123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319 |
- /***********************************************************************
- * Software License Agreement (BSD License)
- *
- * Copyright 2008-2009 Marius Muja (mariusm@cs.ubc.ca). All rights reserved.
- * Copyright 2008-2009 David G. Lowe (lowe@cs.ubc.ca). All rights reserved.
- *
- * THE BSD LICENSE
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- *
- * 1. Redistributions of source code must retain the above copyright
- * notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- * notice, this list of conditions and the following disclaimer in the
- * documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
- * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
- * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
- * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
- * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
- * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
- * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
- *************************************************************************/
- #ifndef OPENCV_FLANN_INDEX_TESTING_H_
- #define OPENCV_FLANN_INDEX_TESTING_H_
- //! @cond IGNORED
- #include <cstring>
- #include <cmath>
- #include "matrix.h"
- #include "nn_index.h"
- #include "result_set.h"
- #include "logger.h"
- #include "timer.h"
- namespace cvflann
- {
- inline int countCorrectMatches(int* neighbors, int* groundTruth, int n)
- {
- int count = 0;
- for (int i=0; i<n; ++i) {
- for (int k=0; k<n; ++k) {
- if (neighbors[i]==groundTruth[k]) {
- count++;
- break;
- }
- }
- }
- return count;
- }
- template <typename Distance>
- typename Distance::ResultType computeDistanceRaport(const Matrix<typename Distance::ElementType>& inputData, typename Distance::ElementType* target,
- int* neighbors, int* groundTruth, int veclen, int n, const Distance& distance)
- {
- typedef typename Distance::ResultType DistanceType;
- DistanceType ret = 0;
- for (int i=0; i<n; ++i) {
- DistanceType den = distance(inputData[groundTruth[i]], target, veclen);
- DistanceType num = distance(inputData[neighbors[i]], target, veclen);
- if ((den==0)&&(num==0)) {
- ret += 1;
- }
- else {
- ret += num/den;
- }
- }
- return ret;
- }
- template <typename Distance>
- float search_with_ground_truth(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
- const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches, int nn, int checks,
- float& time, typename Distance::ResultType& dist, const Distance& distance, int skipMatches)
- {
- typedef typename Distance::ResultType DistanceType;
- if (matches.cols<size_t(nn)) {
- Logger::info("matches.cols=%d, nn=%d\n",matches.cols,nn);
- FLANN_THROW(cv::Error::StsError, "Ground truth is not computed for as many neighbors as requested");
- }
- KNNResultSet<DistanceType> resultSet(nn+skipMatches);
- SearchParams searchParams(checks);
- std::vector<int> indices(nn+skipMatches);
- std::vector<DistanceType> dists(nn+skipMatches);
- int* neighbors = &indices[skipMatches];
- int correct = 0;
- DistanceType distR = 0;
- StartStopTimer t;
- int repeats = 0;
- while (t.value<0.2) {
- repeats++;
- t.start();
- correct = 0;
- distR = 0;
- for (size_t i = 0; i < testData.rows; i++) {
- resultSet.init(&indices[0], &dists[0]);
- index.findNeighbors(resultSet, testData[i], searchParams);
- correct += countCorrectMatches(neighbors,matches[i], nn);
- distR += computeDistanceRaport<Distance>(inputData, testData[i], neighbors, matches[i], (int)testData.cols, nn, distance);
- }
- t.stop();
- }
- time = float(t.value/repeats);
- float precicion = (float)correct/(nn*testData.rows);
- dist = distR/(testData.rows*nn);
- Logger::info("%8d %10.4g %10.5g %10.5g %10.5g\n",
- checks, precicion, time, 1000.0 * time / testData.rows, dist);
- return precicion;
- }
- template <typename Distance>
- float test_index_checks(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
- const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
- int checks, float& precision, const Distance& distance, int nn = 1, int skipMatches = 0)
- {
- typedef typename Distance::ResultType DistanceType;
- Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n");
- Logger::info("---------------------------------------------------------\n");
- float time = 0;
- DistanceType dist = 0;
- precision = search_with_ground_truth(index, inputData, testData, matches, nn, checks, time, dist, distance, skipMatches);
- return time;
- }
- template <typename Distance>
- float test_index_precision(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
- const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
- float precision, int& checks, const Distance& distance, int nn = 1, int skipMatches = 0)
- {
- typedef typename Distance::ResultType DistanceType;
- const float SEARCH_EPS = 0.001f;
- Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n");
- Logger::info("---------------------------------------------------------\n");
- int c2 = 1;
- float p2;
- int c1 = 1;
- //float p1;
- float time;
- DistanceType dist;
- p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
- if (p2>precision) {
- Logger::info("Got as close as I can\n");
- checks = c2;
- return time;
- }
- while (p2<precision) {
- c1 = c2;
- //p1 = p2;
- c2 *=2;
- p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
- }
- int cx;
- float realPrecision;
- if (fabs(p2-precision)>SEARCH_EPS) {
- Logger::info("Start linear estimation\n");
- // after we got to values in the vecinity of the desired precision
- // use linear approximation get a better estimation
- cx = (c1+c2)/2;
- realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
- while (fabs(realPrecision-precision)>SEARCH_EPS) {
- if (realPrecision<precision) {
- c1 = cx;
- }
- else {
- c2 = cx;
- }
- cx = (c1+c2)/2;
- if (cx==c1) {
- Logger::info("Got as close as I can\n");
- break;
- }
- realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
- }
- c2 = cx;
- p2 = realPrecision;
- }
- else {
- Logger::info("No need for linear estimation\n");
- cx = c2;
- realPrecision = p2;
- }
- checks = cx;
- return time;
- }
- template <typename Distance>
- void test_index_precisions(NNIndex<Distance>& index, const Matrix<typename Distance::ElementType>& inputData,
- const Matrix<typename Distance::ElementType>& testData, const Matrix<int>& matches,
- float* precisions, int precisions_length, const Distance& distance, int nn = 1, int skipMatches = 0, float maxTime = 0)
- {
- typedef typename Distance::ResultType DistanceType;
- const float SEARCH_EPS = 0.001;
- // make sure precisions array is sorted
- std::sort(precisions, precisions+precisions_length);
- int pindex = 0;
- float precision = precisions[pindex];
- Logger::info(" Nodes Precision(%) Time(s) Time/vec(ms) Mean dist\n");
- Logger::info("---------------------------------------------------------\n");
- int c2 = 1;
- float p2;
- int c1 = 1;
- float time;
- DistanceType dist;
- p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
- // if precision for 1 run down the tree is already
- // better then some of the requested precisions, then
- // skip those
- while (precisions[pindex]<p2 && pindex<precisions_length) {
- pindex++;
- }
- if (pindex==precisions_length) {
- Logger::info("Got as close as I can\n");
- return;
- }
- for (int i=pindex; i<precisions_length; ++i) {
- precision = precisions[i];
- while (p2<precision) {
- c1 = c2;
- c2 *=2;
- p2 = search_with_ground_truth(index, inputData, testData, matches, nn, c2, time, dist, distance, skipMatches);
- if ((maxTime> 0)&&(time > maxTime)&&(p2<precision)) return;
- }
- int cx;
- float realPrecision;
- if (fabs(p2-precision)>SEARCH_EPS) {
- Logger::info("Start linear estimation\n");
- // after we got to values in the vecinity of the desired precision
- // use linear approximation get a better estimation
- cx = (c1+c2)/2;
- realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
- while (fabs(realPrecision-precision)>SEARCH_EPS) {
- if (realPrecision<precision) {
- c1 = cx;
- }
- else {
- c2 = cx;
- }
- cx = (c1+c2)/2;
- if (cx==c1) {
- Logger::info("Got as close as I can\n");
- break;
- }
- realPrecision = search_with_ground_truth(index, inputData, testData, matches, nn, cx, time, dist, distance, skipMatches);
- }
- c2 = cx;
- p2 = realPrecision;
- }
- else {
- Logger::info("No need for linear estimation\n");
- cx = c2;
- realPrecision = p2;
- }
- }
- }
- }
- //! @endcond
- #endif //OPENCV_FLANN_INDEX_TESTING_H_
|