123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html.
- #ifndef OPENCV_VIDEO_DETAIL_TRACKING_HPP
- #define OPENCV_VIDEO_DETAIL_TRACKING_HPP
- /*
- * Partially based on:
- * ====================================================================================================================
- * - [AAM] S. Salti, A. Cavallaro, L. Di Stefano, Adaptive Appearance Modeling for Video Tracking: Survey and Evaluation
- * - [AMVOT] X. Li, W. Hu, C. Shen, Z. Zhang, A. Dick, A. van den Hengel, A Survey of Appearance Models in Visual Object Tracking
- *
- * This Tracking API has been designed with PlantUML. If you modify this API please change UML files under modules/tracking/doc/uml
- *
- */
- #include "opencv2/core.hpp"
- namespace cv {
- namespace detail {
- inline namespace tracking {
- /** @addtogroup tracking_detail
- @{
- */
- /************************************ TrackerFeature Base Classes ************************************/
- /** @brief Abstract base class for TrackerFeature that represents the feature.
- */
- class CV_EXPORTS TrackerFeature
- {
- public:
- virtual ~TrackerFeature();
- /** @brief Compute the features in the images collection
- @param images The images
- @param response The output response
- */
- void compute(const std::vector<Mat>& images, Mat& response);
- protected:
- virtual bool computeImpl(const std::vector<Mat>& images, Mat& response) = 0;
- };
- /** @brief Class that manages the extraction and selection of features
- @cite AAM Feature Extraction and Feature Set Refinement (Feature Processing and Feature Selection).
- See table I and section III C @cite AMVOT Appearance modelling -\> Visual representation (Table II,
- section 3.1 - 3.2)
- TrackerFeatureSet is an aggregation of TrackerFeature
- @sa
- TrackerFeature
- */
- class CV_EXPORTS TrackerFeatureSet
- {
- public:
- TrackerFeatureSet();
- ~TrackerFeatureSet();
- /** @brief Extract features from the images collection
- @param images The input images
- */
- void extraction(const std::vector<Mat>& images);
- /** @brief Add TrackerFeature in the collection. Return true if TrackerFeature is added, false otherwise
- @param feature The TrackerFeature class
- */
- bool addTrackerFeature(const Ptr<TrackerFeature>& feature);
- /** @brief Get the TrackerFeature collection (TrackerFeature name, TrackerFeature pointer)
- */
- const std::vector<Ptr<TrackerFeature>>& getTrackerFeatures() const;
- /** @brief Get the responses
- @note Be sure to call extraction before getResponses Example TrackerFeatureSet::getResponses
- */
- const std::vector<Mat>& getResponses() const;
- private:
- void clearResponses();
- bool blockAddTrackerFeature;
- std::vector<Ptr<TrackerFeature>> features; // list of features
- std::vector<Mat> responses; // list of response after compute
- };
- /************************************ TrackerSampler Base Classes ************************************/
- /** @brief Abstract base class for TrackerSamplerAlgorithm that represents the algorithm for the specific
- sampler.
- */
- class CV_EXPORTS TrackerSamplerAlgorithm
- {
- public:
- virtual ~TrackerSamplerAlgorithm();
- /** @brief Computes the regions starting from a position in an image.
- Return true if samples are computed, false otherwise
- @param image The current frame
- @param boundingBox The bounding box from which regions can be calculated
- @param sample The computed samples @cite AAM Fig. 1 variable Sk
- */
- virtual bool sampling(const Mat& image, const Rect& boundingBox, std::vector<Mat>& sample) = 0;
- };
- /**
- * \brief Class that manages the sampler in order to select regions for the update the model of the tracker
- * [AAM] Sampling e Labeling. See table I and section III B
- */
- /** @brief Class that manages the sampler in order to select regions for the update the model of the tracker
- @cite AAM Sampling e Labeling. See table I and section III B
- TrackerSampler is an aggregation of TrackerSamplerAlgorithm
- @sa
- TrackerSamplerAlgorithm
- */
- class CV_EXPORTS TrackerSampler
- {
- public:
- TrackerSampler();
- ~TrackerSampler();
- /** @brief Computes the regions starting from a position in an image
- @param image The current frame
- @param boundingBox The bounding box from which regions can be calculated
- */
- void sampling(const Mat& image, Rect boundingBox);
- /** @brief Return the collection of the TrackerSamplerAlgorithm
- */
- const std::vector<Ptr<TrackerSamplerAlgorithm>>& getSamplers() const;
- /** @brief Return the samples from all TrackerSamplerAlgorithm, @cite AAM Fig. 1 variable Sk
- */
- const std::vector<Mat>& getSamples() const;
- /** @brief Add TrackerSamplerAlgorithm in the collection. Return true if sampler is added, false otherwise
- @param sampler The TrackerSamplerAlgorithm
- */
- bool addTrackerSamplerAlgorithm(const Ptr<TrackerSamplerAlgorithm>& sampler);
- private:
- std::vector<Ptr<TrackerSamplerAlgorithm>> samplers;
- std::vector<Mat> samples;
- bool blockAddTrackerSampler;
- void clearSamples();
- };
- /************************************ TrackerModel Base Classes ************************************/
- /** @brief Abstract base class for TrackerTargetState that represents a possible state of the target.
- See @cite AAM \f$\hat{x}^{i}_{k}\f$ all the states candidates.
- Inherits this class with your Target state, In own implementation you can add scale variation,
- width, height, orientation, etc.
- */
- class CV_EXPORTS TrackerTargetState
- {
- public:
- virtual ~TrackerTargetState() {};
- /** @brief Get the position
- * @return The position
- */
- Point2f getTargetPosition() const;
- /** @brief Set the position
- * @param position The position
- */
- void setTargetPosition(const Point2f& position);
- /** @brief Get the width of the target
- * @return The width of the target
- */
- int getTargetWidth() const;
- /** @brief Set the width of the target
- * @param width The width of the target
- */
- void setTargetWidth(int width);
- /** @brief Get the height of the target
- * @return The height of the target
- */
- int getTargetHeight() const;
- /** @brief Set the height of the target
- * @param height The height of the target
- */
- void setTargetHeight(int height);
- protected:
- Point2f targetPosition;
- int targetWidth;
- int targetHeight;
- };
- /** @brief Represents the model of the target at frame \f$k\f$ (all states and scores)
- See @cite AAM The set of the pair \f$\langle \hat{x}^{i}_{k}, C^{i}_{k} \rangle\f$
- @sa TrackerTargetState
- */
- typedef std::vector<std::pair<Ptr<TrackerTargetState>, float>> ConfidenceMap;
- /** @brief Represents the estimate states for all frames
- @cite AAM \f$x_{k}\f$ is the trajectory of the target up to time \f$k\f$
- @sa TrackerTargetState
- */
- typedef std::vector<Ptr<TrackerTargetState>> Trajectory;
- /** @brief Abstract base class for TrackerStateEstimator that estimates the most likely target state.
- See @cite AAM State estimator
- See @cite AMVOT Statistical modeling (Fig. 3), Table III (generative) - IV (discriminative) - V (hybrid)
- */
- class CV_EXPORTS TrackerStateEstimator
- {
- public:
- virtual ~TrackerStateEstimator();
- /** @brief Estimate the most likely target state, return the estimated state
- @param confidenceMaps The overall appearance model as a list of :cConfidenceMap
- */
- Ptr<TrackerTargetState> estimate(const std::vector<ConfidenceMap>& confidenceMaps);
- /** @brief Update the ConfidenceMap with the scores
- @param confidenceMaps The overall appearance model as a list of :cConfidenceMap
- */
- void update(std::vector<ConfidenceMap>& confidenceMaps);
- /** @brief Create TrackerStateEstimator by tracker state estimator type
- @param trackeStateEstimatorType The TrackerStateEstimator name
- The modes available now:
- - "BOOSTING" -- Boosting-based discriminative appearance models. See @cite AMVOT section 4.4
- The modes available soon:
- - "SVM" -- SVM-based discriminative appearance models. See @cite AMVOT section 4.5
- */
- static Ptr<TrackerStateEstimator> create(const String& trackeStateEstimatorType);
- /** @brief Get the name of the specific TrackerStateEstimator
- */
- String getClassName() const;
- protected:
- virtual Ptr<TrackerTargetState> estimateImpl(const std::vector<ConfidenceMap>& confidenceMaps) = 0;
- virtual void updateImpl(std::vector<ConfidenceMap>& confidenceMaps) = 0;
- String className;
- };
- /** @brief Abstract class that represents the model of the target.
- It must be instantiated by specialized tracker
- See @cite AAM Ak
- Inherits this with your TrackerModel
- */
- class CV_EXPORTS TrackerModel
- {
- public:
- TrackerModel();
- virtual ~TrackerModel();
- /** @brief Set TrackerEstimator, return true if the tracker state estimator is added, false otherwise
- @param trackerStateEstimator The TrackerStateEstimator
- @note You can add only one TrackerStateEstimator
- */
- bool setTrackerStateEstimator(Ptr<TrackerStateEstimator> trackerStateEstimator);
- /** @brief Estimate the most likely target location
- @cite AAM ME, Model Estimation table I
- @param responses Features extracted from TrackerFeatureSet
- */
- void modelEstimation(const std::vector<Mat>& responses);
- /** @brief Update the model
- @cite AAM MU, Model Update table I
- */
- void modelUpdate();
- /** @brief Run the TrackerStateEstimator, return true if is possible to estimate a new state, false otherwise
- */
- bool runStateEstimator();
- /** @brief Set the current TrackerTargetState in the Trajectory
- @param lastTargetState The current TrackerTargetState
- */
- void setLastTargetState(const Ptr<TrackerTargetState>& lastTargetState);
- /** @brief Get the last TrackerTargetState from Trajectory
- */
- Ptr<TrackerTargetState> getLastTargetState() const;
- /** @brief Get the list of the ConfidenceMap
- */
- const std::vector<ConfidenceMap>& getConfidenceMaps() const;
- /** @brief Get the last ConfidenceMap for the current frame
- */
- const ConfidenceMap& getLastConfidenceMap() const;
- /** @brief Get the TrackerStateEstimator
- */
- Ptr<TrackerStateEstimator> getTrackerStateEstimator() const;
- private:
- void clearCurrentConfidenceMap();
- protected:
- std::vector<ConfidenceMap> confidenceMaps;
- Ptr<TrackerStateEstimator> stateEstimator;
- ConfidenceMap currentConfidenceMap;
- Trajectory trajectory;
- int maxCMLength;
- virtual void modelEstimationImpl(const std::vector<Mat>& responses) = 0;
- virtual void modelUpdateImpl() = 0;
- };
- /************************************ Specific TrackerStateEstimator Classes ************************************/
- // None
- /************************************ Specific TrackerSamplerAlgorithm Classes ************************************/
- /** @brief TrackerSampler based on CSC (current state centered), used by MIL algorithm TrackerMIL
- */
- class CV_EXPORTS TrackerSamplerCSC : public TrackerSamplerAlgorithm
- {
- public:
- ~TrackerSamplerCSC();
- enum MODE
- {
- MODE_INIT_POS = 1, //!< mode for init positive samples
- MODE_INIT_NEG = 2, //!< mode for init negative samples
- MODE_TRACK_POS = 3, //!< mode for update positive samples
- MODE_TRACK_NEG = 4, //!< mode for update negative samples
- MODE_DETECT = 5 //!< mode for detect samples
- };
- struct CV_EXPORTS Params
- {
- Params();
- float initInRad; //!< radius for gathering positive instances during init
- float trackInPosRad; //!< radius for gathering positive instances during tracking
- float searchWinSize; //!< size of search window
- int initMaxNegNum; //!< # negative samples to use during init
- int trackMaxPosNum; //!< # positive samples to use during training
- int trackMaxNegNum; //!< # negative samples to use during training
- };
- /** @brief Constructor
- @param parameters TrackerSamplerCSC parameters TrackerSamplerCSC::Params
- */
- TrackerSamplerCSC(const TrackerSamplerCSC::Params& parameters = TrackerSamplerCSC::Params());
- /** @brief Set the sampling mode of TrackerSamplerCSC
- @param samplingMode The sampling mode
- The modes are:
- - "MODE_INIT_POS = 1" -- for the positive sampling in initialization step
- - "MODE_INIT_NEG = 2" -- for the negative sampling in initialization step
- - "MODE_TRACK_POS = 3" -- for the positive sampling in update step
- - "MODE_TRACK_NEG = 4" -- for the negative sampling in update step
- - "MODE_DETECT = 5" -- for the sampling in detection step
- */
- void setMode(int samplingMode);
- bool sampling(const Mat& image, const Rect& boundingBox, std::vector<Mat>& sample) CV_OVERRIDE;
- private:
- Params params;
- int mode;
- RNG rng;
- std::vector<Mat> sampleImage(const Mat& img, int x, int y, int w, int h, float inrad, float outrad = 0, int maxnum = 1000000);
- };
- //! @}
- }}} // namespace cv::detail::tracking
- #endif // OPENCV_VIDEO_DETAIL_TRACKING_HPP
|