOverlay compareOverlay = new

CPDFCompareOverlay(oldDocument,newDocument);

compareOverlay.Compare();

CPDFDocument comparisonDocument = compareOverlay.ComparisonDocument();

CPDFDocument oldDocument = CPDFDocument.InitWithFilePath("***");

CPDFDocument newDocument = CPDFDocument.InitWithFilePath("***");

CPDFCompareOverlay compareOverlay = new CPDFCompareOverlay(oldDocument,"1-

5",newDocument,"2-6");

compareOverlay.Compare();

CPDFDocument comparisonDocument = compareOverlay.ComparisonDocument();

3.11.2 Content Comparison

Quickly pinpoint changes by comparing two versions of a PDF file.

This can be done in ComPDFKit using CPDFCompareContent . The process of preparing documents and
comparing them involves a few steps to specify how the comparison should happen.

Generating the Comparison Results

You can use CPDFCompareContent to generate the comparison results. First, initialize it with the two
versions of a document to be compared, and then call the Compare function as an argument:

You can compare the different content types of the document by setting type . For example, using
CPDFCompareTypeText to compare text only or using CPDFCompareTypeAll to compare all content.

Changing the Highlight Colors

One of the most important steps in generating the comparison results is the ability to change the
highlight colors, which makes it easier to see the differences between two versions of a document.

The highlight colors of both versions of a document can be changed using the SetReplaceColor ,
SetInsertColor , and SetDeleteColor properties.

3.12 Digital Signatures

3.12.1 Overview

The Concept of Digital Signatures

A digital signature is legally binding and can be equivalent to an ink pen signature on paper contracts and
other documents.

Unlike electronic signatures, digital signatures have a unique digital ID that identifies the signer's identity.
The function of digital signatures is to obtain information about whether the signature is trustworthy and
whether the document has been modified after the signature, thereby ensuring the legal validity of the
document.

CPDFDocument oldDocument = CPDFDocument.InitWithFilePath("***");

CPDFDocument newDocument = CPDFDocument.InitWithFilePath("***");

CPDFCompareContent compareContent = new CPDFCompareContent(oldDocument,

newDocument);

int pageCount = Math.Min(oldDocument.PageCount,newDocument.PageCount);

for(int i=0;i<pageCount-1;i++)

{

 CPDFCompareResults compareResults =
compareContent.Compare(i,i,CPDFCompareType.CPDFCompareTypeAll,true);

}

Advantages of ComPDFKit Digital Signatures

Authentication:

Digital signatures can accurately identify the creator and the signer of a document.

Integrity:

Digital signatures allow users to easily verify whether the document's content has been altered after
signing.

Non-Repudiation:

When the signature is valid, it can prove the signer's intent to sign, they can't deny that they have
signed the document.

Built-in Certificate Support:

Full support for PFX and P12 certificates.

Custom Appearance:

Customize the appearance of signatures through drawn, image, or typed signatures.

Default UI:

Achieve quick integration and customization using the extensible UI components provided by the
ComPDFKit team.

Supported Features of ComPDFKit Digital Signatures

Certificate Creation:

Create certificates in PFX or P12 formats, which can be used for digital signatures.

Signature Creation:

This function allows users to generate a digital signature using a digital certificate with a personal
private key, and attach it to a specific document to ensure data integrity and origin verification.

Signature Information Verification:

By verifying signature information, users can determine whether specific data or documents have been
authorized and remain unaltered.

Certificate Information Verification:

Certificate information verification allows users to confirm the validity and authenticity of the digital
certificates.

Extracting Signature Information:

Extracting signature information refers to extracting the information of a digital signature so that other
users can view or archive this information.

Trusting Certificates:

Trusting a certificate refers to the act of considering a specific certificate or a certificate authority as
trustworthy. This is a key part of the digital signature system as it ensures the trustworthiness of the
signature and the certificate, thereby building a secure digital communication and interaction
environment.

Signature Deletion:

Signature deletion refers to the revocation or invalidation of a digital signature. This may occur due to
the loss or compromise of the signer's private key or when a signature is considered no longer valid.
Signature deletion is a part of digital security management to ensure data integrity and security.

3.12.2 Concepts Related to Digital Signatures

How Digital Signatures Work

Principle of Signature:

A hash value of the data to be encrypted is obtained through a hash function (a unique fingerprint of the
data. Any tampering with the data content will result in a different hash). The hash value is encrypted using
the signer's private key to obtain the digital signature. The signed data will be generated after attaching the
digital signature to the data.

Verification Principle:

Separate the signature from the data, and obtain the hash value of the data through the same hash
function used by the signer. Decrypt the hash value using the signer's public key to get the signer's hash
value. By comparing the two values, we can confirm whether the file has been tampered with.

Data

Hash
function 101100110101

Hash

Encrypt hash
using signer's

private key

111101101110

SignatureCertificate

Attach
to data

Digitally signed data

Digitally signed data

Data

Hash
function

101100110101

Hash

111101101110

Signature

Decrypt
using signer's

public key

101100110101

Hash

?

If the hashes are equal, the signature is valid.

Signing Verification

Digital Signatures vs Electronic Signatures

An electronic signature is essentially an annotation within a document. Apart from the customizable
appearance of the signature, it lacks identifiable information about the creator and cannot verify whether
the document has been altered.

However, a digital signature uses complex encryption algorithms to create a unique identifier that is linked
to both the document's content and the creator's information. Any modification to the document's content
results in a failed digital signature verification, ensuring the uniqueness and legitimacy of the signer's
identity.

What Is a Digital Certificate

A digital certificate is a digital authentication that marks the identity information of the parties in Internet
communication. It can be used online to identify the identity of the other party, hence, it is also known as a
digital ID. The format of the digital certificate typically adopts the X.509 international standard and will
generally include the certificate's public key, user information, the validity period of the public key, the name
of the certificate authority, the serial number of the digital certificate, and the digital signature of the issuing
organization.

Digital certificates provide the transmission of information and data in an encrypted or decrypted form
during communication between network users, ensuring the integrity and security of information and data.

Support PKCS12 Certificate

PKCS12 (Or PKCS #12) is one of the family of standards called Public-Key Cryptography Standards (PKCS)
published by RSA Laboratories. ComPDFKit supports signing PDFs with PKCS12 files which are with ".p12" or
".pfx" file extensions.

What Is Certificate Chain

A Certificate Chain (Chain of Trust), is an ordered collection of digital certificates used to verify the
authenticity and trustworthiness of a digital certificate. Certificate chains are typically employed to establish
trust, ensuring that both the public key and the identity of entities are legitimate and trustworthy.

Here are some key concepts within a certificate chain:

Root Certificate

The starting point of a certificate chain is the Root Certificate. Root certificates are top-level certificates
issued by trusted Certificate Authorities (CAs) and are often built into operating systems or
applications. These root certificates serve as the foundation of trust because they are considered
inherently trustworthy.

Intermediate Certificates

Intermediate certificates, also known as issuer certificates or sub-certificates, are issued by root
certificate authorities and are used to issue certificates for end entities. Intermediate certificates form
an intermediate link within the certificate chain.

End Entity Certificate

An end entity certificate is the certificate of the subject of a digital signature (typically an individual,
server, or device). These certificates are issued by intermediate certificate authorities and contain the
public key and relevant identity information.

Trust Establishment

Trust is established through the certificate chain, passing trust from the root certificate to the end
entity certificate. If the root certificate is trusted, then the end entity certificate is also trusted, as the
trust chain between them is continuous.

Certificate Authority (CA)

A digital certificate issuing authority is an authoritative body responsible for issuing and managing digital
certificates, and as a trusted third party in e-commerce transactions, it bears the responsibility for verifying
the legality of public keys in the public key system.

The CA center issues a digital certificate to each user who uses a public key, the function of the digital
certificate is to prove that the user listed in the certificate legally owns the public key listed in the certificate.
The CA is responsible for issuing, certifying, and managing issued certificates. It needs to formulate policies
and specific steps to verify and identify user identities and sign user certificates to ensure the identity of the
certificate holder and the ownership of the public key.

Whether a Digital Signature Needs a CA

It is not necessary. When there is not a third-party notary, a CA is not needed, and we can use a self-signed
certificate. With ComPDFKit, you can manually set to trust self-signed certificates, which is very useful for
trusted parties to sign and check files. However, since there is no digital certificate issuing authority for
certification, self-signed digital identity cards cannot guarantee the validity of identity information, and they
may not be accepted in some use cases.

How to Confirm the Identity of the Digital Certificate Creator

Subject contains identity information about the certificate holder, commonly including fields such as C
(Country), ST (Province), L (Locality), O (Organization), OU (Organizational Unit), CN (Common Name), and
others. These details help identify who the certificate holder is.
DN (Distinguished Name) represents the complete and hierarchical representation of the "Subject" field. It
includes all the information from the "Subject" field and organizes it in a structured manner.

The X.509 standard specifies a specific string format for describing DN, for example:

3.12.3 Create Digital Certificates

PKCS12 (Public Key Cryptography Standard #12) format digital certificates usually contain a public key, a
private key, and other information related to the certificate. PKCS12 is a standard format used to store
security certificates, private keys, and other related information. This format is commonly used to export,
backup, and share digital certificates and private keys which are used in secure communications and
identity verification.

When creating a PKCS12 standard certificate, in addition to the data confirming your identity, a password is
typically required to protect your certificate. Only those who possess the password can access the private
key contained within and perform actions such as signing documents through the certificate.

Key Code

CN=Alan, OU=RD Department, O=ComPDFKit, C=SG, Email=xxxxxx@example.com

3.12.4 Create Digital Signatures

Creating a digital signature involves two steps:

Create a Signature Field
Sign within the Signature Field

By following these two steps, you can either self-sign a document or invite others to sign within the
signature field you've created.

ComPDFKit offers support for customizing the styles of the signature form field and allows you to customize
the appearance of your signature using drawn, image, and typed signatures.

Key Code for Creating a Signature Field

// Generate certificate.

//

// Password: ComPDFKit

//

// info: /C=SG/O=ComPDFKit/D=R&D Department/CN=Alan/emailAddress=xxxx@example.com

//

// C=SG: This represents the country code "SG," which typically stands for Singapore.

// O=ComPDFKit: This is the Organization (O) field, indicating the name of the

organization or entity, in this case, "ComPDFKit."

// D=R&D Department: This is the Department (D) field, indicating the specific

department within the organization, in this case, "R&D Department."

// CN=Alan: This is the Common Name (CN) field, which usually represents the name of

the individual or entity. In this case, it is "Alan."

// emailAddress=xxxx@example.com: Email is xxxx@example.com

//

// CPDFCertUsage.CPDFCertUsageAll: Used for both digital signing and data validation

simultaneously

//

// is_2048 = true: Enhanced security encryption

//

string password = "ComPDFKit";

string info = "/C=SG/O=ComPDFKit/D=R&D

Department/CN=Alan/emailAddress=xxxx@example.com";

string filePath = outputPath + "\\Certificate.pfx";

CPDFPKCS12CertHelper.GeneratePKCS12Cert(info, password, filePath,

CPDFCertUsage.CPDFCertUsageAll);

Sign Within the Signature Field

To sign within the signature field, you need to do three things:

Possess a certificate that conforms to the PKCS12 standard (in PFX or P12 format) and ensure that you
know its password. You can create a compliant digital certificate using the built-in methods within the
ComPDFKit SDK.
Set the appearance of the digital signature.
Write the data into the signature field.

Key Code for Signing Within the Signature Field

// Create a Signature Field.

//

// Page Index: 0

// Rect: CRect (28, 420, 150, 370)

// Border RGB: { 0, 0, 0 }
// Widget Background RGB: { 150, 180, 210 }

//

CPDFPage page = document.PageAtIndex(0);

 CPDFSignatureWidget signatureField =
page.CreateWidget(C_WIDGET_TYPE.WIDGET_SIGNATUREFIELDS) as CPDFSignatureWidget;

 signatureField.SetRect(new CRect(28, 420, 150, 370));
 signatureField.SetWidgetBorderRGBColor(new byte[] { 0, 0, 0 });
 signatureField.SetWidgetBgRGBColor(new byte[] { 150, 180, 210 });
 signatureField.UpdateAp();

// Sign in the signature field.

//

// Text: Grantor Name

// Content:

// Name: Get the grantor's name from the certificate

// Date: Now (yyyy.mm.dd)

// Reason: I am the owner of the document

// DN: Subject

// IsContentAlginLeft: False

// IsDrawLogo: True

// LogoBitmap: logo.png

// text color RGB: { 0, 0, 0 }

// Output file name: document.FileName + "_Signed.pdf"

//

string name = GetGrantorFromDictionary(certificate.SubjectDict) + "\n";

string date = DateTime.Now.ToString("yyyy.MM.dd HH:mm:ss");

string reason = "I am the owner of the document.";

string location = certificate.SubjectDict["C"];

string DN = certificate.Subject;

CPDFSignatureConfig signatureConfig = new CPDFSignatureConfig

 {

3.12.5 Read Digital Signature Information

You can read various pieces of information from a document's digital signature, including the signature
itself, the signer of the signature, and certain details of the signer's digital certificate.

For a comprehensive list of retrievable information, please refer to the API Reference.

Key Code

 Text = GetGrantorFromDictionary(ce string filePath = outputPath + "\\"
+ document.FileName + "_Signed.pdf";

 signatureField.UpdataApWithSignature(signatureConfig);rtificate.SubjectDict),
 Content =
 "Name: " + name + "\n" +
 "Date: " + date + "\n" +
 "Reason: "+ reason +" \n" +
 "Location: "+ location + "\n" +
 "DN: " + DN + "\n",
 IsContentAlginLeft = false,
 IsDrawLogo = true,
 LogoBitmap = new Bitmap("Logo.png"),
 textColor = new float[] { 0, 0, 0 },
 contentColor = new float[] { 0, 0, 0 }
 };
string filePath = outputPath + "\\" + document.FileName + "_Signed.pdf";

 signatureField.UpdataApWithSignature(signatureConfig);
document.WriteSignatureToFilePath(signatureField,

 filePath ,
 certificatePath, password,
 location,
 reason, CPDFSignaturePermissions.CPDFSignaturePermissionsNone);

foreach (var signature in document.GetSignatureList())

{

 signature.VerifySignatureWithDocument(document);
 Console.WriteLine("Name: " + signature.Name);
 Console.WriteLine("Location: " + signature.Location);
 Console.WriteLine("Reason: " + signature.Reason);
 foreach (var signer in signature.SignerList)
 {
 Console.WriteLine("Date: " + signer.AuthenDate);
 foreach (var certificate in signer.CertificateList)
 {
 Console.WriteLine("Subject: " + certificate.Subject);
 }
 }
}

The Connection Between Digital Signatures, Signers, and Digital Certificates

A digital signature is generated by encrypting a document using the private key of the signer and then
verifying the validity of the signature using the public key from the signer's certificate. The signature, signer,
and digital certificate constitute a crucial part of digital signatures in a PDF document.

In most cases, one signature corresponds to one signer. However, in some situations, a digital signature can
include multiple signers, each with their own certificate chain. This multi-signer mechanism can be very
useful in certain application scenarios because it allows multiple entities to digitally sign the same
document, each using their certificate and private key.

3.12.6 Verify Digital Certificates

When verifying digital certificates, the system automatically checks the trustworthiness of all certificates in
the certificate chain and also verifies whether the certificates have expired. Only certificates that are both
not expired and considered trustworthy in the entire certificate chain are considered trusted digital
certificates.

Key Code

// Verify certificate.

//

// To verify the trustworthiness of a certificate, you need to verify that all

certificates in the certificate chain are trustworthy.

// In ComPDFKit, this progress is automatic.

// You should call the "CPDFSignatureCertificate.CheckCertificateIsTrusted" first. Then

you can view the "CPDFSignatureCertificate.IsTrusted" property.

//

CPDFSignatureCertificate certificate =

CPDFPKCS12CertHelper.GetCertificateWithPKCS12Path(certificatePath, password);

certificate.CheckCertificateIsTrusted();

if (certificate.IsTrusted)

{

 // Certificate is trusted.
}

else

{

 // Certificate is not trusted.
}

3.12.7 Verify Digital Signatures

Verifying a digital signature consists of signature validity and certificate trustworthiness.

Signature validity indicates that the document has not been tampered with.
Certificate trustworthiness confirms that the signer is trustworthy.

Generally, a signature is verified only when both the signature is valid and the certificate is trustworthy.

Key Code

3.12.8 Trust Certificate

Trusting certificates involve two steps:

Specify the trust path (folder) for certificates. This path serves as the location where certificates are
placed when they are trusted. Additionally, when checking the trustworthiness of certificates, the SDK
will look for the corresponding certificates within this folder. Please ensure that this path is valid. If the
path does not exist or is inaccessible, the ComPDFKit SDK will not automatically create the trust path
folder.

foreach (var signature in document.GetSignatureList())

{

 signature.VerifySignatureWithDocument(document);
 foreach (var signer in signature.SignerList)
 {
 Console.WriteLine("Is the certificate trusted: " +
signer.IsCertTrusted.ToString());

 Console.WriteLine("Is the signature verified: " +
signer.IsSignVerified.ToString());

 // Take appropriate actions based on the verification results.
 if (signer.IsCertTrusted && signer.IsSignVerified)
 {
 // Signature is valid and the certificate is trusted.
 // Perform the corresponding actions.
 }
 else if (!signer.IsCertTrusted && signer.IsSignVerified)
 {
 // Signature is valid but the certificate is not trusted.
 // Perform the corresponding actions.
 }
 else
 {
 // Signature is invalid.
 // Perform the corresponding action.
 }
 }
}

Execute the method to trust certificates, and the certificates will be added to the trust path.

Key Code

3.12.9 Remove Digital Signatures

You can easily remove a digital signature, and when you do so, both the appearance and data associated
with the signature will be deleted.

It's important to note that removing a signature does not remove the signature field.

Key Code

3.11.10 Trouble Shooting

Inaccurate Signature Information Retrieval

Before retrieving signature information, it is necessary to call the VerifySignatureWithDocument method
within the CPDFSignature class. This method refreshes the document's integrity and checks the validity of
the certificate. Failure to call this method before retrieving the signature information may result in obtaining
outdated or incorrect results.

CPDFSignature signature = document.GetSignatureList()[0];

 CPDFSignatureCertificate signatureCertificate =
signature.SignerList[0].CertificateList[0];

 Console.WriteLine("Certificate trusted status: " +

signatureCertificate.IsTrusted.ToString());

Console.WriteLine("---Begin trusted---");

string trustedFolder = AppDomain.CurrentDomain.BaseDirectory + @"\TrustedFolder\";

if (!Directory.Exists(trustedFolder))

{

 Directory.CreateDirectory(trustedFolder);
}

// Set your trust path as a folder path.

CPDFSignature.SignCertTrustedFolder = trustedFolder;

// Add your certificate to the trust path.

signatureCertificate.AddToTrustedCertificates();

Console.WriteLine("Certificate trusted status: " +

signatureCertificate.IsTrusted.ToString());

// Remove digital signature.

// You can choose if you want to remove the appearance.

CPDFSignature signature = document.GetSignatureList()[0];

document.RemoveSignature(signature, true);

string filePath = outputPath + "\\" + document.FileName + "_RemovedSign.pdf";

document.WriteToFilePath(filePath);

Failure to Add Certificate to Trust Path

Before calling the AddToTrustedCertificates method within the CPDFSignatureCertificate class, you
must first set the value of the SignCertTrustedFolder parameter in the AddToTrustedCertificates
class to your trust path folder. Failure to do so will result in the addition process failing. When you trust a
certificate, it is added to the specified path, and the SDK also checks for the existence of certificates in that
path to determine their trustworthiness. The trust path folder is not automatically created by the SDK, so
you should ensure it exists and is a valid path.

4 Support
4.1 Reporting Problems
Thank you for your interest in ComPDFKit PDF SDK, an easy-to-use but powerful development solution to
integrate high quality PDF rendering capabilities to your applications. If you encounter any technical
questions or bug issues when using ComPDFKit PDF SDK for Windows, please submit the problem report to
the ComPDFKit team. More information as follows would help us to solve your problem:

ComPDFKit PDF SDK product and version.
Your operating system and IDE version.
Detailed descriptions of the problem.
Any other related information, such as an error screenshot.

4.2 Contact Information
Website:

Home Page: https://www.compdf.com
API Page: https://api.compdf.com/
Developer Guides: https://www.compdf.com/guides/pdf-sdk/windows/overview
API Reference: https://www.compdf.com/guides/pdf-sdk/windows/api-reference/html/3a1f08b6-6ac4-f
8b5-bad1-a31c98e96105.htm
Code Examples: https://www.compdf.com/guides/pdf-sdk/windows/examples

Contact ComPDFKit:

Contact Sales: https://api.compdf.com/contact-us
Technical Issues Feedback: https://www.compdf.com/support
Contact Email: support@compdf.com

Thanks,
The ComPDFKit Team

https://www.compdf.com/
https://api.compdf.com/
https://www.compdf.com/guides/pdf-sdk/windows/overview
https://www.compdf.com/guides/pdf-sdk/windows/api-reference/html/3a1f08b6-6ac4-f8b5-bad1-a31c98e96105.htm
https://www.compdf.com/guides/pdf-sdk/windows/examples
https://api.compdf.com/contact-us
https://www.compdf.com/support
mailto:support@compdf.com

	1 Overview
	1.1 ComPDFKit PDF SDK
	1.2 Key Features
	1.3 License

	2 Get Started
	2.1 Requirements
	2.2 Windows Package Structure
	2.3 How to Run a Demo
	2.4 How to Make a Windows Program in C# with ComPDFKit PDF SDK
	2.4.1 Create a New Project
	2.4.2 Add ComPDFKit to Your Project
	2.4.3 Apply the License Key
	2.4.4 Display a PDF Document
	2.4.5 Troubleshooting

	2.5 UI Customization
	2.5.1 Overview of "ComPDFKit_Tools" Folder
	2.5.2 UI Component

	2.6 Samples

	3 Guides
	3.1 Basic Operations
	3.1.1 Open a Document
	3.1.2 Save a Document

	3.2 Viewer
	3.2.1 Display Modes
	3.2.2 PDF Navigation
	3.2.3 Text Search & Selection
	3.2.4 Zooming
	3.2.5 Themes
	3.2.6 Custom Menu
	3.2.7 Highlight of Form Fields and Hyperlinks
	3.2.8 Get the Selected Text

	3.3 Annotations
	3.3.1 Annotation Types
	3.3.2 Access Annotations
	3.3.3 Create & Edit Annotations
	3.3.4 Delete Annotations
	3.3.5 Annotation Appearances
	3.3.6 Import & Export Annotations
	3.3.7 Flatten Annotations

	3.4 Forms
	3.4.1 Supported Form Fields
	3.4.2 Create & Edit Form Fields
	3.4.3 Fill Form Fields
	3.4.4 Delete Form Fields
	3.4.5 Flatten PDF Forms

	3.5 Document Editor
	3.5.1 PDF Manipulation
	3.5.2 Page Edit
	3.5.3 Document Information
	3.5.4 Extract Images

	3.6 Security
	3.6.1 PDF Permission
	3.6.2 Background
	3.6.3 Page Header and Footer
	3.6.4 Bates Number

	3.7 Redaction
	3.8 Watermark
	3.9 Conversion
	3.9.1 PDF/A

	3.10 Content Editor
	3.10.1 Initialize the Editing Mode
	3.10.2 Create, Move, or Delete Text and Images
	3.10.3 Edit Text and Images Properties
	3.10.4 Undo and Redo Text Editing
	3.10.5 End Text Editing and Save

	3.11 Compare Documents
	3.11.1 Overlay Comparison
	3.11.2 Content Comparison

	3.12 Digital Signatures
	3.12.1 Overview
	3.12.2 Concepts Related to Digital Signatures
	3.12.3 Create Digital Certificates
	3.12.4 Create Digital Signatures
	3.12.5 Read Digital Signature Information
	3.12.6 Verify Digital Certificates
	3.12.7 Verify Digital Signatures
	3.12.8 Trust Certificate
	3.12.9 Remove Digital Signatures
	3.11.10 Trouble Shooting

	4 Support
	4.1 Reporting Problems
	4.2 Contact Information

