1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819 |
- /***********************************************************************
- * Software License Agreement (BSD License)
- *
- * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
- * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
- *
- * THE BSD LICENSE
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *************************************************************************/
- #ifndef OPENCV_FLANN_KMEANS_INDEX_H_
- #define OPENCV_FLANN_KMEANS_INDEX_H_
- //! @cond IGNORED
- #include <algorithm>
- #include <map>
- #include <limits>
- #include <cmath>
- #include "general.h"
- #include "nn_index.h"
- #include "dist.h"
- #include "matrix.h"
- #include "result_set.h"
- #include "heap.h"
- #include "allocator.h"
- #include "random.h"
- #include "saving.h"
- #include "logger.h"
- #define BITS_PER_CHAR 8
- #define BITS_PER_BASE 2 // for DNA/RNA sequences
- #define BASE_PER_CHAR (BITS_PER_CHAR/BITS_PER_BASE)
- #define HISTOS_PER_BASE (1<<BITS_PER_BASE)
- namespace cvflann
- {
- struct KMeansIndexParams : public IndexParams
- {
- KMeansIndexParams(int branching = 32, int iterations = 11,
- flann_centers_init_t centers_init = FLANN_CENTERS_RANDOM,
- float cb_index = 0.2, int trees = 1 )
- {
- (*this)["algorithm"] = FLANN_INDEX_KMEANS;
- // branching factor
- (*this)["branching"] = branching;
- // max iterations to perform in one kmeans clustering (kmeans tree)
- (*this)["iterations"] = iterations;
- // algorithm used for picking the initial cluster centers for kmeans tree
- (*this)["centers_init"] = centers_init;
- // cluster boundary index. Used when searching the kmeans tree
- (*this)["cb_index"] = cb_index;
- // number of kmeans trees to search in
- (*this)["trees"] = trees;
- }
- };
- /**
- * Hierarchical kmeans index
- *
- * Contains a tree constructed through a hierarchical kmeans clustering
- * and other information for indexing a set of points for nearest-neighbour matching.
- */
- template <typename Distance>
- class KMeansIndex : public NNIndex<Distance>
- {
- public:
- typedef typename Distance::ElementType ElementType;
- typedef typename Distance::ResultType DistanceType;
- typedef typename Distance::CentersType CentersType;
- typedef typename Distance::is_kdtree_distance is_kdtree_distance;
- typedef typename Distance::is_vector_space_distance is_vector_space_distance;
- typedef void (KMeansIndex::* centersAlgFunction)(int, int*, int, int*, int&);
- /**
- * The function used for choosing the cluster centers.
- */
- centersAlgFunction chooseCenters;
- /**
- * Chooses the initial centers in the k-means clustering in a random manner.
- *
- * Params:
- * k = number of centers
- * vecs = the dataset of points
- * indices = indices in the dataset
- * indices_length = length of indices vector
- *
- */
- void chooseCentersRandom(int k, int* indices, int indices_length, int* centers, int& centers_length)
- {
- UniqueRandom r(indices_length);
- int index;
- for (index=0; index<k; ++index) {
- bool duplicate = true;
- int rnd;
- while (duplicate) {
- duplicate = false;
- rnd = r.next();
- if (rnd<0) {
- centers_length = index;
- return;
- }
- centers[index] = indices[rnd];
- for (int j=0; j<index; ++j) {
- DistanceType sq = distance_(dataset_[centers[index]], dataset_[centers[j]], dataset_.cols);
- if (sq<1e-16) {
- duplicate = true;
- }
- }
- }
- }
- centers_length = index;
- }
- /**
- * Chooses the initial centers in the k-means using Gonzales' algorithm
- * so that the centers are spaced apart from each other.
- *
- * Params:
- * k = number of centers
- * vecs = the dataset of points
- * indices = indices in the dataset
- * Returns:
- */
- void chooseCentersGonzales(int k, int* indices, int indices_length, int* centers, int& centers_length)
- {
- int n = indices_length;
- int rnd = rand_int(n);
- CV_DbgAssert(rnd >=0 && rnd < n);
- centers[0] = indices[rnd];
- int index;
- for (index=1; index<k; ++index) {
- int best_index = -1;
- DistanceType best_val = 0;
- for (int j=0; j<n; ++j) {
- DistanceType dist = distance_(dataset_[centers[0]],dataset_[indices[j]],dataset_.cols);
- for (int i=1; i<index; ++i) {
- DistanceType tmp_dist = distance_(dataset_[centers[i]],dataset_[indices[j]],dataset_.cols);
- if (tmp_dist<dist) {
- dist = tmp_dist;
- }
- }
- if (dist>best_val) {
- best_val = dist;
- best_index = j;
- }
- }
- if (best_index!=-1) {
- centers[index] = indices[best_index];
- }
- else {
- break;
- }
- }
- centers_length = index;
- }
- /**
- * Chooses the initial centers in the k-means using the algorithm
- * proposed in the KMeans++ paper:
- * Arthur, David; Vassilvitskii, Sergei - k-means++: The Advantages of Careful Seeding
- *
- * Implementation of this function was converted from the one provided in Arthur's code.
- *
- * Params:
- * k = number of centers
- * vecs = the dataset of points
- * indices = indices in the dataset
- * Returns:
- */
- void chooseCentersKMeanspp(int k, int* indices, int indices_length, int* centers, int& centers_length)
- {
- int n = indices_length;
- double currentPot = 0;
- DistanceType* closestDistSq = new DistanceType[n];
- // Choose one random center and set the closestDistSq values
- int index = rand_int(n);
- CV_DbgAssert(index >=0 && index < n);
- centers[0] = indices[index];
- for (int i = 0; i < n; i++) {
- closestDistSq[i] = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
- closestDistSq[i] = ensureSquareDistance<Distance>( closestDistSq[i] );
- currentPot += closestDistSq[i];
- }
- const int numLocalTries = 1;
- // Choose each center
- int centerCount;
- for (centerCount = 1; centerCount < k; centerCount++) {
- // Repeat several trials
- double bestNewPot = -1;
- int bestNewIndex = -1;
- for (int localTrial = 0; localTrial < numLocalTries; localTrial++) {
- // Choose our center - have to be slightly careful to return a valid answer even accounting
- // for possible rounding errors
- double randVal = rand_double(currentPot);
- for (index = 0; index < n-1; index++) {
- if (randVal <= closestDistSq[index]) break;
- else randVal -= closestDistSq[index];
- }
- // Compute the new potential
- double newPot = 0;
- for (int i = 0; i < n; i++) {
- DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[index]], dataset_.cols);
- newPot += std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
- }
- // Store the best result
- if ((bestNewPot < 0)||(newPot < bestNewPot)) {
- bestNewPot = newPot;
- bestNewIndex = index;
- }
- }
- // Add the appropriate center
- centers[centerCount] = indices[bestNewIndex];
- currentPot = bestNewPot;
- for (int i = 0; i < n; i++) {
- DistanceType dist = distance_(dataset_[indices[i]], dataset_[indices[bestNewIndex]], dataset_.cols);
- closestDistSq[i] = std::min( ensureSquareDistance<Distance>(dist), closestDistSq[i] );
- }
- }
- centers_length = centerCount;
- delete[] closestDistSq;
- }
- public:
- flann_algorithm_t getType() const CV_OVERRIDE
- {
- return FLANN_INDEX_KMEANS;
- }
- template<class CentersContainerType>
- class KMeansDistanceComputer : public cv::ParallelLoopBody
- {
- public:
- KMeansDistanceComputer(Distance _distance, const Matrix<ElementType>& _dataset,
- const int _branching, const int* _indices, const CentersContainerType& _dcenters,
- const size_t _veclen, std::vector<int> &_new_centroids,
- std::vector<DistanceType> &_sq_dists)
- : distance(_distance)
- , dataset(_dataset)
- , branching(_branching)
- , indices(_indices)
- , dcenters(_dcenters)
- , veclen(_veclen)
- , new_centroids(_new_centroids)
- , sq_dists(_sq_dists)
- {
- }
- void operator()(const cv::Range& range) const CV_OVERRIDE
- {
- const int begin = range.start;
- const int end = range.end;
- for( int i = begin; i<end; ++i)
- {
- DistanceType sq_dist(distance(dataset[indices[i]], dcenters[0], veclen));
- int new_centroid(0);
- for (int j=1; j<branching; ++j) {
- DistanceType new_sq_dist = distance(dataset[indices[i]], dcenters[j], veclen);
- if (sq_dist>new_sq_dist) {
- new_centroid = j;
- sq_dist = new_sq_dist;
- }
- }
- sq_dists[i] = sq_dist;
- new_centroids[i] = new_centroid;
- }
- }
- private:
- Distance distance;
- const Matrix<ElementType>& dataset;
- const int branching;
- const int* indices;
- const CentersContainerType& dcenters;
- const size_t veclen;
- std::vector<int> &new_centroids;
- std::vector<DistanceType> &sq_dists;
- KMeansDistanceComputer& operator=( const KMeansDistanceComputer & ) { return *this; }
- };
- /**
- * Index constructor
- *
- * Params:
- * inputData = dataset with the input features
- * params = parameters passed to the hierarchical k-means algorithm
- */
- KMeansIndex(const Matrix<ElementType>& inputData, const IndexParams& params = KMeansIndexParams(),
- Distance d = Distance())
- : dataset_(inputData), index_params_(params), root_(NULL), indices_(NULL), distance_(d)
- {
- memoryCounter_ = 0;
- size_ = dataset_.rows;
- veclen_ = dataset_.cols;
- branching_ = get_param(params,"branching",32);
- trees_ = get_param(params,"trees",1);
- iterations_ = get_param(params,"iterations",11);
- if (iterations_<0) {
- iterations_ = (std::numeric_limits<int>::max)();
- }
- centers_init_ = get_param(params,"centers_init",FLANN_CENTERS_RANDOM);
- if (centers_init_==FLANN_CENTERS_RANDOM) {
- chooseCenters = &KMeansIndex::chooseCentersRandom;
- }
- else if (centers_init_==FLANN_CENTERS_GONZALES) {
- chooseCenters = &KMeansIndex::chooseCentersGonzales;
- }
- else if (centers_init_==FLANN_CENTERS_KMEANSPP) {
- chooseCenters = &KMeansIndex::chooseCentersKMeanspp;
- }
- else {
- FLANN_THROW(cv::Error::StsBadArg, "Unknown algorithm for choosing initial centers.");
- }
- cb_index_ = 0.4f;
- root_ = new KMeansNodePtr[trees_];
- indices_ = new int*[trees_];
- for (int i=0; i<trees_; ++i) {
- root_[i] = NULL;
- indices_[i] = NULL;
- }
- }
- KMeansIndex(const KMeansIndex&);
- KMeansIndex& operator=(const KMeansIndex&);
- /**
- * Index destructor.
- *
- * Release the memory used by the index.
- */
- virtual ~KMeansIndex()
- {
- if (root_ != NULL) {
- free_centers();
- delete[] root_;
- }
- if (indices_!=NULL) {
- free_indices();
- delete[] indices_;
- }
- }
- /**
- * Returns size of index.
- */
- size_t size() const CV_OVERRIDE
- {
- return size_;
- }
- /**
- * Returns the length of an index feature.
- */
- size_t veclen() const CV_OVERRIDE
- {
- return veclen_;
- }
- void set_cb_index( float index)
- {
- cb_index_ = index;
- }
- /**
- * Computes the inde memory usage
- * Returns: memory used by the index
- */
- int usedMemory() const CV_OVERRIDE
- {
- return pool_.usedMemory+pool_.wastedMemory+memoryCounter_;
- }
- /**
- * Builds the index
- */
- void buildIndex() CV_OVERRIDE
- {
- if (branching_<2) {
- FLANN_THROW(cv::Error::StsError, "Branching factor must be at least 2");
- }
- free_indices();
- for (int i=0; i<trees_; ++i) {
- indices_[i] = new int[size_];
- for (size_t j=0; j<size_; ++j) {
- indices_[i][j] = int(j);
- }
- root_[i] = pool_.allocate<KMeansNode>();
- std::memset(root_[i], 0, sizeof(KMeansNode));
- Distance* dummy = NULL;
- computeNodeStatistics(root_[i], indices_[i], (unsigned int)size_, dummy);
- computeClustering(root_[i], indices_[i], (int)size_, branching_,0);
- }
- }
- void saveIndex(FILE* stream) CV_OVERRIDE
- {
- save_value(stream, branching_);
- save_value(stream, iterations_);
- save_value(stream, memoryCounter_);
- save_value(stream, cb_index_);
- save_value(stream, trees_);
- for (int i=0; i<trees_; ++i) {
- save_value(stream, *indices_[i], (int)size_);
- save_tree(stream, root_[i], i);
- }
- }
- void loadIndex(FILE* stream) CV_OVERRIDE
- {
- if (indices_!=NULL) {
- free_indices();
- delete[] indices_;
- }
- if (root_!=NULL) {
- free_centers();
- }
- load_value(stream, branching_);
- load_value(stream, iterations_);
- load_value(stream, memoryCounter_);
- load_value(stream, cb_index_);
- load_value(stream, trees_);
- indices_ = new int*[trees_];
- for (int i=0; i<trees_; ++i) {
- indices_[i] = new int[size_];
- load_value(stream, *indices_[i], size_);
- load_tree(stream, root_[i], i);
- }
- index_params_["algorithm"] = getType();
- index_params_["branching"] = branching_;
- index_params_["trees"] = trees_;
- index_params_["iterations"] = iterations_;
- index_params_["centers_init"] = centers_init_;
- index_params_["cb_index"] = cb_index_;
- }
- /**
- * Find set of nearest neighbors to vec. Their indices are stored inside
- * the result object.
- *
- * Params:
- * result = the result object in which the indices of the nearest-neighbors are stored
- * vec = the vector for which to search the nearest neighbors
- * searchParams = parameters that influence the search algorithm (checks, cb_index)
- */
- void findNeighbors(ResultSet<DistanceType>& result, const ElementType* vec, const SearchParams& searchParams) CV_OVERRIDE
- {
- const int maxChecks = get_param(searchParams,"checks",32);
- if (maxChecks==FLANN_CHECKS_UNLIMITED) {
- findExactNN(root_[0], result, vec);
- }
- else {
- // Priority queue storing intermediate branches in the best-bin-first search
- const cv::Ptr<Heap<BranchSt>>& heap = Heap<BranchSt>::getPooledInstance(cv::utils::getThreadID(), (int)size_);
- int checks = 0;
- for (int i=0; i<trees_; ++i) {
- findNN(root_[i], result, vec, checks, maxChecks, heap);
- if ((checks >= maxChecks) && result.full())
- break;
- }
- BranchSt branch;
- while (heap->popMin(branch) && (checks<maxChecks || !result.full())) {
- KMeansNodePtr node = branch.node;
- findNN(node, result, vec, checks, maxChecks, heap);
- }
- CV_Assert(result.full());
- }
- }
- /**
- * Clustering function that takes a cut in the hierarchical k-means
- * tree and return the clusters centers of that clustering.
- * Params:
- * numClusters = number of clusters to have in the clustering computed
- * Returns: number of cluster centers
- */
- int getClusterCenters(Matrix<CentersType>& centers)
- {
- int numClusters = centers.rows;
- if (numClusters<1) {
- FLANN_THROW(cv::Error::StsBadArg, "Number of clusters must be at least 1");
- }
- DistanceType variance;
- KMeansNodePtr* clusters = new KMeansNodePtr[numClusters];
- int clusterCount = getMinVarianceClusters(root_[0], clusters, numClusters, variance);
- Logger::info("Clusters requested: %d, returning %d\n",numClusters, clusterCount);
- for (int i=0; i<clusterCount; ++i) {
- CentersType* center = clusters[i]->pivot;
- for (size_t j=0; j<veclen_; ++j) {
- centers[i][j] = center[j];
- }
- }
- delete[] clusters;
- return clusterCount;
- }
- IndexParams getParameters() const CV_OVERRIDE
- {
- return index_params_;
- }
- private:
- /**
- * Structure representing a node in the hierarchical k-means tree.
- */
- struct KMeansNode
- {
- /**
- * The cluster center.
- */
- CentersType* pivot;
- /**
- * The cluster radius.
- */
- DistanceType radius;
- /**
- * The cluster mean radius.
- */
- DistanceType mean_radius;
- /**
- * The cluster variance.
- */
- DistanceType variance;
- /**
- * The cluster size (number of points in the cluster)
- */
- int size;
- /**
- * Child nodes (only for non-terminal nodes)
- */
- KMeansNode** childs;
- /**
- * Node points (only for terminal nodes)
- */
- int* indices;
- /**
- * Level
- */
- int level;
- };
- typedef KMeansNode* KMeansNodePtr;
- /**
- * Alias definition for a nicer syntax.
- */
- typedef BranchStruct<KMeansNodePtr, DistanceType> BranchSt;
- void save_tree(FILE* stream, KMeansNodePtr node, int num)
- {
- save_value(stream, *node);
- save_value(stream, *(node->pivot), (int)veclen_);
- if (node->childs==NULL) {
- int indices_offset = (int)(node->indices - indices_[num]);
- save_value(stream, indices_offset);
- }
- else {
- for(int i=0; i<branching_; ++i) {
- save_tree(stream, node->childs[i], num);
- }
- }
- }
- void load_tree(FILE* stream, KMeansNodePtr& node, int num)
- {
- node = pool_.allocate<KMeansNode>();
- load_value(stream, *node);
- node->pivot = new CentersType[veclen_];
- load_value(stream, *(node->pivot), (int)veclen_);
- if (node->childs==NULL) {
- int indices_offset;
- load_value(stream, indices_offset);
- node->indices = indices_[num] + indices_offset;
- }
- else {
- node->childs = pool_.allocate<KMeansNodePtr>(branching_);
- for(int i=0; i<branching_; ++i) {
- load_tree(stream, node->childs[i], num);
- }
- }
- }
- /**
- * Helper function
- */
- void free_centers(KMeansNodePtr node)
- {
- delete[] node->pivot;
- if (node->childs!=NULL) {
- for (int k=0; k<branching_; ++k) {
- free_centers(node->childs[k]);
- }
- }
- }
- void free_centers()
- {
- if (root_ != NULL) {
- for(int i=0; i<trees_; ++i) {
- if (root_[i] != NULL) {
- free_centers(root_[i]);
- }
- }
- }
- }
- /**
- * Release the inner elements of indices[]
- */
- void free_indices()
- {
- if (indices_!=NULL) {
- for(int i=0; i<trees_; ++i) {
- if (indices_[i]!=NULL) {
- delete[] indices_[i];
- indices_[i] = NULL;
- }
- }
- }
- }
- /**
- * Computes the statistics of a node (mean, radius, variance).
- *
- * Params:
- * node = the node to use
- * indices = array of indices of the points belonging to the node
- * indices_length = number of indices in the array
- */
- void computeNodeStatistics(KMeansNodePtr node, int* indices, unsigned int indices_length)
- {
- DistanceType variance = 0;
- CentersType* mean = new CentersType[veclen_];
- memoryCounter_ += int(veclen_*sizeof(CentersType));
- memset(mean,0,veclen_*sizeof(CentersType));
- for (unsigned int i=0; i<indices_length; ++i) {
- ElementType* vec = dataset_[indices[i]];
- for (size_t j=0; j<veclen_; ++j) {
- mean[j] += vec[j];
- }
- variance += distance_(vec, ZeroIterator<ElementType>(), veclen_);
- }
- float length = static_cast<float>(indices_length);
- for (size_t j=0; j<veclen_; ++j) {
- mean[j] = cvflann::round<CentersType>( mean[j] / static_cast<double>(indices_length) );
- }
- variance /= static_cast<DistanceType>( length );
- variance -= distance_(mean, ZeroIterator<ElementType>(), veclen_);
- DistanceType radius = 0;
- for (unsigned int i=0; i<indices_length; ++i) {
- DistanceType tmp = distance_(mean, dataset_[indices[i]], veclen_);
- if (tmp>radius) {
- radius = tmp;
- }
- }
- node->variance = variance;
- node->radius = radius;
- node->pivot = mean;
- }
- void computeBitfieldNodeStatistics(KMeansNodePtr node, int* indices,
- unsigned int indices_length)
- {
- const unsigned int accumulator_veclen = static_cast<unsigned int>(
- veclen_*sizeof(CentersType)*BITS_PER_CHAR);
- unsigned long long variance = 0ull;
- CentersType* mean = new CentersType[veclen_];
- memoryCounter_ += int(veclen_*sizeof(CentersType));
- unsigned int* mean_accumulator = new unsigned int[accumulator_veclen];
- memset(mean_accumulator, 0, sizeof(unsigned int)*accumulator_veclen);
- for (unsigned int i=0; i<indices_length; ++i) {
- variance += static_cast<unsigned long long>( ensureSquareDistance<Distance>(
- distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_)));
- unsigned char* vec = (unsigned char*)dataset_[indices[i]];
- for (size_t k=0, l=0; k<accumulator_veclen; k+=BITS_PER_CHAR, ++l) {
- mean_accumulator[k] += (vec[l]) & 0x01;
- mean_accumulator[k+1] += (vec[l]>>1) & 0x01;
- mean_accumulator[k+2] += (vec[l]>>2) & 0x01;
- mean_accumulator[k+3] += (vec[l]>>3) & 0x01;
- mean_accumulator[k+4] += (vec[l]>>4) & 0x01;
- mean_accumulator[k+5] += (vec[l]>>5) & 0x01;
- mean_accumulator[k+6] += (vec[l]>>6) & 0x01;
- mean_accumulator[k+7] += (vec[l]>>7) & 0x01;
- }
- }
- double cnt = static_cast<double>(indices_length);
- unsigned char* char_mean = (unsigned char*)mean;
- for (size_t k=0, l=0; k<accumulator_veclen; k+=BITS_PER_CHAR, ++l) {
- char_mean[l] = static_cast<unsigned char>(
- (((int)(0.5 + (double)(mean_accumulator[k]) / cnt)))
- | (((int)(0.5 + (double)(mean_accumulator[k+1]) / cnt))<<1)
- | (((int)(0.5 + (double)(mean_accumulator[k+2]) / cnt))<<2)
- | (((int)(0.5 + (double)(mean_accumulator[k+3]) / cnt))<<3)
- | (((int)(0.5 + (double)(mean_accumulator[k+4]) / cnt))<<4)
- | (((int)(0.5 + (double)(mean_accumulator[k+5]) / cnt))<<5)
- | (((int)(0.5 + (double)(mean_accumulator[k+6]) / cnt))<<6)
- | (((int)(0.5 + (double)(mean_accumulator[k+7]) / cnt))<<7));
- }
- variance = static_cast<unsigned long long>(
- 0.5 + static_cast<double>(variance) / static_cast<double>(indices_length));
- variance -= static_cast<unsigned long long>(
- ensureSquareDistance<Distance>(
- distance_(mean, ZeroIterator<ElementType>(), veclen_)));
- DistanceType radius = 0;
- for (unsigned int i=0; i<indices_length; ++i) {
- DistanceType tmp = distance_(mean, dataset_[indices[i]], veclen_);
- if (tmp>radius) {
- radius = tmp;
- }
- }
- node->variance = static_cast<DistanceType>(variance);
- node->radius = radius;
- node->pivot = mean;
- delete[] mean_accumulator;
- }
- void computeDnaNodeStatistics(KMeansNodePtr node, int* indices,
- unsigned int indices_length)
- {
- const unsigned int histos_veclen = static_cast<unsigned int>(
- veclen_*sizeof(CentersType)*(HISTOS_PER_BASE*BASE_PER_CHAR));
- unsigned long long variance = 0ull;
- unsigned int* histograms = new unsigned int[histos_veclen];
- memset(histograms, 0, sizeof(unsigned int)*histos_veclen);
- for (unsigned int i=0; i<indices_length; ++i) {
- variance += static_cast<unsigned long long>( ensureSquareDistance<Distance>(
- distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_)));
- unsigned char* vec = (unsigned char*)dataset_[indices[i]];
- for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) {
- histograms[k + ((vec[l]) & 0x03)]++;
- histograms[k + 4 + ((vec[l]>>2) & 0x03)]++;
- histograms[k + 8 + ((vec[l]>>4) & 0x03)]++;
- histograms[k +12 + ((vec[l]>>6) & 0x03)]++;
- }
- }
- CentersType* mean = new CentersType[veclen_];
- memoryCounter_ += int(veclen_*sizeof(CentersType));
- unsigned char* char_mean = (unsigned char*)mean;
- unsigned int* h = histograms;
- for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) {
- char_mean[l] = (h[k] > h[k+1] ? h[k+2] > h[k+3] ? h[k] > h[k+2] ? 0x00 : 0x10
- : h[k] > h[k+3] ? 0x00 : 0x11
- : h[k+2] > h[k+3] ? h[k+1] > h[k+2] ? 0x01 : 0x10
- : h[k+1] > h[k+3] ? 0x01 : 0x11)
- | (h[k+4]>h[k+5] ? h[k+6] > h[k+7] ? h[k+4] > h[k+6] ? 0x00 : 0x1000
- : h[k+4] > h[k+7] ? 0x00 : 0x1100
- : h[k+6] > h[k+7] ? h[k+5] > h[k+6] ? 0x0100 : 0x1000
- : h[k+5] > h[k+7] ? 0x0100 : 0x1100)
- | (h[k+8]>h[k+9] ? h[k+10]>h[k+11] ? h[k+8] >h[k+10] ? 0x00 : 0x100000
- : h[k+8] >h[k+11] ? 0x00 : 0x110000
- : h[k+10]>h[k+11] ? h[k+9] >h[k+10] ? 0x010000 : 0x100000
- : h[k+9] >h[k+11] ? 0x010000 : 0x110000)
- | (h[k+12]>h[k+13] ? h[k+14]>h[k+15] ? h[k+12] >h[k+14] ? 0x00 : 0x10000000
- : h[k+12] >h[k+15] ? 0x00 : 0x11000000
- : h[k+14]>h[k+15] ? h[k+13] >h[k+14] ? 0x01000000 : 0x10000000
- : h[k+13] >h[k+15] ? 0x01000000 : 0x11000000);
- }
- variance = static_cast<unsigned long long>(
- 0.5 + static_cast<double>(variance) / static_cast<double>(indices_length));
- variance -= static_cast<unsigned long long>(
- ensureSquareDistance<Distance>(
- distance_(mean, ZeroIterator<ElementType>(), veclen_)));
- DistanceType radius = 0;
- for (unsigned int i=0; i<indices_length; ++i) {
- DistanceType tmp = distance_(mean, dataset_[indices[i]], veclen_);
- if (tmp>radius) {
- radius = tmp;
- }
- }
- node->variance = static_cast<DistanceType>(variance);
- node->radius = radius;
- node->pivot = mean;
- delete[] histograms;
- }
- template<typename DistType>
- void computeNodeStatistics(KMeansNodePtr node, int* indices,
- unsigned int indices_length,
- const DistType* identifier)
- {
- (void)identifier;
- computeNodeStatistics(node, indices, indices_length);
- }
- void computeNodeStatistics(KMeansNodePtr node, int* indices,
- unsigned int indices_length,
- const cvflann::HammingLUT* identifier)
- {
- (void)identifier;
- computeBitfieldNodeStatistics(node, indices, indices_length);
- }
- void computeNodeStatistics(KMeansNodePtr node, int* indices,
- unsigned int indices_length,
- const cvflann::Hamming<unsigned char>* identifier)
- {
- (void)identifier;
- computeBitfieldNodeStatistics(node, indices, indices_length);
- }
- void computeNodeStatistics(KMeansNodePtr node, int* indices,
- unsigned int indices_length,
- const cvflann::Hamming2<unsigned char>* identifier)
- {
- (void)identifier;
- computeBitfieldNodeStatistics(node, indices, indices_length);
- }
- void computeNodeStatistics(KMeansNodePtr node, int* indices,
- unsigned int indices_length,
- const cvflann::DNAmmingLUT* identifier)
- {
- (void)identifier;
- computeDnaNodeStatistics(node, indices, indices_length);
- }
- void computeNodeStatistics(KMeansNodePtr node, int* indices,
- unsigned int indices_length,
- const cvflann::DNAmming2<unsigned char>* identifier)
- {
- (void)identifier;
- computeDnaNodeStatistics(node, indices, indices_length);
- }
- void refineClustering(int* indices, int indices_length, int branching, CentersType** centers,
- std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
- {
- cv::AutoBuffer<double> dcenters_buf(branching*veclen_);
- Matrix<double> dcenters(dcenters_buf.data(), branching, veclen_);
- bool converged = false;
- int iteration = 0;
- while (!converged && iteration<iterations_) {
- converged = true;
- iteration++;
- // compute the new cluster centers
- for (int i=0; i<branching; ++i) {
- memset(dcenters[i],0,sizeof(double)*veclen_);
- radiuses[i] = 0;
- }
- for (int i=0; i<indices_length; ++i) {
- ElementType* vec = dataset_[indices[i]];
- double* center = dcenters[belongs_to[i]];
- for (size_t k=0; k<veclen_; ++k) {
- center[k] += vec[k];
- }
- }
- for (int i=0; i<branching; ++i) {
- int cnt = count[i];
- for (size_t k=0; k<veclen_; ++k) {
- dcenters[i][k] /= cnt;
- }
- }
- std::vector<int> new_centroids(indices_length);
- std::vector<DistanceType> sq_dists(indices_length);
- // reassign points to clusters
- KMeansDistanceComputer<Matrix<double> > invoker(
- distance_, dataset_, branching, indices, dcenters, veclen_, new_centroids, sq_dists);
- parallel_for_(cv::Range(0, (int)indices_length), invoker);
- for (int i=0; i < (int)indices_length; ++i) {
- DistanceType sq_dist(sq_dists[i]);
- int new_centroid(new_centroids[i]);
- if (sq_dist > radiuses[new_centroid]) {
- radiuses[new_centroid] = sq_dist;
- }
- if (new_centroid != belongs_to[i]) {
- count[belongs_to[i]]--;
- count[new_centroid]++;
- belongs_to[i] = new_centroid;
- converged = false;
- }
- }
- for (int i=0; i<branching; ++i) {
- // if one cluster converges to an empty cluster,
- // move an element into that cluster
- if (count[i]==0) {
- int j = (i+1)%branching;
- while (count[j]<=1) {
- j = (j+1)%branching;
- }
- for (int k=0; k<indices_length; ++k) {
- if (belongs_to[k]==j) {
- // for cluster j, we move the furthest element from the center to the empty cluster i
- if ( distance_(dataset_[indices[k]], dcenters[j], veclen_) == radiuses[j] ) {
- belongs_to[k] = i;
- count[j]--;
- count[i]++;
- break;
- }
- }
- }
- converged = false;
- }
- }
- }
- for (int i=0; i<branching; ++i) {
- centers[i] = new CentersType[veclen_];
- memoryCounter_ += (int)(veclen_*sizeof(CentersType));
- for (size_t k=0; k<veclen_; ++k) {
- centers[i][k] = (CentersType)dcenters[i][k];
- }
- }
- }
- void refineBitfieldClustering(int* indices, int indices_length, int branching, CentersType** centers,
- std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
- {
- for (int i=0; i<branching; ++i) {
- centers[i] = new CentersType[veclen_];
- memoryCounter_ += (int)(veclen_*sizeof(CentersType));
- }
- const unsigned int accumulator_veclen = static_cast<unsigned int>(
- veclen_*sizeof(ElementType)*BITS_PER_CHAR);
- cv::AutoBuffer<unsigned int> dcenters_buf(branching*accumulator_veclen);
- Matrix<unsigned int> dcenters(dcenters_buf.data(), branching, accumulator_veclen);
- bool converged = false;
- int iteration = 0;
- while (!converged && iteration<iterations_) {
- converged = true;
- iteration++;
- // compute the new cluster centers
- for (int i=0; i<branching; ++i) {
- memset(dcenters[i],0,sizeof(unsigned int)*accumulator_veclen);
- radiuses[i] = 0;
- }
- for (int i=0; i<indices_length; ++i) {
- unsigned char* vec = (unsigned char*)dataset_[indices[i]];
- unsigned int* dcenter = dcenters[belongs_to[i]];
- for (size_t k=0, l=0; k<accumulator_veclen; k+=BITS_PER_CHAR, ++l) {
- dcenter[k] += (vec[l]) & 0x01;
- dcenter[k+1] += (vec[l]>>1) & 0x01;
- dcenter[k+2] += (vec[l]>>2) & 0x01;
- dcenter[k+3] += (vec[l]>>3) & 0x01;
- dcenter[k+4] += (vec[l]>>4) & 0x01;
- dcenter[k+5] += (vec[l]>>5) & 0x01;
- dcenter[k+6] += (vec[l]>>6) & 0x01;
- dcenter[k+7] += (vec[l]>>7) & 0x01;
- }
- }
- for (int i=0; i<branching; ++i) {
- double cnt = static_cast<double>(count[i]);
- unsigned int* dcenter = dcenters[i];
- unsigned char* charCenter = (unsigned char*)centers[i];
- for (size_t k=0, l=0; k<accumulator_veclen; k+=BITS_PER_CHAR, ++l) {
- charCenter[l] = static_cast<unsigned char>(
- (((int)(0.5 + (double)(dcenter[k]) / cnt)))
- | (((int)(0.5 + (double)(dcenter[k+1]) / cnt))<<1)
- | (((int)(0.5 + (double)(dcenter[k+2]) / cnt))<<2)
- | (((int)(0.5 + (double)(dcenter[k+3]) / cnt))<<3)
- | (((int)(0.5 + (double)(dcenter[k+4]) / cnt))<<4)
- | (((int)(0.5 + (double)(dcenter[k+5]) / cnt))<<5)
- | (((int)(0.5 + (double)(dcenter[k+6]) / cnt))<<6)
- | (((int)(0.5 + (double)(dcenter[k+7]) / cnt))<<7));
- }
- }
- std::vector<int> new_centroids(indices_length);
- std::vector<DistanceType> dists(indices_length);
- // reassign points to clusters
- KMeansDistanceComputer<ElementType**> invoker(
- distance_, dataset_, branching, indices, centers, veclen_, new_centroids, dists);
- parallel_for_(cv::Range(0, (int)indices_length), invoker);
- for (int i=0; i < indices_length; ++i) {
- DistanceType dist(dists[i]);
- int new_centroid(new_centroids[i]);
- if (dist > radiuses[new_centroid]) {
- radiuses[new_centroid] = dist;
- }
- if (new_centroid != belongs_to[i]) {
- count[belongs_to[i]]--;
- count[new_centroid]++;
- belongs_to[i] = new_centroid;
- converged = false;
- }
- }
- for (int i=0; i<branching; ++i) {
- // if one cluster converges to an empty cluster,
- // move an element into that cluster
- if (count[i]==0) {
- int j = (i+1)%branching;
- while (count[j]<=1) {
- j = (j+1)%branching;
- }
- for (int k=0; k<indices_length; ++k) {
- if (belongs_to[k]==j) {
- // for cluster j, we move the furthest element from the center to the empty cluster i
- if ( distance_(dataset_[indices[k]], centers[j], veclen_) == radiuses[j] ) {
- belongs_to[k] = i;
- count[j]--;
- count[i]++;
- break;
- }
- }
- }
- converged = false;
- }
- }
- }
- }
- void refineDnaClustering(int* indices, int indices_length, int branching, CentersType** centers,
- std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
- {
- for (int i=0; i<branching; ++i) {
- centers[i] = new CentersType[veclen_];
- memoryCounter_ += (int)(veclen_*sizeof(CentersType));
- }
- const unsigned int histos_veclen = static_cast<unsigned int>(
- veclen_*sizeof(CentersType)*(HISTOS_PER_BASE*BASE_PER_CHAR));
- cv::AutoBuffer<unsigned int> histos_buf(branching*histos_veclen);
- Matrix<unsigned int> histos(histos_buf.data(), branching, histos_veclen);
- bool converged = false;
- int iteration = 0;
- while (!converged && iteration<iterations_) {
- converged = true;
- iteration++;
- // compute the new cluster centers
- for (int i=0; i<branching; ++i) {
- memset(histos[i],0,sizeof(unsigned int)*histos_veclen);
- radiuses[i] = 0;
- }
- for (int i=0; i<indices_length; ++i) {
- unsigned char* vec = (unsigned char*)dataset_[indices[i]];
- unsigned int* h = histos[belongs_to[i]];
- for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) {
- h[k + ((vec[l]) & 0x03)]++;
- h[k + 4 + ((vec[l]>>2) & 0x03)]++;
- h[k + 8 + ((vec[l]>>4) & 0x03)]++;
- h[k +12 + ((vec[l]>>6) & 0x03)]++;
- }
- }
- for (int i=0; i<branching; ++i) {
- unsigned int* h = histos[i];
- unsigned char* charCenter = (unsigned char*)centers[i];
- for (size_t k=0, l=0; k<histos_veclen; k+=HISTOS_PER_BASE*BASE_PER_CHAR, ++l) {
- charCenter[l]= (h[k] > h[k+1] ? h[k+2] > h[k+3] ? h[k] > h[k+2] ? 0x00 : 0x10
- : h[k] > h[k+3] ? 0x00 : 0x11
- : h[k+2] > h[k+3] ? h[k+1] > h[k+2] ? 0x01 : 0x10
- : h[k+1] > h[k+3] ? 0x01 : 0x11)
- | (h[k+4]>h[k+5] ? h[k+6] > h[k+7] ? h[k+4] > h[k+6] ? 0x00 : 0x1000
- : h[k+4] > h[k+7] ? 0x00 : 0x1100
- : h[k+6] > h[k+7] ? h[k+5] > h[k+6] ? 0x0100 : 0x1000
- : h[k+5] > h[k+7] ? 0x0100 : 0x1100)
- | (h[k+8]>h[k+9] ? h[k+10]>h[k+11] ? h[k+8] >h[k+10] ? 0x00 : 0x100000
- : h[k+8] >h[k+11] ? 0x00 : 0x110000
- : h[k+10]>h[k+11] ? h[k+9] >h[k+10] ? 0x010000 : 0x100000
- : h[k+9] >h[k+11] ? 0x010000 : 0x110000)
- | (h[k+12]>h[k+13] ? h[k+14]>h[k+15] ? h[k+12] >h[k+14] ? 0x00 : 0x10000000
- : h[k+12] >h[k+15] ? 0x00 : 0x11000000
- : h[k+14]>h[k+15] ? h[k+13] >h[k+14] ? 0x01000000 : 0x10000000
- : h[k+13] >h[k+15] ? 0x01000000 : 0x11000000);
- }
- }
- std::vector<int> new_centroids(indices_length);
- std::vector<DistanceType> dists(indices_length);
- // reassign points to clusters
- KMeansDistanceComputer<ElementType**> invoker(
- distance_, dataset_, branching, indices, centers, veclen_, new_centroids, dists);
- parallel_for_(cv::Range(0, (int)indices_length), invoker);
- for (int i=0; i < indices_length; ++i) {
- DistanceType dist(dists[i]);
- int new_centroid(new_centroids[i]);
- if (dist > radiuses[new_centroid]) {
- radiuses[new_centroid] = dist;
- }
- if (new_centroid != belongs_to[i]) {
- count[belongs_to[i]]--;
- count[new_centroid]++;
- belongs_to[i] = new_centroid;
- converged = false;
- }
- }
- for (int i=0; i<branching; ++i) {
- // if one cluster converges to an empty cluster,
- // move an element into that cluster
- if (count[i]==0) {
- int j = (i+1)%branching;
- while (count[j]<=1) {
- j = (j+1)%branching;
- }
- for (int k=0; k<indices_length; ++k) {
- if (belongs_to[k]==j) {
- // for cluster j, we move the furthest element from the center to the empty cluster i
- if ( distance_(dataset_[indices[k]], centers[j], veclen_) == radiuses[j] ) {
- belongs_to[k] = i;
- count[j]--;
- count[i]++;
- break;
- }
- }
- }
- converged = false;
- }
- }
- }
- }
- void computeSubClustering(KMeansNodePtr node, int* indices, int indices_length,
- int branching, int level, CentersType** centers,
- std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
- {
- // compute kmeans clustering for each of the resulting clusters
- node->childs = pool_.allocate<KMeansNodePtr>(branching);
- int start = 0;
- int end = start;
- for (int c=0; c<branching; ++c) {
- int s = count[c];
- DistanceType variance = 0;
- DistanceType mean_radius =0;
- for (int i=0; i<indices_length; ++i) {
- if (belongs_to[i]==c) {
- DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_);
- variance += d;
- mean_radius += static_cast<DistanceType>( sqrt(d) );
- std::swap(indices[i],indices[end]);
- std::swap(belongs_to[i],belongs_to[end]);
- end++;
- }
- }
- variance /= s;
- mean_radius /= s;
- variance -= distance_(centers[c], ZeroIterator<ElementType>(), veclen_);
- node->childs[c] = pool_.allocate<KMeansNode>();
- std::memset(node->childs[c], 0, sizeof(KMeansNode));
- node->childs[c]->radius = radiuses[c];
- node->childs[c]->pivot = centers[c];
- node->childs[c]->variance = variance;
- node->childs[c]->mean_radius = mean_radius;
- computeClustering(node->childs[c],indices+start, end-start, branching, level+1);
- start=end;
- }
- }
- void computeAnyBitfieldSubClustering(KMeansNodePtr node, int* indices, int indices_length,
- int branching, int level, CentersType** centers,
- std::vector<DistanceType>& radiuses, int* belongs_to, int* count)
- {
- // compute kmeans clustering for each of the resulting clusters
- node->childs = pool_.allocate<KMeansNodePtr>(branching);
- int start = 0;
- int end = start;
- for (int c=0; c<branching; ++c) {
- int s = count[c];
- unsigned long long variance = 0ull;
- DistanceType mean_radius =0;
- for (int i=0; i<indices_length; ++i) {
- if (belongs_to[i]==c) {
- DistanceType d = distance_(dataset_[indices[i]], ZeroIterator<ElementType>(), veclen_);
- variance += static_cast<unsigned long long>( ensureSquareDistance<Distance>(d) );
- mean_radius += ensureSimpleDistance<Distance>(d);
- std::swap(indices[i],indices[end]);
- std::swap(belongs_to[i],belongs_to[end]);
- end++;
- }
- }
- mean_radius = static_cast<DistanceType>(
- 0.5f + static_cast<float>(mean_radius) / static_cast<float>(s));
- variance = static_cast<unsigned long long>(
- 0.5 + static_cast<double>(variance) / static_cast<double>(s));
- variance -= static_cast<unsigned long long>(
- ensureSquareDistance<Distance>(
- distance_(centers[c], ZeroIterator<ElementType>(), veclen_)));
- node->childs[c] = pool_.allocate<KMeansNode>();
- std::memset(node->childs[c], 0, sizeof(KMeansNode));
- node->childs[c]->radius = radiuses[c];
- node->childs[c]->pivot = centers[c];
- node->childs[c]->variance = static_cast<DistanceType>(variance);
- node->childs[c]->mean_radius = mean_radius;
- computeClustering(node->childs[c],indices+start, end-start, branching, level+1);
- start=end;
- }
- }
- template<typename DistType>
- void refineAndSplitClustering(
- KMeansNodePtr node, int* indices, int indices_length, int branching,
- int level, CentersType** centers, std::vector<DistanceType>& radiuses,
- int* belongs_to, int* count, const DistType* identifier)
- {
- (void)identifier;
- refineClustering(indices, indices_length, branching, centers, radiuses, belongs_to, count);
- computeSubClustering(node, indices, indices_length, branching,
- level, centers, radiuses, belongs_to, count);
- }
- /**
- * The methods responsible with doing the recursive hierarchical clustering on
- * binary vectors.
- * As some might have heard that KMeans on binary data doesn't make sense,
- * it's worth a little explanation why it actually fairly works. As
- * with the Hierarchical Clustering algortihm, we seed several centers for the
- * current node by picking some of its points. Then in a first pass each point
- * of the node is then related to its closest center. Now let's have a look at
- * the 5 central dimensions of the 9 following points:
- *
- * xxxxxx11100xxxxx (1)
- * xxxxxx11010xxxxx (2)
- * xxxxxx11001xxxxx (3)
- * xxxxxx10110xxxxx (4)
- * xxxxxx10101xxxxx (5)
- * xxxxxx10011xxxxx (6)
- * xxxxxx01110xxxxx (7)
- * xxxxxx01101xxxxx (8)
- * xxxxxx01011xxxxx (9)
- * sum _____
- * of 1: 66555
- *
- * Even if the barycenter notion doesn't apply, we can set a center
- * xxxxxx11111xxxxx that will better fit the five dimensions we are focusing
- * on for these points.
- *
- * Note that convergence isn't ensured anymore. In practice, using Gonzales
- * as seeding algorithm should be fine for getting convergence ("iterations"
- * value can be set to -1). But with KMeans++ seeding you should definitely
- * set a maximum number of iterations (but make it higher than the "iterations"
- * default value of 11).
- *
- * Params:
- * node = the node to cluster
- * indices = indices of the points belonging to the current node
- * indices_length = number of points in the current node
- * branching = the branching factor to use in the clustering
- * level = 0 for the root node, it increases with the subdivision levels
- * centers = clusters centers to compute
- * radiuses = radiuses of clusters
- * belongs_to = LookUp Table returning, for a given indice id, the center id it belongs to
- * count = array storing the number of indices for a given center id
- * identifier = dummy pointer on an instance of Distance (use to branch correctly among templates)
- */
- void refineAndSplitClustering(
- KMeansNodePtr node, int* indices, int indices_length, int branching,
- int level, CentersType** centers, std::vector<DistanceType>& radiuses,
- int* belongs_to, int* count, const cvflann::HammingLUT* identifier)
- {
- (void)identifier;
- refineBitfieldClustering(
- indices, indices_length, branching, centers, radiuses, belongs_to, count);
- computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
- level, centers, radiuses, belongs_to, count);
- }
- void refineAndSplitClustering(
- KMeansNodePtr node, int* indices, int indices_length, int branching,
- int level, CentersType** centers, std::vector<DistanceType>& radiuses,
- int* belongs_to, int* count, const cvflann::Hamming<unsigned char>* identifier)
- {
- (void)identifier;
- refineBitfieldClustering(
- indices, indices_length, branching, centers, radiuses, belongs_to, count);
- computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
- level, centers, radiuses, belongs_to, count);
- }
- void refineAndSplitClustering(
- KMeansNodePtr node, int* indices, int indices_length, int branching,
- int level, CentersType** centers, std::vector<DistanceType>& radiuses,
- int* belongs_to, int* count, const cvflann::Hamming2<unsigned char>* identifier)
- {
- (void)identifier;
- refineBitfieldClustering(
- indices, indices_length, branching, centers, radiuses, belongs_to, count);
- computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
- level, centers, radiuses, belongs_to, count);
- }
- void refineAndSplitClustering(
- KMeansNodePtr node, int* indices, int indices_length, int branching,
- int level, CentersType** centers, std::vector<DistanceType>& radiuses,
- int* belongs_to, int* count, const cvflann::DNAmmingLUT* identifier)
- {
- (void)identifier;
- refineDnaClustering(
- indices, indices_length, branching, centers, radiuses, belongs_to, count);
- computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
- level, centers, radiuses, belongs_to, count);
- }
- void refineAndSplitClustering(
- KMeansNodePtr node, int* indices, int indices_length, int branching,
- int level, CentersType** centers, std::vector<DistanceType>& radiuses,
- int* belongs_to, int* count, const cvflann::DNAmming2<unsigned char>* identifier)
- {
- (void)identifier;
- refineDnaClustering(
- indices, indices_length, branching, centers, radiuses, belongs_to, count);
- computeAnyBitfieldSubClustering(node, indices, indices_length, branching,
- level, centers, radiuses, belongs_to, count);
- }
- /**
- * The method responsible with actually doing the recursive hierarchical
- * clustering
- *
- * Params:
- * node = the node to cluster
- * indices = indices of the points belonging to the current node
- * branching = the branching factor to use in the clustering
- *
- * TODO: for 1-sized clusters don't store a cluster center (it's the same as the single cluster point)
- */
- void computeClustering(KMeansNodePtr node, int* indices, int indices_length, int branching, int level)
- {
- node->size = indices_length;
- node->level = level;
- if (indices_length < branching) {
- node->indices = indices;
- std::sort(node->indices,node->indices+indices_length);
- node->childs = NULL;
- return;
- }
- cv::AutoBuffer<int> centers_idx_buf(branching);
- int* centers_idx = centers_idx_buf.data();
- int centers_length;
- (this->*chooseCenters)(branching, indices, indices_length, centers_idx, centers_length);
- if (centers_length<branching) {
- node->indices = indices;
- std::sort(node->indices,node->indices+indices_length);
- node->childs = NULL;
- return;
- }
- std::vector<DistanceType> radiuses(branching);
- cv::AutoBuffer<int> count_buf(branching);
- int* count = count_buf.data();
- for (int i=0; i<branching; ++i) {
- radiuses[i] = 0;
- count[i] = 0;
- }
- // assign points to clusters
- cv::AutoBuffer<int> belongs_to_buf(indices_length);
- int* belongs_to = belongs_to_buf.data();
- for (int i=0; i<indices_length; ++i) {
- DistanceType sq_dist = distance_(dataset_[indices[i]], dataset_[centers_idx[0]], veclen_);
- belongs_to[i] = 0;
- for (int j=1; j<branching; ++j) {
- DistanceType new_sq_dist = distance_(dataset_[indices[i]], dataset_[centers_idx[j]], veclen_);
- if (sq_dist>new_sq_dist) {
- belongs_to[i] = j;
- sq_dist = new_sq_dist;
- }
- }
- if (sq_dist>radiuses[belongs_to[i]]) {
- radiuses[belongs_to[i]] = sq_dist;
- }
- count[belongs_to[i]]++;
- }
- CentersType** centers = new CentersType*[branching];
- Distance* dummy = NULL;
- refineAndSplitClustering(node, indices, indices_length, branching, level,
- centers, radiuses, belongs_to, count, dummy);
- delete[] centers;
- }
- /**
- * Performs one descent in the hierarchical k-means tree. The branches not
- * visited are stored in a priority queue.
- *
- * Params:
- * node = node to explore
- * result = container for the k-nearest neighbors found
- * vec = query points
- * checks = how many points in the dataset have been checked so far
- * maxChecks = maximum dataset points to checks
- */
- void findNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec, int& checks, int maxChecks,
- const cv::Ptr<Heap<BranchSt>>& heap)
- {
- // Ignore those clusters that are too far away
- {
- DistanceType bsq = distance_(vec, node->pivot, veclen_);
- DistanceType rsq = node->radius;
- DistanceType wsq = result.worstDist();
- if (isSquareDistance<Distance>())
- {
- DistanceType val = bsq-rsq-wsq;
- if ((val>0) && (val*val > 4*rsq*wsq))
- return;
- }
- else
- {
- if (bsq-rsq > wsq)
- return;
- }
- }
- if (node->childs==NULL) {
- if ((checks>=maxChecks) && result.full()) {
- return;
- }
- checks += node->size;
- for (int i=0; i<node->size; ++i) {
- int index = node->indices[i];
- DistanceType dist = distance_(dataset_[index], vec, veclen_);
- result.addPoint(dist, index);
- }
- }
- else {
- DistanceType* domain_distances = new DistanceType[branching_];
- int closest_center = exploreNodeBranches(node, vec, domain_distances, heap);
- delete[] domain_distances;
- findNN(node->childs[closest_center],result,vec, checks, maxChecks, heap);
- }
- }
- /**
- * Helper function that computes the nearest childs of a node to a given query point.
- * Params:
- * node = the node
- * q = the query point
- * distances = array with the distances to each child node.
- * Returns:
- */
- int exploreNodeBranches(KMeansNodePtr node, const ElementType* q, DistanceType* domain_distances, const cv::Ptr<Heap<BranchSt>>& heap)
- {
- int best_index = 0;
- domain_distances[best_index] = distance_(q, node->childs[best_index]->pivot, veclen_);
- for (int i=1; i<branching_; ++i) {
- domain_distances[i] = distance_(q, node->childs[i]->pivot, veclen_);
- if (domain_distances[i]<domain_distances[best_index]) {
- best_index = i;
- }
- }
- // float* best_center = node->childs[best_index]->pivot;
- for (int i=0; i<branching_; ++i) {
- if (i != best_index) {
- domain_distances[i] -= cvflann::round<DistanceType>(
- cb_index_*node->childs[i]->variance );
- // float dist_to_border = getDistanceToBorder(node.childs[i].pivot,best_center,q);
- // if (domain_distances[i]<dist_to_border) {
- // domain_distances[i] = dist_to_border;
- // }
- heap->insert(BranchSt(node->childs[i],domain_distances[i]));
- }
- }
- return best_index;
- }
- /**
- * Function the performs exact nearest neighbor search by traversing the entire tree.
- */
- void findExactNN(KMeansNodePtr node, ResultSet<DistanceType>& result, const ElementType* vec)
- {
- // Ignore those clusters that are too far away
- {
- DistanceType bsq = distance_(vec, node->pivot, veclen_);
- DistanceType rsq = node->radius;
- DistanceType wsq = result.worstDist();
- if (isSquareDistance<Distance>())
- {
- DistanceType val = bsq-rsq-wsq;
- if ((val>0) && (val*val > 4*rsq*wsq))
- return;
- }
- else
- {
- if (bsq-rsq > wsq)
- return;
- }
- }
- if (node->childs==NULL) {
- for (int i=0; i<node->size; ++i) {
- int index = node->indices[i];
- DistanceType dist = distance_(dataset_[index], vec, veclen_);
- result.addPoint(dist, index);
- }
- }
- else {
- int* sort_indices = new int[branching_];
- getCenterOrdering(node, vec, sort_indices);
- for (int i=0; i<branching_; ++i) {
- findExactNN(node->childs[sort_indices[i]],result,vec);
- }
- delete[] sort_indices;
- }
- }
- /**
- * Helper function.
- *
- * I computes the order in which to traverse the child nodes of a particular node.
- */
- void getCenterOrdering(KMeansNodePtr node, const ElementType* q, int* sort_indices)
- {
- DistanceType* domain_distances = new DistanceType[branching_];
- for (int i=0; i<branching_; ++i) {
- DistanceType dist = distance_(q, node->childs[i]->pivot, veclen_);
- int j=0;
- while (domain_distances[j]<dist && j<i)
- j++;
- for (int k=i; k>j; --k) {
- domain_distances[k] = domain_distances[k-1];
- sort_indices[k] = sort_indices[k-1];
- }
- domain_distances[j] = dist;
- sort_indices[j] = i;
- }
- delete[] domain_distances;
- }
- /**
- * Method that computes the squared distance from the query point q
- * from inside region with center c to the border between this
- * region and the region with center p
- */
- DistanceType getDistanceToBorder(DistanceType* p, DistanceType* c, DistanceType* q)
- {
- DistanceType sum = 0;
- DistanceType sum2 = 0;
- for (int i=0; i<veclen_; ++i) {
- DistanceType t = c[i]-p[i];
- sum += t*(q[i]-(c[i]+p[i])/2);
- sum2 += t*t;
- }
- return sum*sum/sum2;
- }
- /**
- * Helper function the descends in the hierarchical k-means tree by splitting those clusters that minimize
- * the overall variance of the clustering.
- * Params:
- * root = root node
- * clusters = array with clusters centers (return value)
- * varianceValue = variance of the clustering (return value)
- * Returns:
- */
- int getMinVarianceClusters(KMeansNodePtr root, KMeansNodePtr* clusters, int clusters_length, DistanceType& varianceValue)
- {
- int clusterCount = 1;
- clusters[0] = root;
- DistanceType meanVariance = root->variance*root->size;
- while (clusterCount<clusters_length) {
- DistanceType minVariance = (std::numeric_limits<DistanceType>::max)();
- int splitIndex = -1;
- for (int i=0; i<clusterCount; ++i) {
- if (clusters[i]->childs != NULL) {
- DistanceType variance = meanVariance - clusters[i]->variance*clusters[i]->size;
- for (int j=0; j<branching_; ++j) {
- variance += clusters[i]->childs[j]->variance*clusters[i]->childs[j]->size;
- }
- if (variance<minVariance) {
- minVariance = variance;
- splitIndex = i;
- }
- }
- }
- if (splitIndex==-1) break;
- if ( (branching_+clusterCount-1) > clusters_length) break;
- meanVariance = minVariance;
- // split node
- KMeansNodePtr toSplit = clusters[splitIndex];
- clusters[splitIndex] = toSplit->childs[0];
- for (int i=1; i<branching_; ++i) {
- clusters[clusterCount++] = toSplit->childs[i];
- }
- }
- varianceValue = meanVariance/root->size;
- return clusterCount;
- }
- private:
- /** The branching factor used in the hierarchical k-means clustering */
- int branching_;
- /** Number of kmeans trees (default is one) */
- int trees_;
- /** Maximum number of iterations to use when performing k-means clustering */
- int iterations_;
- /** Algorithm for choosing the cluster centers */
- flann_centers_init_t centers_init_;
- /**
- * Cluster border index. This is used in the tree search phase when determining
- * the closest cluster to explore next. A zero value takes into account only
- * the cluster centres, a value greater then zero also take into account the size
- * of the cluster.
- */
- float cb_index_;
- /**
- * The dataset used by this index
- */
- const Matrix<ElementType> dataset_;
- /** Index parameters */
- IndexParams index_params_;
- /**
- * Number of features in the dataset.
- */
- size_t size_;
- /**
- * Length of each feature.
- */
- size_t veclen_;
- /**
- * The root node in the tree.
- */
- KMeansNodePtr* root_;
- /**
- * Array of indices to vectors in the dataset.
- */
- int** indices_;
- /**
- * The distance
- */
- Distance distance_;
- /**
- * Pooled memory allocator.
- */
- PooledAllocator pool_;
- /**
- * Memory occupied by the index.
- */
- int memoryCounter_;
- };
- }
- //! @endcond
- #endif //OPENCV_FLANN_KMEANS_INDEX_H_
|