123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
- // Copyright (C) 2009, Willow Garage Inc., all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef OPENCV_FLANN_HPP
- #define OPENCV_FLANN_HPP
- #include "opencv2/core.hpp"
- #include "opencv2/flann/miniflann.hpp"
- #include "opencv2/flann/flann_base.hpp"
- /**
- @defgroup flann Clustering and Search in Multi-Dimensional Spaces
- This section documents OpenCV's interface to the FLANN library. FLANN (Fast Library for Approximate
- Nearest Neighbors) is a library that contains a collection of algorithms optimized for fast nearest
- neighbor search in large datasets and for high dimensional features. More information about FLANN
- can be found in @cite Muja2009 .
- */
- namespace cvflann
- {
- CV_EXPORTS flann_distance_t flann_distance_type();
- CV_DEPRECATED CV_EXPORTS void set_distance_type(flann_distance_t distance_type, int order);
- }
- namespace cv
- {
- namespace flann
- {
- //! @addtogroup flann
- //! @{
- template <typename T> struct CvType {};
- template <> struct CvType<unsigned char> { static int type() { return CV_8U; } };
- template <> struct CvType<char> { static int type() { return CV_8S; } };
- template <> struct CvType<unsigned short> { static int type() { return CV_16U; } };
- template <> struct CvType<short> { static int type() { return CV_16S; } };
- template <> struct CvType<int> { static int type() { return CV_32S; } };
- template <> struct CvType<float> { static int type() { return CV_32F; } };
- template <> struct CvType<double> { static int type() { return CV_64F; } };
- // bring the flann parameters into this namespace
- using ::cvflann::get_param;
- using ::cvflann::print_params;
- // bring the flann distances into this namespace
- using ::cvflann::L2_Simple;
- using ::cvflann::L2;
- using ::cvflann::L1;
- using ::cvflann::MinkowskiDistance;
- using ::cvflann::MaxDistance;
- using ::cvflann::HammingLUT;
- using ::cvflann::Hamming;
- using ::cvflann::Hamming2;
- using ::cvflann::DNAmmingLUT;
- using ::cvflann::DNAmming2;
- using ::cvflann::HistIntersectionDistance;
- using ::cvflann::HellingerDistance;
- using ::cvflann::ChiSquareDistance;
- using ::cvflann::KL_Divergence;
- /** @brief The FLANN nearest neighbor index class. This class is templated with the type of elements for which
- the index is built.
- `Distance` functor specifies the metric to be used to calculate the distance between two points.
- There are several `Distance` functors that are readily available:
- cv::cvflann::L2_Simple - Squared Euclidean distance functor.
- This is the simpler, unrolled version. This is preferable for very low dimensionality data (eg 3D points)
- cv::flann::L2 - Squared Euclidean distance functor, optimized version.
- cv::flann::L1 - Manhattan distance functor, optimized version.
- cv::flann::MinkowskiDistance - The Minkowski distance functor.
- This is highly optimised with loop unrolling.
- The computation of squared root at the end is omitted for efficiency.
- cv::flann::MaxDistance - The max distance functor. It computes the
- maximum distance between two vectors. This distance is not a valid kdtree distance, it's not
- dimensionwise additive.
- cv::flann::HammingLUT - %Hamming distance functor. It counts the bit
- differences between two strings using a lookup table implementation.
- cv::flann::Hamming - %Hamming distance functor. Population count is
- performed using library calls, if available. Lookup table implementation is used as a fallback.
- cv::flann::Hamming2 - %Hamming distance functor. Population count is
- implemented in 12 arithmetic operations (one of which is multiplication).
- cv::flann::DNAmmingLUT - %Adaptation of the Hamming distance functor to DNA comparison.
- As the four bases A, C, G, T of the DNA (or A, G, C, U for RNA) can be coded on 2 bits,
- it counts the bits pairs differences between two sequences using a lookup table implementation.
- cv::flann::DNAmming2 - %Adaptation of the Hamming distance functor to DNA comparison.
- Bases differences count are vectorised thanks to arithmetic operations using standard
- registers (AVX2 and AVX-512 should come in a near future).
- cv::flann::HistIntersectionDistance - The histogram
- intersection distance functor.
- cv::flann::HellingerDistance - The Hellinger distance functor.
- cv::flann::ChiSquareDistance - The chi-square distance functor.
- cv::flann::KL_Divergence - The Kullback-Leibler divergence functor.
- Although the provided implementations cover a vast range of cases, it is also possible to use
- a custom implementation. The distance functor is a class whose `operator()` computes the distance
- between two features. If the distance is also a kd-tree compatible distance, it should also provide an
- `accum_dist()` method that computes the distance between individual feature dimensions.
- In addition to `operator()` and `accum_dist()`, a distance functor should also define the
- `ElementType` and the `ResultType` as the types of the elements it operates on and the type of the
- result it computes. If a distance functor can be used as a kd-tree distance (meaning that the full
- distance between a pair of features can be accumulated from the partial distances between the
- individual dimensions) a typedef `is_kdtree_distance` should be present inside the distance functor.
- If the distance is not a kd-tree distance, but it's a distance in a vector space (the individual
- dimensions of the elements it operates on can be accessed independently) a typedef
- `is_vector_space_distance` should be defined inside the functor. If neither typedef is defined, the
- distance is assumed to be a metric distance and will only be used with indexes operating on
- generic metric distances.
- */
- template <typename Distance>
- class GenericIndex
- {
- public:
- typedef typename Distance::ElementType ElementType;
- typedef typename Distance::ResultType DistanceType;
- /** @brief Constructs a nearest neighbor search index for a given dataset.
- @param features Matrix of containing the features(points) to index. The size of the matrix is
- num_features x feature_dimensionality and the data type of the elements in the matrix must
- coincide with the type of the index.
- @param params Structure containing the index parameters. The type of index that will be
- constructed depends on the type of this parameter. See the description.
- @param distance
- The method constructs a fast search structure from a set of features using the specified algorithm
- with specified parameters, as defined by params. params is a reference to one of the following class
- IndexParams descendants:
- - **LinearIndexParams** When passing an object of this type, the index will perform a linear,
- brute-force search. :
- @code
- struct LinearIndexParams : public IndexParams
- {
- };
- @endcode
- - **KDTreeIndexParams** When passing an object of this type the index constructed will consist of
- a set of randomized kd-trees which will be searched in parallel. :
- @code
- struct KDTreeIndexParams : public IndexParams
- {
- KDTreeIndexParams( int trees = 4 );
- };
- @endcode
- - **HierarchicalClusteringIndexParams** When passing an object of this type the index constructed
- will be a hierarchical tree of clusters, dividing each set of points into n clusters whose centers
- are picked among the points without further refinement of their position.
- This algorithm fits both floating, integer and binary vectors. :
- @code
- struct HierarchicalClusteringIndexParams : public IndexParams
- {
- HierarchicalClusteringIndexParams(
- int branching = 32,
- flann_centers_init_t centers_init = CENTERS_RANDOM,
- int trees = 4,
- int leaf_size = 100);
- };
- @endcode
- - **KMeansIndexParams** When passing an object of this type the index constructed will be a
- hierarchical k-means tree (one tree by default), dividing each set of points into n clusters
- whose barycenters are refined iteratively.
- Note that this algorithm has been extended to the support of binary vectors as an alternative
- to LSH when knn search speed is the criterium. It will also outperform LSH when processing
- directly (i.e. without the use of MCA/PCA) datasets whose points share mostly the same values
- for most of the dimensions. It is recommended to set more than one tree with binary data. :
- @code
- struct KMeansIndexParams : public IndexParams
- {
- KMeansIndexParams(
- int branching = 32,
- int iterations = 11,
- flann_centers_init_t centers_init = CENTERS_RANDOM,
- float cb_index = 0.2,
- int trees = 1);
- };
- @endcode
- - **CompositeIndexParams** When using a parameters object of this type the index created
- combines the randomized kd-trees and the hierarchical k-means tree. :
- @code
- struct CompositeIndexParams : public IndexParams
- {
- CompositeIndexParams(
- int trees = 4,
- int branching = 32,
- int iterations = 11,
- flann_centers_init_t centers_init = CENTERS_RANDOM,
- float cb_index = 0.2 );
- };
- @endcode
- - **LshIndexParams** When using a parameters object of this type the index created uses
- multi-probe LSH (by Multi-Probe LSH: Efficient Indexing for High-Dimensional Similarity Search
- by Qin Lv, William Josephson, Zhe Wang, Moses Charikar, Kai Li., Proceedings of the 33rd
- International Conference on Very Large Data Bases (VLDB). Vienna, Austria. September 2007).
- This algorithm is designed for binary vectors. :
- @code
- struct LshIndexParams : public IndexParams
- {
- LshIndexParams(
- int table_number,
- int key_size,
- int multi_probe_level );
- };
- @endcode
- - **AutotunedIndexParams** When passing an object of this type the index created is
- automatically tuned to offer the best performance, by choosing the optimal index type
- (randomized kd-trees, hierarchical kmeans, linear) and parameters for the dataset provided. :
- @code
- struct AutotunedIndexParams : public IndexParams
- {
- AutotunedIndexParams(
- float target_precision = 0.9,
- float build_weight = 0.01,
- float memory_weight = 0,
- float sample_fraction = 0.1 );
- };
- @endcode
- - **SavedIndexParams** This object type is used for loading a previously saved index from the
- disk. :
- @code
- struct SavedIndexParams : public IndexParams
- {
- SavedIndexParams( String filename );
- };
- @endcode
- */
- GenericIndex(const Mat& features, const ::cvflann::IndexParams& params, Distance distance = Distance());
- ~GenericIndex();
- /** @brief Performs a K-nearest neighbor search for a given query point using the index.
- @param query The query point
- @param indices Vector that will contain the indices of the K-nearest neighbors found. It must have
- at least knn size.
- @param dists Vector that will contain the distances to the K-nearest neighbors found. It must have
- at least knn size.
- @param knn Number of nearest neighbors to search for.
- @param params SearchParams
- */
- void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices,
- std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& params);
- void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& params);
- /** @brief Performs a radius nearest neighbor search for a given query point using the index.
- @param query The query point.
- @param indices Vector that will contain the indices of the nearest neighbors found.
- @param dists Vector that will contain the distances to the nearest neighbors found. It has the same
- number of elements as indices.
- @param radius The search radius.
- @param params SearchParams
- This function returns the number of nearest neighbors found.
- */
- int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices,
- std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& params);
- int radiusSearch(const Mat& query, Mat& indices, Mat& dists,
- DistanceType radius, const ::cvflann::SearchParams& params);
- void save(String filename) { nnIndex->save(filename); }
- int veclen() const { return nnIndex->veclen(); }
- int size() const { return (int)nnIndex->size(); }
- ::cvflann::IndexParams getParameters() { return nnIndex->getParameters(); }
- CV_DEPRECATED const ::cvflann::IndexParams* getIndexParameters() { return nnIndex->getIndexParameters(); }
- private:
- ::cvflann::Index<Distance>* nnIndex;
- Mat _dataset;
- };
- //! @cond IGNORED
- #define FLANN_DISTANCE_CHECK \
- if ( ::cvflann::flann_distance_type() != cvflann::FLANN_DIST_L2) { \
- printf("[WARNING] You are using cv::flann::Index (or cv::flann::GenericIndex) and have also changed "\
- "the distance using cvflann::set_distance_type. This is no longer working as expected "\
- "(cv::flann::Index always uses L2). You should create the index templated on the distance, "\
- "for example for L1 distance use: GenericIndex< L1<float> > \n"); \
- }
- template <typename Distance>
- GenericIndex<Distance>::GenericIndex(const Mat& dataset, const ::cvflann::IndexParams& params, Distance distance)
- : _dataset(dataset)
- {
- CV_Assert(dataset.type() == CvType<ElementType>::type());
- CV_Assert(dataset.isContinuous());
- ::cvflann::Matrix<ElementType> m_dataset((ElementType*)_dataset.ptr<ElementType>(0), _dataset.rows, _dataset.cols);
- nnIndex = new ::cvflann::Index<Distance>(m_dataset, params, distance);
- FLANN_DISTANCE_CHECK
- nnIndex->buildIndex();
- }
- template <typename Distance>
- GenericIndex<Distance>::~GenericIndex()
- {
- delete nnIndex;
- }
- template <typename Distance>
- void GenericIndex<Distance>::knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams)
- {
- ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
- ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
- ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
- FLANN_DISTANCE_CHECK
- nnIndex->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
- }
- template <typename Distance>
- void GenericIndex<Distance>::knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams)
- {
- CV_Assert(queries.type() == CvType<ElementType>::type());
- CV_Assert(queries.isContinuous());
- ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols);
- CV_Assert(indices.type() == CV_32S);
- CV_Assert(indices.isContinuous());
- ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
- CV_Assert(dists.type() == CvType<DistanceType>::type());
- CV_Assert(dists.isContinuous());
- ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
- FLANN_DISTANCE_CHECK
- nnIndex->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
- }
- template <typename Distance>
- int GenericIndex<Distance>::radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
- {
- ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
- ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
- ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
- FLANN_DISTANCE_CHECK
- return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
- }
- template <typename Distance>
- int GenericIndex<Distance>::radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
- {
- CV_Assert(query.type() == CvType<ElementType>::type());
- CV_Assert(query.isContinuous());
- ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols);
- CV_Assert(indices.type() == CV_32S);
- CV_Assert(indices.isContinuous());
- ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
- CV_Assert(dists.type() == CvType<DistanceType>::type());
- CV_Assert(dists.isContinuous());
- ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
- FLANN_DISTANCE_CHECK
- return nnIndex->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
- }
- /**
- * @deprecated Use GenericIndex class instead
- */
- template <typename T>
- class Index_
- {
- public:
- typedef typename L2<T>::ElementType ElementType;
- typedef typename L2<T>::ResultType DistanceType;
- CV_DEPRECATED Index_(const Mat& dataset, const ::cvflann::IndexParams& params)
- {
- printf("[WARNING] The cv::flann::Index_<T> class is deperecated, use cv::flann::GenericIndex<Distance> instead\n");
- CV_Assert(dataset.type() == CvType<ElementType>::type());
- CV_Assert(dataset.isContinuous());
- ::cvflann::Matrix<ElementType> m_dataset((ElementType*)dataset.ptr<ElementType>(0), dataset.rows, dataset.cols);
- if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) {
- nnIndex_L1 = NULL;
- nnIndex_L2 = new ::cvflann::Index< L2<ElementType> >(m_dataset, params);
- }
- else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) {
- nnIndex_L1 = new ::cvflann::Index< L1<ElementType> >(m_dataset, params);
- nnIndex_L2 = NULL;
- }
- else {
- printf("[ERROR] cv::flann::Index_<T> only provides backwards compatibility for the L1 and L2 distances. "
- "For other distance types you must use cv::flann::GenericIndex<Distance>\n");
- CV_Assert(0);
- }
- if (nnIndex_L1) nnIndex_L1->buildIndex();
- if (nnIndex_L2) nnIndex_L2->buildIndex();
- }
- CV_DEPRECATED ~Index_()
- {
- if (nnIndex_L1) delete nnIndex_L1;
- if (nnIndex_L2) delete nnIndex_L2;
- }
- CV_DEPRECATED void knnSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, int knn, const ::cvflann::SearchParams& searchParams)
- {
- ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
- ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
- ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
- if (nnIndex_L1) nnIndex_L1->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
- if (nnIndex_L2) nnIndex_L2->knnSearch(m_query,m_indices,m_dists,knn,searchParams);
- }
- CV_DEPRECATED void knnSearch(const Mat& queries, Mat& indices, Mat& dists, int knn, const ::cvflann::SearchParams& searchParams)
- {
- CV_Assert(queries.type() == CvType<ElementType>::type());
- CV_Assert(queries.isContinuous());
- ::cvflann::Matrix<ElementType> m_queries((ElementType*)queries.ptr<ElementType>(0), queries.rows, queries.cols);
- CV_Assert(indices.type() == CV_32S);
- CV_Assert(indices.isContinuous());
- ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
- CV_Assert(dists.type() == CvType<DistanceType>::type());
- CV_Assert(dists.isContinuous());
- ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
- if (nnIndex_L1) nnIndex_L1->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
- if (nnIndex_L2) nnIndex_L2->knnSearch(m_queries,m_indices,m_dists,knn, searchParams);
- }
- CV_DEPRECATED int radiusSearch(const std::vector<ElementType>& query, std::vector<int>& indices, std::vector<DistanceType>& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
- {
- ::cvflann::Matrix<ElementType> m_query((ElementType*)&query[0], 1, query.size());
- ::cvflann::Matrix<int> m_indices(&indices[0], 1, indices.size());
- ::cvflann::Matrix<DistanceType> m_dists(&dists[0], 1, dists.size());
- if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
- if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
- }
- CV_DEPRECATED int radiusSearch(const Mat& query, Mat& indices, Mat& dists, DistanceType radius, const ::cvflann::SearchParams& searchParams)
- {
- CV_Assert(query.type() == CvType<ElementType>::type());
- CV_Assert(query.isContinuous());
- ::cvflann::Matrix<ElementType> m_query((ElementType*)query.ptr<ElementType>(0), query.rows, query.cols);
- CV_Assert(indices.type() == CV_32S);
- CV_Assert(indices.isContinuous());
- ::cvflann::Matrix<int> m_indices((int*)indices.ptr<int>(0), indices.rows, indices.cols);
- CV_Assert(dists.type() == CvType<DistanceType>::type());
- CV_Assert(dists.isContinuous());
- ::cvflann::Matrix<DistanceType> m_dists((DistanceType*)dists.ptr<DistanceType>(0), dists.rows, dists.cols);
- if (nnIndex_L1) return nnIndex_L1->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
- if (nnIndex_L2) return nnIndex_L2->radiusSearch(m_query,m_indices,m_dists,radius,searchParams);
- }
- CV_DEPRECATED void save(String filename)
- {
- if (nnIndex_L1) nnIndex_L1->save(filename);
- if (nnIndex_L2) nnIndex_L2->save(filename);
- }
- CV_DEPRECATED int veclen() const
- {
- if (nnIndex_L1) return nnIndex_L1->veclen();
- if (nnIndex_L2) return nnIndex_L2->veclen();
- }
- CV_DEPRECATED int size() const
- {
- if (nnIndex_L1) return nnIndex_L1->size();
- if (nnIndex_L2) return nnIndex_L2->size();
- }
- CV_DEPRECATED ::cvflann::IndexParams getParameters()
- {
- if (nnIndex_L1) return nnIndex_L1->getParameters();
- if (nnIndex_L2) return nnIndex_L2->getParameters();
- }
- CV_DEPRECATED const ::cvflann::IndexParams* getIndexParameters()
- {
- if (nnIndex_L1) return nnIndex_L1->getIndexParameters();
- if (nnIndex_L2) return nnIndex_L2->getIndexParameters();
- }
- private:
- // providing backwards compatibility for L2 and L1 distances (most common)
- ::cvflann::Index< L2<ElementType> >* nnIndex_L2;
- ::cvflann::Index< L1<ElementType> >* nnIndex_L1;
- };
- //! @endcond
- /** @brief Clusters features using hierarchical k-means algorithm.
- @param features The points to be clustered. The matrix must have elements of type
- Distance::ElementType.
- @param centers The centers of the clusters obtained. The matrix must have type
- Distance::CentersType. The number of rows in this matrix represents the number of clusters desired,
- however, because of the way the cut in the hierarchical tree is chosen, the number of clusters
- computed will be the highest number of the form (branching-1)\*k+1 that's lower than the number of
- clusters desired, where branching is the tree's branching factor (see description of the
- KMeansIndexParams).
- @param params Parameters used in the construction of the hierarchical k-means tree.
- @param d Distance to be used for clustering.
- The method clusters the given feature vectors by constructing a hierarchical k-means tree and
- choosing a cut in the tree that minimizes the cluster's variance. It returns the number of clusters
- found.
- */
- template <typename Distance>
- int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params,
- Distance d = Distance())
- {
- typedef typename Distance::ElementType ElementType;
- typedef typename Distance::CentersType CentersType;
- CV_Assert(features.type() == CvType<ElementType>::type());
- CV_Assert(features.isContinuous());
- ::cvflann::Matrix<ElementType> m_features((ElementType*)features.ptr<ElementType>(0), features.rows, features.cols);
- CV_Assert(centers.type() == CvType<CentersType>::type());
- CV_Assert(centers.isContinuous());
- ::cvflann::Matrix<CentersType> m_centers((CentersType*)centers.ptr<CentersType>(0), centers.rows, centers.cols);
- return ::cvflann::hierarchicalClustering<Distance>(m_features, m_centers, params, d);
- }
- //! @cond IGNORED
- template <typename ELEM_TYPE, typename DIST_TYPE>
- CV_DEPRECATED int hierarchicalClustering(const Mat& features, Mat& centers, const ::cvflann::KMeansIndexParams& params)
- {
- printf("[WARNING] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> is deprecated, use "
- "cv::flann::hierarchicalClustering<Distance> instead\n");
- if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L2 ) {
- return hierarchicalClustering< L2<ELEM_TYPE> >(features, centers, params);
- }
- else if ( ::cvflann::flann_distance_type() == cvflann::FLANN_DIST_L1 ) {
- return hierarchicalClustering< L1<ELEM_TYPE> >(features, centers, params);
- }
- else {
- printf("[ERROR] cv::flann::hierarchicalClustering<ELEM_TYPE,DIST_TYPE> only provides backwards "
- "compatibility for the L1 and L2 distances. "
- "For other distance types you must use cv::flann::hierarchicalClustering<Distance>\n");
- CV_Assert(0);
- }
- }
- //! @endcond
- //! @} flann
- } } // namespace cv::flann
- #endif
|