123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef OPENCV_STITCHING_MATCHERS_HPP
- #define OPENCV_STITCHING_MATCHERS_HPP
- #include "opencv2/core.hpp"
- #include "opencv2/features2d.hpp"
- #include "opencv2/opencv_modules.hpp"
- namespace cv {
- namespace detail {
- //! @addtogroup stitching_match
- //! @{
- /** @brief Structure containing image keypoints and descriptors. */
- struct CV_EXPORTS_W_SIMPLE ImageFeatures
- {
- CV_PROP_RW int img_idx;
- CV_PROP_RW Size img_size;
- CV_PROP_RW std::vector<KeyPoint> keypoints;
- CV_PROP_RW UMat descriptors;
- CV_WRAP std::vector<KeyPoint> getKeypoints() { return keypoints; };
- };
- /** @brief
- @param featuresFinder
- @param images
- @param features
- @param masks
- */
- CV_EXPORTS_W void computeImageFeatures(
- const Ptr<Feature2D> &featuresFinder,
- InputArrayOfArrays images,
- CV_OUT std::vector<ImageFeatures> &features,
- InputArrayOfArrays masks = noArray());
- /** @brief
- @param featuresFinder
- @param image
- @param features
- @param mask
- */
- CV_EXPORTS_AS(computeImageFeatures2) void computeImageFeatures(
- const Ptr<Feature2D> &featuresFinder,
- InputArray image,
- CV_OUT ImageFeatures &features,
- InputArray mask = noArray());
- /** @brief Structure containing information about matches between two images.
- It's assumed that there is a transformation between those images. Transformation may be
- homography or affine transformation based on selected matcher.
- @sa detail::FeaturesMatcher
- */
- struct CV_EXPORTS_W_SIMPLE MatchesInfo
- {
- MatchesInfo();
- MatchesInfo(const MatchesInfo &other);
- MatchesInfo& operator =(const MatchesInfo &other);
- CV_PROP_RW int src_img_idx;
- CV_PROP_RW int dst_img_idx; //!< Images indices (optional)
- CV_PROP_RW std::vector<DMatch> matches;
- CV_PROP_RW std::vector<uchar> inliers_mask; //!< Geometrically consistent matches mask
- CV_PROP_RW int num_inliers; //!< Number of geometrically consistent matches
- CV_PROP_RW Mat H; //!< Estimated transformation
- CV_PROP_RW double confidence; //!< Confidence two images are from the same panorama
- CV_WRAP std::vector<DMatch> getMatches() { return matches; };
- CV_WRAP std::vector<uchar> getInliers() { return inliers_mask; };
- };
- /** @brief Feature matchers base class. */
- class CV_EXPORTS_W FeaturesMatcher
- {
- public:
- CV_WRAP virtual ~FeaturesMatcher() {}
- /** @overload
- @param features1 First image features
- @param features2 Second image features
- @param matches_info Found matches
- */
- CV_WRAP_AS(apply) void operator ()(const ImageFeatures &features1, const ImageFeatures &features2,
- CV_OUT MatchesInfo& matches_info) { match(features1, features2, matches_info); }
- /** @brief Performs images matching.
- @param features Features of the source images
- @param pairwise_matches Found pairwise matches
- @param mask Mask indicating which image pairs must be matched
- The function is parallelized with the TBB library.
- @sa detail::MatchesInfo
- */
- CV_WRAP_AS(apply2) void operator ()(const std::vector<ImageFeatures> &features, CV_OUT std::vector<MatchesInfo> &pairwise_matches,
- const cv::UMat &mask = cv::UMat());
- /** @return True, if it's possible to use the same matcher instance in parallel, false otherwise
- */
- CV_WRAP bool isThreadSafe() const { return is_thread_safe_; }
- /** @brief Frees unused memory allocated before if there is any.
- */
- CV_WRAP virtual void collectGarbage() {}
- protected:
- FeaturesMatcher(bool is_thread_safe = false) : is_thread_safe_(is_thread_safe) {}
- /** @brief This method must implement matching logic in order to make the wrappers
- detail::FeaturesMatcher::operator()_ work.
- @param features1 first image features
- @param features2 second image features
- @param matches_info found matches
- */
- virtual void match(const ImageFeatures &features1, const ImageFeatures &features2,
- MatchesInfo& matches_info) = 0;
- bool is_thread_safe_;
- };
- /** @brief Features matcher which finds two best matches for each feature and leaves the best one only if the
- ratio between descriptor distances is greater than the threshold match_conf
- @sa detail::FeaturesMatcher
- */
- class CV_EXPORTS_W BestOf2NearestMatcher : public FeaturesMatcher
- {
- public:
- /** @brief Constructs a "best of 2 nearest" matcher.
- @param try_use_gpu Should try to use GPU or not
- @param match_conf Match distances ration threshold
- @param num_matches_thresh1 Minimum number of matches required for the 2D projective transform
- estimation used in the inliers classification step
- @param num_matches_thresh2 Minimum number of matches required for the 2D projective transform
- re-estimation on inliers
- */
- CV_WRAP BestOf2NearestMatcher(bool try_use_gpu = false, float match_conf = 0.3f, int num_matches_thresh1 = 6,
- int num_matches_thresh2 = 6);
- CV_WRAP void collectGarbage() CV_OVERRIDE;
- CV_WRAP static Ptr<BestOf2NearestMatcher> create(bool try_use_gpu = false, float match_conf = 0.3f, int num_matches_thresh1 = 6,
- int num_matches_thresh2 = 6);
- protected:
- void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo &matches_info) CV_OVERRIDE;
- int num_matches_thresh1_;
- int num_matches_thresh2_;
- Ptr<FeaturesMatcher> impl_;
- };
- class CV_EXPORTS_W BestOf2NearestRangeMatcher : public BestOf2NearestMatcher
- {
- public:
- CV_WRAP BestOf2NearestRangeMatcher(int range_width = 5, bool try_use_gpu = false, float match_conf = 0.3f,
- int num_matches_thresh1 = 6, int num_matches_thresh2 = 6);
- void operator ()(const std::vector<ImageFeatures> &features, std::vector<MatchesInfo> &pairwise_matches,
- const cv::UMat &mask = cv::UMat());
- protected:
- int range_width_;
- };
- /** @brief Features matcher similar to cv::detail::BestOf2NearestMatcher which
- finds two best matches for each feature and leaves the best one only if the
- ratio between descriptor distances is greater than the threshold match_conf.
- Unlike cv::detail::BestOf2NearestMatcher this matcher uses affine
- transformation (affine transformation estimate will be placed in matches_info).
- @sa cv::detail::FeaturesMatcher cv::detail::BestOf2NearestMatcher
- */
- class CV_EXPORTS_W AffineBestOf2NearestMatcher : public BestOf2NearestMatcher
- {
- public:
- /** @brief Constructs a "best of 2 nearest" matcher that expects affine transformation
- between images
- @param full_affine whether to use full affine transformation with 6 degress of freedom or reduced
- transformation with 4 degrees of freedom using only rotation, translation and uniform scaling
- @param try_use_gpu Should try to use GPU or not
- @param match_conf Match distances ration threshold
- @param num_matches_thresh1 Minimum number of matches required for the 2D affine transform
- estimation used in the inliers classification step
- @sa cv::estimateAffine2D cv::estimateAffinePartial2D
- */
- CV_WRAP AffineBestOf2NearestMatcher(bool full_affine = false, bool try_use_gpu = false,
- float match_conf = 0.3f, int num_matches_thresh1 = 6) :
- BestOf2NearestMatcher(try_use_gpu, match_conf, num_matches_thresh1, num_matches_thresh1),
- full_affine_(full_affine) {}
- protected:
- void match(const ImageFeatures &features1, const ImageFeatures &features2, MatchesInfo &matches_info) CV_OVERRIDE;
- bool full_affine_;
- };
- //! @} stitching_match
- } // namespace detail
- } // namespace cv
- #endif // OPENCV_STITCHING_MATCHERS_HPP
|