123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html.
- #ifndef OPENCV_IMGPROC_SEGMENTATION_HPP
- #define OPENCV_IMGPROC_SEGMENTATION_HPP
- #include "opencv2/imgproc.hpp"
- namespace cv {
- namespace segmentation {
- //! @addtogroup imgproc_segmentation
- //! @{
- /** @brief Intelligent Scissors image segmentation
- *
- * This class is used to find the path (contour) between two points
- * which can be used for image segmentation.
- *
- * Usage example:
- * @snippet snippets/imgproc_segmentation.cpp usage_example_intelligent_scissors
- *
- * Reference: <a href="http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.138.3811&rep=rep1&type=pdf">"Intelligent Scissors for Image Composition"</a>
- * algorithm designed by Eric N. Mortensen and William A. Barrett, Brigham Young University
- * @cite Mortensen95intelligentscissors
- */
- class CV_EXPORTS_W_SIMPLE IntelligentScissorsMB
- {
- public:
- CV_WRAP
- IntelligentScissorsMB();
- /** @brief Specify weights of feature functions
- *
- * Consider keeping weights normalized (sum of weights equals to 1.0)
- * Discrete dynamic programming (DP) goal is minimization of costs between pixels.
- *
- * @param weight_non_edge Specify cost of non-edge pixels (default: 0.43f)
- * @param weight_gradient_direction Specify cost of gradient direction function (default: 0.43f)
- * @param weight_gradient_magnitude Specify cost of gradient magnitude function (default: 0.14f)
- */
- CV_WRAP
- IntelligentScissorsMB& setWeights(float weight_non_edge, float weight_gradient_direction, float weight_gradient_magnitude);
- /** @brief Specify gradient magnitude max value threshold
- *
- * Zero limit value is used to disable gradient magnitude thresholding (default behavior, as described in original article).
- * Otherwize pixels with `gradient magnitude >= threshold` have zero cost.
- *
- * @note Thresholding should be used for images with irregular regions (to avoid stuck on parameters from high-contract areas, like embedded logos).
- *
- * @param gradient_magnitude_threshold_max Specify gradient magnitude max value threshold (default: 0, disabled)
- */
- CV_WRAP
- IntelligentScissorsMB& setGradientMagnitudeMaxLimit(float gradient_magnitude_threshold_max = 0.0f);
- /** @brief Switch to "Laplacian Zero-Crossing" edge feature extractor and specify its parameters
- *
- * This feature extractor is used by default according to article.
- *
- * Implementation has additional filtering for regions with low-amplitude noise.
- * This filtering is enabled through parameter of minimal gradient amplitude (use some small value 4, 8, 16).
- *
- * @note Current implementation of this feature extractor is based on processing of grayscale images (color image is converted to grayscale image first).
- *
- * @note Canny edge detector is a bit slower, but provides better results (especially on color images): use setEdgeFeatureCannyParameters().
- *
- * @param gradient_magnitude_min_value Minimal gradient magnitude value for edge pixels (default: 0, check is disabled)
- */
- CV_WRAP
- IntelligentScissorsMB& setEdgeFeatureZeroCrossingParameters(float gradient_magnitude_min_value = 0.0f);
- /** @brief Switch edge feature extractor to use Canny edge detector
- *
- * @note "Laplacian Zero-Crossing" feature extractor is used by default (following to original article)
- *
- * @sa Canny
- */
- CV_WRAP
- IntelligentScissorsMB& setEdgeFeatureCannyParameters(
- double threshold1, double threshold2,
- int apertureSize = 3, bool L2gradient = false
- );
- /** @brief Specify input image and extract image features
- *
- * @param image input image. Type is #CV_8UC1 / #CV_8UC3
- */
- CV_WRAP
- IntelligentScissorsMB& applyImage(InputArray image);
- /** @brief Specify custom features of input image
- *
- * Customized advanced variant of applyImage() call.
- *
- * @param non_edge Specify cost of non-edge pixels. Type is CV_8UC1. Expected values are `{0, 1}`.
- * @param gradient_direction Specify gradient direction feature. Type is CV_32FC2. Values are expected to be normalized: `x^2 + y^2 == 1`
- * @param gradient_magnitude Specify cost of gradient magnitude function: Type is CV_32FC1. Values should be in range `[0, 1]`.
- * @param image **Optional parameter**. Must be specified if subset of features is specified (non-specified features are calculated internally)
- */
- CV_WRAP
- IntelligentScissorsMB& applyImageFeatures(
- InputArray non_edge, InputArray gradient_direction, InputArray gradient_magnitude,
- InputArray image = noArray()
- );
- /** @brief Prepares a map of optimal paths for the given source point on the image
- *
- * @note applyImage() / applyImageFeatures() must be called before this call
- *
- * @param sourcePt The source point used to find the paths
- */
- CV_WRAP void buildMap(const Point& sourcePt);
- /** @brief Extracts optimal contour for the given target point on the image
- *
- * @note buildMap() must be called before this call
- *
- * @param targetPt The target point
- * @param[out] contour The list of pixels which contains optimal path between the source and the target points of the image. Type is CV_32SC2 (compatible with `std::vector<Point>`)
- * @param backward Flag to indicate reverse order of retrived pixels (use "true" value to fetch points from the target to the source point)
- */
- CV_WRAP void getContour(const Point& targetPt, OutputArray contour, bool backward = false) const;
- #ifndef CV_DOXYGEN
- struct Impl;
- inline Impl* getImpl() const { return impl.get(); }
- protected:
- std::shared_ptr<Impl> impl;
- #endif
- };
- //! @}
- } // namespace segmentation
- } // namespace cv
- #endif // OPENCV_IMGPROC_SEGMENTATION_HPP
|