123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284 |
- // This file is part of OpenCV project.
- // It is subject to the license terms in the LICENSE file found in the top-level directory
- // of this distribution and at http://opencv.org/license.html.
- //
- // Copyright (C) 2020-2021 Intel Corporation
- #ifndef OPENCV_GAPI_INFER_ONNX_HPP
- #define OPENCV_GAPI_INFER_ONNX_HPP
- #include <unordered_map>
- #include <string>
- #include <array>
- #include <tuple> // tuple, tuple_size
- #include <opencv2/gapi/opencv_includes.hpp>
- #include <opencv2/gapi/util/any.hpp>
- #include <opencv2/core/cvdef.h> // GAPI_EXPORTS
- #include <opencv2/gapi/gkernel.hpp> // GKernelPackage
- namespace cv {
- namespace gapi {
- /**
- * @brief This namespace contains G-API ONNX Runtime backend functions, structures, and symbols.
- */
- namespace onnx {
- GAPI_EXPORTS cv::gapi::GBackend backend();
- enum class TraitAs: int {
- TENSOR, //!< G-API traits an associated cv::Mat as a raw tensor
- // and passes dimensions as-is
- IMAGE //!< G-API traits an associated cv::Mat as an image so
- // creates an "image" blob (NCHW/NHWC, etc)
- };
- using PostProc = std::function<void(const std::unordered_map<std::string, cv::Mat> &,
- std::unordered_map<std::string, cv::Mat> &)>;
- namespace detail {
- /**
- * @brief This structure contains description of inference parameters
- * which is specific to ONNX models.
- */
- struct ParamDesc {
- std::string model_path; //!< Path to model.
- // NB: nun_* may differ from topology's real input/output port numbers
- // (e.g. topology's partial execution)
- std::size_t num_in; //!< How many inputs are defined in the operation
- std::size_t num_out; //!< How many outputs are defined in the operation
- // NB: Here order follows the `Net` API
- std::vector<std::string> input_names; //!< Names of input network layers.
- std::vector<std::string> output_names; //!< Names of output network layers.
- using ConstInput = std::pair<cv::Mat, TraitAs>;
- std::unordered_map<std::string, ConstInput> const_inputs; //!< Map with pair of name of network layer and ConstInput which will be associated with this.
- std::vector<cv::Scalar> mean; //!< Mean values for preprocessing.
- std::vector<cv::Scalar> stdev; //!< Standard deviation values for preprocessing.
- std::vector<cv::GMatDesc> out_metas; //!< Out meta information about your output (type, dimension).
- PostProc custom_post_proc; //!< Post processing function.
- std::vector<bool> normalize; //!< Vector of bool values that enabled or disabled normalize of input data.
- std::vector<std::string> names_to_remap; //!< Names of output layers that will be processed in PostProc function.
- };
- } // namespace detail
- template<typename Net>
- struct PortCfg {
- using In = std::array
- < std::string
- , std::tuple_size<typename Net::InArgs>::value >;
- using Out = std::array
- < std::string
- , std::tuple_size<typename Net::OutArgs>::value >;
- using NormCoefs = std::array
- < cv::Scalar
- , std::tuple_size<typename Net::InArgs>::value >;
- using Normalize = std::array
- < bool
- , std::tuple_size<typename Net::InArgs>::value >;
- };
- /**
- * Contains description of inference parameters and kit of functions that
- * fill this parameters.
- */
- template<typename Net> class Params {
- public:
- /** @brief Class constructor.
- Constructs Params based on model information and sets default values for other
- inference description parameters.
- @param model Path to model (.onnx file).
- */
- Params(const std::string &model) {
- desc.model_path = model;
- desc.num_in = std::tuple_size<typename Net::InArgs>::value;
- desc.num_out = std::tuple_size<typename Net::OutArgs>::value;
- };
- /** @brief Specifies sequence of network input layers names for inference.
- The function is used to associate data of graph inputs with input layers of
- network topology. Number of names has to match the number of network inputs. If a network
- has only one input layer, there is no need to call it as the layer is
- associated with input automatically but this doesn't prevent you from
- doing it yourself. Count of names has to match to number of network inputs.
- @param layer_names std::array<std::string, N> where N is the number of inputs
- as defined in the @ref G_API_NET. Contains names of input layers.
- @return the reference on modified object.
- */
- Params<Net>& cfgInputLayers(const typename PortCfg<Net>::In &layer_names) {
- desc.input_names.assign(layer_names.begin(), layer_names.end());
- return *this;
- }
- /** @brief Specifies sequence of output layers names for inference.
- The function is used to associate data of graph outputs with output layers of
- network topology. If a network has only one output layer, there is no need to call it
- as the layer is associated with output automatically but this doesn't prevent
- you from doing it yourself. Count of names has to match to number of network
- outputs or you can set your own output but for this case you have to
- additionally use @ref cfgPostProc function.
- @param layer_names std::array<std::string, N> where N is the number of outputs
- as defined in the @ref G_API_NET. Contains names of output layers.
- @return the reference on modified object.
- */
- Params<Net>& cfgOutputLayers(const typename PortCfg<Net>::Out &layer_names) {
- desc.output_names.assign(layer_names.begin(), layer_names.end());
- return *this;
- }
- /** @brief Sets a constant input.
- The function is used to set constant input. This input has to be
- a prepared tensor since preprocessing is disabled for this case. You should
- provide name of network layer which will receive provided data.
- @param layer_name Name of network layer.
- @param data cv::Mat that contains data which will be associated with network layer.
- @param hint Type of input (TENSOR).
- @return the reference on modified object.
- */
- Params<Net>& constInput(const std::string &layer_name,
- const cv::Mat &data,
- TraitAs hint = TraitAs::TENSOR) {
- desc.const_inputs[layer_name] = {data, hint};
- return *this;
- }
- /** @brief Specifies mean value and standard deviation for preprocessing.
- The function is used to set mean value and standard deviation for preprocessing
- of input data.
- @param m std::array<cv::Scalar, N> where N is the number of inputs
- as defined in the @ref G_API_NET. Contains mean values.
- @param s std::array<cv::Scalar, N> where N is the number of inputs
- as defined in the @ref G_API_NET. Contains standard deviation values.
- @return the reference on modified object.
- */
- Params<Net>& cfgMeanStd(const typename PortCfg<Net>::NormCoefs &m,
- const typename PortCfg<Net>::NormCoefs &s) {
- desc.mean.assign(m.begin(), m.end());
- desc.stdev.assign(s.begin(), s.end());
- return *this;
- }
- /** @brief Configures graph output and provides the post processing function from user.
- The function is used when you work with networks with dynamic outputs.
- Since we can't know dimensions of inference result needs provide them for
- construction of graph output. This dimensions can differ from inference result.
- So you have to provide @ref PostProc function that gets information from inference
- result and fill output which is constructed by dimensions from out_metas.
- @param out_metas Out meta information about your output (type, dimension).
- @param remap_function Post processing function, which has two parameters. First is onnx
- result, second is graph output. Both parameters is std::map that contain pair of
- layer's name and cv::Mat.
- @return the reference on modified object.
- */
- Params<Net>& cfgPostProc(const std::vector<cv::GMatDesc> &out_metas,
- const PostProc &remap_function) {
- desc.out_metas = out_metas;
- desc.custom_post_proc = remap_function;
- return *this;
- }
- /** @overload
- Function with a rvalue parameters.
- @param out_metas rvalue out meta information about your output (type, dimension).
- @param remap_function rvalue post processing function, which has two parameters. First is onnx
- result, second is graph output. Both parameters is std::map that contain pair of
- layer's name and cv::Mat.
- @return the reference on modified object.
- */
- Params<Net>& cfgPostProc(std::vector<cv::GMatDesc> &&out_metas,
- PostProc &&remap_function) {
- desc.out_metas = std::move(out_metas);
- desc.custom_post_proc = std::move(remap_function);
- return *this;
- }
- /** @overload
- The function has additional parameter names_to_remap. This parameter provides
- information about output layers which will be used for inference and post
- processing function.
- @param out_metas Out meta information.
- @param remap_function Post processing function.
- @param names_to_remap Names of output layers. network's inference will
- be done on these layers. Inference's result will be processed in post processing
- function using these names.
- @return the reference on modified object.
- */
- Params<Net>& cfgPostProc(const std::vector<cv::GMatDesc> &out_metas,
- const PostProc &remap_function,
- const std::vector<std::string> &names_to_remap) {
- desc.out_metas = out_metas;
- desc.custom_post_proc = remap_function;
- desc.names_to_remap = names_to_remap;
- return *this;
- }
- /** @overload
- Function with a rvalue parameters and additional parameter names_to_remap.
- @param out_metas rvalue out meta information.
- @param remap_function rvalue post processing function.
- @param names_to_remap rvalue names of output layers. network's inference will
- be done on these layers. Inference's result will be processed in post processing
- function using these names.
- @return the reference on modified object.
- */
- Params<Net>& cfgPostProc(std::vector<cv::GMatDesc> &&out_metas,
- PostProc &&remap_function,
- std::vector<std::string> &&names_to_remap) {
- desc.out_metas = std::move(out_metas);
- desc.custom_post_proc = std::move(remap_function);
- desc.names_to_remap = std::move(names_to_remap);
- return *this;
- }
- /** @brief Specifies normalize parameter for preprocessing.
- The function is used to set normalize parameter for preprocessing of input data.
- @param normalizations std::array<cv::Scalar, N> where N is the number of inputs
- as defined in the @ref G_API_NET. Сontains bool values that enabled or disabled
- normalize of input data.
- @return the reference on modified object.
- */
- Params<Net>& cfgNormalize(const typename PortCfg<Net>::Normalize &normalizations) {
- desc.normalize.assign(normalizations.begin(), normalizations.end());
- return *this;
- }
- // BEGIN(G-API's network parametrization API)
- GBackend backend() const { return cv::gapi::onnx::backend(); }
- std::string tag() const { return Net::tag(); }
- cv::util::any params() const { return { desc }; }
- // END(G-API's network parametrization API)
- protected:
- detail::ParamDesc desc;
- };
- } // namespace onnx
- } // namespace gapi
- } // namespace cv
- #endif // OPENCV_GAPI_INFER_HPP
|