123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596 |
- # -*- coding: utf-8 -*-
- """
- Created on Thu Dec 3 00:28:15 2020
- @author: Yunpeng Li, Tianjin University
- """
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- class MS_SSIM_L1_LOSS(nn.Module):
- # Have to use cuda, otherwise the speed is too slow.
- def __init__(self, gaussian_sigmas=[0.5, 1.0, 2.0, 4.0, 8.0],
- data_range = 1.0,
- K=(0.01, 0.03),
- alpha=0.025,
- compensation=200.0,
- device=torch.device('cpu')):
- super(MS_SSIM_L1_LOSS, self).__init__()
- self.DR = data_range
- self.C1 = (K[0] * data_range) ** 2
- self.C2 = (K[1] * data_range) ** 2
- self.pad = int(2 * gaussian_sigmas[-1])
- self.alpha = alpha
- self.compensation=compensation
- filter_size = int(4 * gaussian_sigmas[-1] + 1)
- g_masks = torch.zeros((3*len(gaussian_sigmas), 1, filter_size, filter_size))
- for idx, sigma in enumerate(gaussian_sigmas):
- # r0,g0,b0,r1,g1,b1,...,rM,gM,bM
- g_masks[3*idx+0, 0, :, :] = self._fspecial_gauss_2d(filter_size, sigma)
- g_masks[3*idx+1, 0, :, :] = self._fspecial_gauss_2d(filter_size, sigma)
- g_masks[3*idx+2, 0, :, :] = self._fspecial_gauss_2d(filter_size, sigma)
- self.g_masks = g_masks.to(device)
- def _fspecial_gauss_1d(self, size, sigma):
- """Create 1-D gauss kernel
- Args:
- size (int): the size of gauss kernel
- sigma (float): sigma of normal distribution
- Returns:
- torch.Tensor: 1D kernel (size)
- """
- coords = torch.arange(size).to(dtype=torch.float)
- coords -= size // 2
- g = torch.exp(-(coords ** 2) / (2 * sigma ** 2))
- g /= g.sum()
- return g.reshape(-1)
- def _fspecial_gauss_2d(self, size, sigma):
- """Create 2-D gauss kernel
- Args:
- size (int): the size of gauss kernel
- sigma (float): sigma of normal distribution
- Returns:
- torch.Tensor: 2D kernel (size x size)
- """
- gaussian_vec = self._fspecial_gauss_1d(size, sigma)
- return torch.outer(gaussian_vec, gaussian_vec)
- def forward(self, x, y):
- b, c, h, w = x.shape
- mux = F.conv2d(x, self.g_masks, groups=3, padding=self.pad)
- muy = F.conv2d(y, self.g_masks, groups=3, padding=self.pad)
- mux2 = mux * mux
- muy2 = muy * muy
- muxy = mux * muy
- sigmax2 = F.conv2d(x * x, self.g_masks, groups=3, padding=self.pad) - mux2
- sigmay2 = F.conv2d(y * y, self.g_masks, groups=3, padding=self.pad) - muy2
- sigmaxy = F.conv2d(x * y, self.g_masks, groups=3, padding=self.pad) - muxy
- # l(j), cs(j) in MS-SSIM
- l = (2 * muxy + self.C1) / (mux2 + muy2 + self.C1) # [B, 15, H, W]
- cs = (2 * sigmaxy + self.C2) / (sigmax2 + sigmay2 + self.C2)
- lM = l[:, -1, :, :] * l[:, -2, :, :] * l[:, -3, :, :]
- PIcs = cs.prod(dim=1)
- loss_ms_ssim = 1 - lM*PIcs # [B, H, W]
- loss_l1 = F.l1_loss(x, y, reduction='none') # [B, 3, H, W]
- # average l1 loss in 3 channels
- gaussian_l1 = F.conv2d(loss_l1, self.g_masks.narrow(dim=0, start=-3, length=3),
- groups=3, padding=self.pad).mean(1) # [B, H, W]
- loss_mix = self.alpha * loss_ms_ssim + (1 - self.alpha) * gaussian_l1 / self.DR
- loss_mix = self.compensation*loss_mix
- return loss_mix.mean()
|