1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759 |
- /*M///////////////////////////////////////////////////////////////////////////////////////
- //
- // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
- //
- // By downloading, copying, installing or using the software you agree to this license.
- // If you do not agree to this license, do not download, install,
- // copy or use the software.
- //
- //
- // License Agreement
- // For Open Source Computer Vision Library
- //
- // Copyright (C) 2013, OpenCV Foundation, all rights reserved.
- // Third party copyrights are property of their respective owners.
- //
- // Redistribution and use in source and binary forms, with or without modification,
- // are permitted provided that the following conditions are met:
- //
- // * Redistribution's of source code must retain the above copyright notice,
- // this list of conditions and the following disclaimer.
- //
- // * Redistribution's in binary form must reproduce the above copyright notice,
- // this list of conditions and the following disclaimer in the documentation
- // and/or other materials provided with the distribution.
- //
- // * The name of the copyright holders may not be used to endorse or promote products
- // derived from this software without specific prior written permission.
- //
- // This software is provided by the copyright holders and contributors "as is" and
- // any express or implied warranties, including, but not limited to, the implied
- // warranties of merchantability and fitness for a particular purpose are disclaimed.
- // In no event shall the Intel Corporation or contributors be liable for any direct,
- // indirect, incidental, special, exemplary, or consequential damages
- // (including, but not limited to, procurement of substitute goods or services;
- // loss of use, data, or profits; or business interruption) however caused
- // and on any theory of liability, whether in contract, strict liability,
- // or tort (including negligence or otherwise) arising in any way out of
- // the use of this software, even if advised of the possibility of such damage.
- //
- //M*/
- #ifndef OPENCV_DNN_DNN_HPP
- #define OPENCV_DNN_DNN_HPP
- #include <vector>
- #include <opencv2/core.hpp>
- #include "opencv2/core/async.hpp"
- #include "../dnn/version.hpp"
- #include <opencv2/dnn/dict.hpp>
- namespace cv {
- namespace dnn {
- CV__DNN_INLINE_NS_BEGIN
- //! @addtogroup dnn
- //! @{
- typedef std::vector<int> MatShape;
- /**
- * @brief Enum of computation backends supported by layers.
- * @see Net::setPreferableBackend
- */
- enum Backend
- {
- //! DNN_BACKEND_DEFAULT equals to DNN_BACKEND_INFERENCE_ENGINE if
- //! OpenCV is built with Intel's Inference Engine library or
- //! DNN_BACKEND_OPENCV otherwise.
- DNN_BACKEND_DEFAULT = 0,
- DNN_BACKEND_HALIDE,
- DNN_BACKEND_INFERENCE_ENGINE, //!< Intel's Inference Engine computational backend
- //!< @sa setInferenceEngineBackendType
- DNN_BACKEND_OPENCV,
- DNN_BACKEND_VKCOM,
- DNN_BACKEND_CUDA,
- DNN_BACKEND_WEBNN,
- DNN_BACKEND_TIMVX,
- #ifdef __OPENCV_BUILD
- DNN_BACKEND_INFERENCE_ENGINE_NGRAPH = 1000000, // internal - use DNN_BACKEND_INFERENCE_ENGINE + setInferenceEngineBackendType()
- DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019, // internal - use DNN_BACKEND_INFERENCE_ENGINE + setInferenceEngineBackendType()
- #endif
- };
- /**
- * @brief Enum of target devices for computations.
- * @see Net::setPreferableTarget
- */
- enum Target
- {
- DNN_TARGET_CPU = 0,
- DNN_TARGET_OPENCL,
- DNN_TARGET_OPENCL_FP16,
- DNN_TARGET_MYRIAD,
- DNN_TARGET_VULKAN,
- DNN_TARGET_FPGA, //!< FPGA device with CPU fallbacks using Inference Engine's Heterogeneous plugin.
- DNN_TARGET_CUDA,
- DNN_TARGET_CUDA_FP16,
- DNN_TARGET_HDDL,
- DNN_TARGET_NPU,
- };
- CV_EXPORTS std::vector< std::pair<Backend, Target> > getAvailableBackends();
- CV_EXPORTS_W std::vector<Target> getAvailableTargets(dnn::Backend be);
- /**
- * @brief Enables detailed logging of the DNN model loading with CV DNN API.
- * @param[in] isDiagnosticsMode Indicates whether diagnostic mode should be set.
- *
- * Diagnostic mode provides detailed logging of the model loading stage to explore
- * potential problems (ex.: not implemented layer type).
- *
- * @note In diagnostic mode series of assertions will be skipped, it can lead to the
- * expected application crash.
- */
- CV_EXPORTS void enableModelDiagnostics(bool isDiagnosticsMode);
- /** @brief This class provides all data needed to initialize layer.
- *
- * It includes dictionary with scalar params (which can be read by using Dict interface),
- * blob params #blobs and optional meta information: #name and #type of layer instance.
- */
- class CV_EXPORTS LayerParams : public Dict
- {
- public:
- //TODO: Add ability to name blob params
- std::vector<Mat> blobs; //!< List of learned parameters stored as blobs.
- String name; //!< Name of the layer instance (optional, can be used internal purposes).
- String type; //!< Type name which was used for creating layer by layer factory (optional).
- };
- /**
- * @brief Derivatives of this class encapsulates functions of certain backends.
- */
- class BackendNode
- {
- public:
- explicit BackendNode(int backendId);
- virtual ~BackendNode(); //!< Virtual destructor to make polymorphism.
- int backendId; //!< Backend identifier.
- };
- /**
- * @brief Derivatives of this class wraps cv::Mat for different backends and targets.
- */
- class BackendWrapper
- {
- public:
- BackendWrapper(int backendId, int targetId);
- /**
- * @brief Wrap cv::Mat for specific backend and target.
- * @param[in] targetId Target identifier.
- * @param[in] m cv::Mat for wrapping.
- *
- * Make CPU->GPU data transfer if it's require for the target.
- */
- BackendWrapper(int targetId, const cv::Mat& m);
- /**
- * @brief Make wrapper for reused cv::Mat.
- * @param[in] base Wrapper of cv::Mat that will be reused.
- * @param[in] shape Specific shape.
- *
- * Initialize wrapper from another one. It'll wrap the same host CPU
- * memory and mustn't allocate memory on device(i.e. GPU). It might
- * has different shape. Use in case of CPU memory reusing for reuse
- * associated memory on device too.
- */
- BackendWrapper(const Ptr<BackendWrapper>& base, const MatShape& shape);
- virtual ~BackendWrapper(); //!< Virtual destructor to make polymorphism.
- /**
- * @brief Transfer data to CPU host memory.
- */
- virtual void copyToHost() = 0;
- /**
- * @brief Indicate that an actual data is on CPU.
- */
- virtual void setHostDirty() = 0;
- int backendId; //!< Backend identifier.
- int targetId; //!< Target identifier.
- };
- class CV_EXPORTS ActivationLayer;
- /** @brief This interface class allows to build new Layers - are building blocks of networks.
- *
- * Each class, derived from Layer, must implement allocate() methods to declare own outputs and forward() to compute outputs.
- * Also before using the new layer into networks you must register your layer by using one of @ref dnnLayerFactory "LayerFactory" macros.
- */
- class CV_EXPORTS_W Layer : public Algorithm
- {
- public:
- //! List of learned parameters must be stored here to allow read them by using Net::getParam().
- CV_PROP_RW std::vector<Mat> blobs;
- /** @brief Computes and sets internal parameters according to inputs, outputs and blobs.
- * @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead
- * @param[in] input vector of already allocated input blobs
- * @param[out] output vector of already allocated output blobs
- *
- * If this method is called after network has allocated all memory for input and output blobs
- * and before inferencing.
- */
- CV_DEPRECATED_EXTERNAL
- virtual void finalize(const std::vector<Mat*> &input, std::vector<Mat> &output);
- /** @brief Computes and sets internal parameters according to inputs, outputs and blobs.
- * @param[in] inputs vector of already allocated input blobs
- * @param[out] outputs vector of already allocated output blobs
- *
- * If this method is called after network has allocated all memory for input and output blobs
- * and before inferencing.
- */
- CV_WRAP virtual void finalize(InputArrayOfArrays inputs, OutputArrayOfArrays outputs);
- /** @brief Given the @p input blobs, computes the output @p blobs.
- * @deprecated Use Layer::forward(InputArrayOfArrays, OutputArrayOfArrays, OutputArrayOfArrays) instead
- * @param[in] input the input blobs.
- * @param[out] output allocated output blobs, which will store results of the computation.
- * @param[out] internals allocated internal blobs
- */
- CV_DEPRECATED_EXTERNAL
- virtual void forward(std::vector<Mat*> &input, std::vector<Mat> &output, std::vector<Mat> &internals);
- /** @brief Given the @p input blobs, computes the output @p blobs.
- * @param[in] inputs the input blobs.
- * @param[out] outputs allocated output blobs, which will store results of the computation.
- * @param[out] internals allocated internal blobs
- */
- virtual void forward(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals);
- /** @brief Tries to quantize the given layer and compute the quantization parameters required for fixed point implementation.
- * @param[in] scales input and output scales.
- * @param[in] zeropoints input and output zeropoints.
- * @param[out] params Quantized parameters required for fixed point implementation of that layer.
- * @returns True if layer can be quantized.
- */
- virtual bool tryQuantize(const std::vector<std::vector<float> > &scales,
- const std::vector<std::vector<int> > &zeropoints, LayerParams& params);
- /** @brief Given the @p input blobs, computes the output @p blobs.
- * @param[in] inputs the input blobs.
- * @param[out] outputs allocated output blobs, which will store results of the computation.
- * @param[out] internals allocated internal blobs
- */
- void forward_fallback(InputArrayOfArrays inputs, OutputArrayOfArrays outputs, OutputArrayOfArrays internals);
- /** @brief
- * @overload
- * @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead
- */
- CV_DEPRECATED_EXTERNAL
- void finalize(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs);
- /** @brief
- * @overload
- * @deprecated Use Layer::finalize(InputArrayOfArrays, OutputArrayOfArrays) instead
- */
- CV_DEPRECATED std::vector<Mat> finalize(const std::vector<Mat> &inputs);
- /** @brief Allocates layer and computes output.
- * @deprecated This method will be removed in the future release.
- */
- CV_DEPRECATED CV_WRAP void run(const std::vector<Mat> &inputs, CV_OUT std::vector<Mat> &outputs,
- CV_IN_OUT std::vector<Mat> &internals);
- /** @brief Returns index of input blob into the input array.
- * @param inputName label of input blob
- *
- * Each layer input and output can be labeled to easily identify them using "%<layer_name%>[.output_name]" notation.
- * This method maps label of input blob to its index into input vector.
- */
- virtual int inputNameToIndex(String inputName); // FIXIT const
- /** @brief Returns index of output blob in output array.
- * @see inputNameToIndex()
- */
- CV_WRAP virtual int outputNameToIndex(const String& outputName); // FIXIT const
- /**
- * @brief Ask layer if it support specific backend for doing computations.
- * @param[in] backendId computation backend identifier.
- * @see Backend
- */
- virtual bool supportBackend(int backendId); // FIXIT const
- /**
- * @brief Returns Halide backend node.
- * @param[in] inputs Input Halide buffers.
- * @see BackendNode, BackendWrapper
- *
- * Input buffers should be exactly the same that will be used in forward invocations.
- * Despite we can use Halide::ImageParam based on input shape only,
- * it helps prevent some memory management issues (if something wrong,
- * Halide tests will be failed).
- */
- virtual Ptr<BackendNode> initHalide(const std::vector<Ptr<BackendWrapper> > &inputs);
- virtual Ptr<BackendNode> initNgraph(const std::vector<Ptr<BackendWrapper> > &inputs, const std::vector<Ptr<BackendNode> >& nodes);
- virtual Ptr<BackendNode> initVkCom(const std::vector<Ptr<BackendWrapper> > &inputs);
- virtual Ptr<BackendNode> initWebnn(const std::vector<Ptr<BackendWrapper> > &inputs, const std::vector<Ptr<BackendNode> >& nodes);
- /**
- * @brief Returns a CUDA backend node
- *
- * @param context void pointer to CSLContext object
- * @param inputs layer inputs
- * @param outputs layer outputs
- */
- virtual Ptr<BackendNode> initCUDA(
- void *context,
- const std::vector<Ptr<BackendWrapper>>& inputs,
- const std::vector<Ptr<BackendWrapper>>& outputs
- );
- /**
- * @brief Returns a TimVX backend node
- *
- * @param timVxInfo void pointer to CSLContext object
- * @param inputsWrapper layer inputs
- * @param outputsWrapper layer outputs
- * @param isLast if the node is the last one of the TimVX Graph.
- */
- virtual Ptr<BackendNode> initTimVX(void* timVxInfo,
- const std::vector<Ptr<BackendWrapper> > &inputsWrapper,
- const std::vector<Ptr<BackendWrapper> > &outputsWrapper,
- bool isLast);
- /**
- * @brief Automatic Halide scheduling based on layer hyper-parameters.
- * @param[in] node Backend node with Halide functions.
- * @param[in] inputs Blobs that will be used in forward invocations.
- * @param[in] outputs Blobs that will be used in forward invocations.
- * @param[in] targetId Target identifier
- * @see BackendNode, Target
- *
- * Layer don't use own Halide::Func members because we can have applied
- * layers fusing. In this way the fused function should be scheduled.
- */
- virtual void applyHalideScheduler(Ptr<BackendNode>& node,
- const std::vector<Mat*> &inputs,
- const std::vector<Mat> &outputs,
- int targetId) const;
- /**
- * @brief Implement layers fusing.
- * @param[in] node Backend node of bottom layer.
- * @see BackendNode
- *
- * Actual for graph-based backends. If layer attached successfully,
- * returns non-empty cv::Ptr to node of the same backend.
- * Fuse only over the last function.
- */
- virtual Ptr<BackendNode> tryAttach(const Ptr<BackendNode>& node);
- /**
- * @brief Tries to attach to the layer the subsequent activation layer, i.e. do the layer fusion in a partial case.
- * @param[in] layer The subsequent activation layer.
- *
- * Returns true if the activation layer has been attached successfully.
- */
- virtual bool setActivation(const Ptr<ActivationLayer>& layer);
- /**
- * @brief Try to fuse current layer with a next one
- * @param[in] top Next layer to be fused.
- * @returns True if fusion was performed.
- */
- virtual bool tryFuse(Ptr<Layer>& top);
- /**
- * @brief Returns parameters of layers with channel-wise multiplication and addition.
- * @param[out] scale Channel-wise multipliers. Total number of values should
- * be equal to number of channels.
- * @param[out] shift Channel-wise offsets. Total number of values should
- * be equal to number of channels.
- *
- * Some layers can fuse their transformations with further layers.
- * In example, convolution + batch normalization. This way base layer
- * use weights from layer after it. Fused layer is skipped.
- * By default, @p scale and @p shift are empty that means layer has no
- * element-wise multiplications or additions.
- */
- virtual void getScaleShift(Mat& scale, Mat& shift) const;
- /**
- * @brief Returns scale and zeropoint of layers
- * @param[out] scale Output scale
- * @param[out] zeropoint Output zeropoint
- *
- * By default, @p scale is 1 and @p zeropoint is 0.
- */
- virtual void getScaleZeropoint(float& scale, int& zeropoint) const;
- /**
- * @brief "Detaches" all the layers, attached to particular layer.
- */
- virtual void unsetAttached();
- virtual bool getMemoryShapes(const std::vector<MatShape> &inputs,
- const int requiredOutputs,
- std::vector<MatShape> &outputs,
- std::vector<MatShape> &internals) const;
- virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
- const std::vector<MatShape> &outputs) const {CV_UNUSED(inputs); CV_UNUSED(outputs); return 0;}
- virtual bool updateMemoryShapes(const std::vector<MatShape> &inputs);
- CV_PROP String name; //!< Name of the layer instance, can be used for logging or other internal purposes.
- CV_PROP String type; //!< Type name which was used for creating layer by layer factory.
- CV_PROP int preferableTarget; //!< prefer target for layer forwarding
- Layer();
- explicit Layer(const LayerParams ¶ms); //!< Initializes only #name, #type and #blobs fields.
- void setParamsFrom(const LayerParams ¶ms); //!< Initializes only #name, #type and #blobs fields.
- virtual ~Layer();
- };
- /** @brief This class allows to create and manipulate comprehensive artificial neural networks.
- *
- * Neural network is presented as directed acyclic graph (DAG), where vertices are Layer instances,
- * and edges specify relationships between layers inputs and outputs.
- *
- * Each network layer has unique integer id and unique string name inside its network.
- * LayerId can store either layer name or layer id.
- *
- * This class supports reference counting of its instances, i. e. copies point to the same instance.
- */
- class CV_EXPORTS_W_SIMPLE Net
- {
- public:
- CV_WRAP Net(); //!< Default constructor.
- CV_WRAP ~Net(); //!< Destructor frees the net only if there aren't references to the net anymore.
- /** @brief Create a network from Intel's Model Optimizer intermediate representation (IR).
- * @param[in] xml XML configuration file with network's topology.
- * @param[in] bin Binary file with trained weights.
- * Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
- * backend.
- */
- CV_WRAP static Net readFromModelOptimizer(const String& xml, const String& bin);
- /** @brief Create a network from Intel's Model Optimizer in-memory buffers with intermediate representation (IR).
- * @param[in] bufferModelConfig buffer with model's configuration.
- * @param[in] bufferWeights buffer with model's trained weights.
- * @returns Net object.
- */
- CV_WRAP static
- Net readFromModelOptimizer(const std::vector<uchar>& bufferModelConfig, const std::vector<uchar>& bufferWeights);
- /** @brief Create a network from Intel's Model Optimizer in-memory buffers with intermediate representation (IR).
- * @param[in] bufferModelConfigPtr buffer pointer of model's configuration.
- * @param[in] bufferModelConfigSize buffer size of model's configuration.
- * @param[in] bufferWeightsPtr buffer pointer of model's trained weights.
- * @param[in] bufferWeightsSize buffer size of model's trained weights.
- * @returns Net object.
- */
- static
- Net readFromModelOptimizer(const uchar* bufferModelConfigPtr, size_t bufferModelConfigSize,
- const uchar* bufferWeightsPtr, size_t bufferWeightsSize);
- /** Returns true if there are no layers in the network. */
- CV_WRAP bool empty() const;
- /** @brief Dump net to String
- * @returns String with structure, hyperparameters, backend, target and fusion
- * Call method after setInput(). To see correct backend, target and fusion run after forward().
- */
- CV_WRAP String dump();
- /** @brief Dump net structure, hyperparameters, backend, target and fusion to dot file
- * @param path path to output file with .dot extension
- * @see dump()
- */
- CV_WRAP void dumpToFile(const String& path);
- /** @brief Adds new layer to the net.
- * @param name unique name of the adding layer.
- * @param type typename of the adding layer (type must be registered in LayerRegister).
- * @param dtype datatype of output blobs.
- * @param params parameters which will be used to initialize the creating layer.
- * @returns unique identifier of created layer, or -1 if a failure will happen.
- */
- int addLayer(const String &name, const String &type, const int &dtype, LayerParams ¶ms);
- /** @overload Datatype of output blobs set to default CV_32F */
- int addLayer(const String &name, const String &type, LayerParams ¶ms);
- /** @brief Adds new layer and connects its first input to the first output of previously added layer.
- * @see addLayer()
- */
- int addLayerToPrev(const String &name, const String &type, const int &dtype, LayerParams ¶ms);
- /** @overload */
- int addLayerToPrev(const String &name, const String &type, LayerParams ¶ms);
- /** @brief Converts string name of the layer to the integer identifier.
- * @returns id of the layer, or -1 if the layer wasn't found.
- */
- CV_WRAP int getLayerId(const String &layer) const;
- CV_WRAP std::vector<String> getLayerNames() const;
- /** @brief Container for strings and integers.
- *
- * @deprecated Use getLayerId() with int result.
- */
- typedef DictValue LayerId;
- /** @brief Returns pointer to layer with specified id or name which the network use. */
- CV_WRAP Ptr<Layer> getLayer(int layerId) const;
- /** @overload
- * @deprecated Use int getLayerId(const String &layer)
- */
- CV_WRAP inline Ptr<Layer> getLayer(const String& layerName) const { return getLayer(getLayerId(layerName)); }
- /** @overload
- * @deprecated to be removed
- */
- CV_WRAP Ptr<Layer> getLayer(const LayerId& layerId) const;
- /** @brief Returns pointers to input layers of specific layer. */
- std::vector<Ptr<Layer> > getLayerInputs(int layerId) const; // FIXIT: CV_WRAP
- /** @brief Connects output of the first layer to input of the second layer.
- * @param outPin descriptor of the first layer output.
- * @param inpPin descriptor of the second layer input.
- *
- * Descriptors have the following template <DFN><layer_name>[.input_number]</DFN>:
- * - the first part of the template <DFN>layer_name</DFN> is string name of the added layer.
- * If this part is empty then the network input pseudo layer will be used;
- * - the second optional part of the template <DFN>input_number</DFN>
- * is either number of the layer input, either label one.
- * If this part is omitted then the first layer input will be used.
- *
- * @see setNetInputs(), Layer::inputNameToIndex(), Layer::outputNameToIndex()
- */
- CV_WRAP void connect(String outPin, String inpPin);
- /** @brief Connects #@p outNum output of the first layer to #@p inNum input of the second layer.
- * @param outLayerId identifier of the first layer
- * @param outNum number of the first layer output
- * @param inpLayerId identifier of the second layer
- * @param inpNum number of the second layer input
- */
- void connect(int outLayerId, int outNum, int inpLayerId, int inpNum);
- /** @brief Registers network output with name
- *
- * Function may create additional 'Identity' layer.
- *
- * @param outputName identifier of the output
- * @param layerId identifier of the second layer
- * @param outputPort number of the second layer input
- *
- * @returns index of bound layer (the same as layerId or newly created)
- */
- int registerOutput(const std::string& outputName, int layerId, int outputPort);
- /** @brief Sets outputs names of the network input pseudo layer.
- *
- * Each net always has special own the network input pseudo layer with id=0.
- * This layer stores the user blobs only and don't make any computations.
- * In fact, this layer provides the only way to pass user data into the network.
- * As any other layer, this layer can label its outputs and this function provides an easy way to do this.
- */
- CV_WRAP void setInputsNames(const std::vector<String> &inputBlobNames);
- /** @brief Specify shape of network input.
- */
- CV_WRAP void setInputShape(const String &inputName, const MatShape& shape);
- /** @brief Runs forward pass to compute output of layer with name @p outputName.
- * @param outputName name for layer which output is needed to get
- * @return blob for first output of specified layer.
- * @details By default runs forward pass for the whole network.
- */
- CV_WRAP Mat forward(const String& outputName = String());
- /** @brief Runs forward pass to compute output of layer with name @p outputName.
- * @param outputName name for layer which output is needed to get
- * @details By default runs forward pass for the whole network.
- *
- * This is an asynchronous version of forward(const String&).
- * dnn::DNN_BACKEND_INFERENCE_ENGINE backend is required.
- */
- CV_WRAP AsyncArray forwardAsync(const String& outputName = String());
- /** @brief Runs forward pass to compute output of layer with name @p outputName.
- * @param outputBlobs contains all output blobs for specified layer.
- * @param outputName name for layer which output is needed to get
- * @details If @p outputName is empty, runs forward pass for the whole network.
- */
- CV_WRAP void forward(OutputArrayOfArrays outputBlobs, const String& outputName = String());
- /** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames.
- * @param outputBlobs contains blobs for first outputs of specified layers.
- * @param outBlobNames names for layers which outputs are needed to get
- */
- CV_WRAP void forward(OutputArrayOfArrays outputBlobs,
- const std::vector<String>& outBlobNames);
- /** @brief Runs forward pass to compute outputs of layers listed in @p outBlobNames.
- * @param outputBlobs contains all output blobs for each layer specified in @p outBlobNames.
- * @param outBlobNames names for layers which outputs are needed to get
- */
- CV_WRAP_AS(forwardAndRetrieve) void forward(CV_OUT std::vector<std::vector<Mat> >& outputBlobs,
- const std::vector<String>& outBlobNames);
- /** @brief Returns a quantized Net from a floating-point Net.
- * @param calibData Calibration data to compute the quantization parameters.
- * @param inputsDtype Datatype of quantized net's inputs. Can be CV_32F or CV_8S.
- * @param outputsDtype Datatype of quantized net's outputs. Can be CV_32F or CV_8S.
- */
- CV_WRAP Net quantize(InputArrayOfArrays calibData, int inputsDtype, int outputsDtype);
- /** @brief Returns input scale and zeropoint for a quantized Net.
- * @param scales output parameter for returning input scales.
- * @param zeropoints output parameter for returning input zeropoints.
- */
- CV_WRAP void getInputDetails(CV_OUT std::vector<float>& scales, CV_OUT std::vector<int>& zeropoints) const;
- /** @brief Returns output scale and zeropoint for a quantized Net.
- * @param scales output parameter for returning output scales.
- * @param zeropoints output parameter for returning output zeropoints.
- */
- CV_WRAP void getOutputDetails(CV_OUT std::vector<float>& scales, CV_OUT std::vector<int>& zeropoints) const;
- /**
- * @brief Compile Halide layers.
- * @param[in] scheduler Path to YAML file with scheduling directives.
- * @see setPreferableBackend
- *
- * Schedule layers that support Halide backend. Then compile them for
- * specific target. For layers that not represented in scheduling file
- * or if no manual scheduling used at all, automatic scheduling will be applied.
- */
- CV_WRAP void setHalideScheduler(const String& scheduler);
- /**
- * @brief Ask network to use specific computation backend where it supported.
- * @param[in] backendId backend identifier.
- * @see Backend
- *
- * If OpenCV is compiled with Intel's Inference Engine library, DNN_BACKEND_DEFAULT
- * means DNN_BACKEND_INFERENCE_ENGINE. Otherwise it equals to DNN_BACKEND_OPENCV.
- */
- CV_WRAP void setPreferableBackend(int backendId);
- /**
- * @brief Ask network to make computations on specific target device.
- * @param[in] targetId target identifier.
- * @see Target
- *
- * List of supported combinations backend / target:
- * | | DNN_BACKEND_OPENCV | DNN_BACKEND_INFERENCE_ENGINE | DNN_BACKEND_HALIDE | DNN_BACKEND_CUDA |
- * |------------------------|--------------------|------------------------------|--------------------|-------------------|
- * | DNN_TARGET_CPU | + | + | + | |
- * | DNN_TARGET_OPENCL | + | + | + | |
- * | DNN_TARGET_OPENCL_FP16 | + | + | | |
- * | DNN_TARGET_MYRIAD | | + | | |
- * | DNN_TARGET_FPGA | | + | | |
- * | DNN_TARGET_CUDA | | | | + |
- * | DNN_TARGET_CUDA_FP16 | | | | + |
- * | DNN_TARGET_HDDL | | + | | |
- */
- CV_WRAP void setPreferableTarget(int targetId);
- /** @brief Sets the new input value for the network
- * @param blob A new blob. Should have CV_32F or CV_8U depth.
- * @param name A name of input layer.
- * @param scalefactor An optional normalization scale.
- * @param mean An optional mean subtraction values.
- * @see connect(String, String) to know format of the descriptor.
- *
- * If scale or mean values are specified, a final input blob is computed
- * as:
- * \f[input(n,c,h,w) = scalefactor \times (blob(n,c,h,w) - mean_c)\f]
- */
- CV_WRAP void setInput(InputArray blob, const String& name = "",
- double scalefactor = 1.0, const Scalar& mean = Scalar());
- /** @brief Sets the new value for the learned param of the layer.
- * @param layer name or id of the layer.
- * @param numParam index of the layer parameter in the Layer::blobs array.
- * @param blob the new value.
- * @see Layer::blobs
- * @note If shape of the new blob differs from the previous shape,
- * then the following forward pass may fail.
- */
- CV_WRAP void setParam(int layer, int numParam, const Mat &blob);
- CV_WRAP inline void setParam(const String& layerName, int numParam, const Mat &blob) { return setParam(getLayerId(layerName), numParam, blob); }
- /** @brief Returns parameter blob of the layer.
- * @param layer name or id of the layer.
- * @param numParam index of the layer parameter in the Layer::blobs array.
- * @see Layer::blobs
- */
- CV_WRAP Mat getParam(int layer, int numParam = 0) const;
- CV_WRAP inline Mat getParam(const String& layerName, int numParam = 0) const { return getParam(getLayerId(layerName), numParam); }
- /** @brief Returns indexes of layers with unconnected outputs.
- *
- * FIXIT: Rework API to registerOutput() approach, deprecate this call
- */
- CV_WRAP std::vector<int> getUnconnectedOutLayers() const;
- /** @brief Returns names of layers with unconnected outputs.
- *
- * FIXIT: Rework API to registerOutput() approach, deprecate this call
- */
- CV_WRAP std::vector<String> getUnconnectedOutLayersNames() const;
- /** @brief Returns input and output shapes for all layers in loaded model;
- * preliminary inferencing isn't necessary.
- * @param netInputShapes shapes for all input blobs in net input layer.
- * @param layersIds output parameter for layer IDs.
- * @param inLayersShapes output parameter for input layers shapes;
- * order is the same as in layersIds
- * @param outLayersShapes output parameter for output layers shapes;
- * order is the same as in layersIds
- */
- CV_WRAP void getLayersShapes(const std::vector<MatShape>& netInputShapes,
- CV_OUT std::vector<int>& layersIds,
- CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes,
- CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const;
- /** @overload */
- CV_WRAP void getLayersShapes(const MatShape& netInputShape,
- CV_OUT std::vector<int>& layersIds,
- CV_OUT std::vector<std::vector<MatShape> >& inLayersShapes,
- CV_OUT std::vector<std::vector<MatShape> >& outLayersShapes) const;
- /** @brief Returns input and output shapes for layer with specified
- * id in loaded model; preliminary inferencing isn't necessary.
- * @param netInputShape shape input blob in net input layer.
- * @param layerId id for layer.
- * @param inLayerShapes output parameter for input layers shapes;
- * order is the same as in layersIds
- * @param outLayerShapes output parameter for output layers shapes;
- * order is the same as in layersIds
- */
- void getLayerShapes(const MatShape& netInputShape,
- const int layerId,
- CV_OUT std::vector<MatShape>& inLayerShapes,
- CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP
- /** @overload */
- void getLayerShapes(const std::vector<MatShape>& netInputShapes,
- const int layerId,
- CV_OUT std::vector<MatShape>& inLayerShapes,
- CV_OUT std::vector<MatShape>& outLayerShapes) const; // FIXIT: CV_WRAP
- /** @brief Computes FLOP for whole loaded model with specified input shapes.
- * @param netInputShapes vector of shapes for all net inputs.
- * @returns computed FLOP.
- */
- CV_WRAP int64 getFLOPS(const std::vector<MatShape>& netInputShapes) const;
- /** @overload */
- CV_WRAP int64 getFLOPS(const MatShape& netInputShape) const;
- /** @overload */
- CV_WRAP int64 getFLOPS(const int layerId,
- const std::vector<MatShape>& netInputShapes) const;
- /** @overload */
- CV_WRAP int64 getFLOPS(const int layerId,
- const MatShape& netInputShape) const;
- /** @brief Returns list of types for layer used in model.
- * @param layersTypes output parameter for returning types.
- */
- CV_WRAP void getLayerTypes(CV_OUT std::vector<String>& layersTypes) const;
- /** @brief Returns count of layers of specified type.
- * @param layerType type.
- * @returns count of layers
- */
- CV_WRAP int getLayersCount(const String& layerType) const;
- /** @brief Computes bytes number which are required to store
- * all weights and intermediate blobs for model.
- * @param netInputShapes vector of shapes for all net inputs.
- * @param weights output parameter to store resulting bytes for weights.
- * @param blobs output parameter to store resulting bytes for intermediate blobs.
- */
- void getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
- CV_OUT size_t& weights, CV_OUT size_t& blobs) const; // FIXIT: CV_WRAP
- /** @overload */
- CV_WRAP void getMemoryConsumption(const MatShape& netInputShape,
- CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
- /** @overload */
- CV_WRAP void getMemoryConsumption(const int layerId,
- const std::vector<MatShape>& netInputShapes,
- CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
- /** @overload */
- CV_WRAP void getMemoryConsumption(const int layerId,
- const MatShape& netInputShape,
- CV_OUT size_t& weights, CV_OUT size_t& blobs) const;
- /** @brief Computes bytes number which are required to store
- * all weights and intermediate blobs for each layer.
- * @param netInputShapes vector of shapes for all net inputs.
- * @param layerIds output vector to save layer IDs.
- * @param weights output parameter to store resulting bytes for weights.
- * @param blobs output parameter to store resulting bytes for intermediate blobs.
- */
- void getMemoryConsumption(const std::vector<MatShape>& netInputShapes,
- CV_OUT std::vector<int>& layerIds,
- CV_OUT std::vector<size_t>& weights,
- CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP
- /** @overload */
- void getMemoryConsumption(const MatShape& netInputShape,
- CV_OUT std::vector<int>& layerIds,
- CV_OUT std::vector<size_t>& weights,
- CV_OUT std::vector<size_t>& blobs) const; // FIXIT: CV_WRAP
- /** @brief Enables or disables layer fusion in the network.
- * @param fusion true to enable the fusion, false to disable. The fusion is enabled by default.
- */
- CV_WRAP void enableFusion(bool fusion);
- /** @brief Returns overall time for inference and timings (in ticks) for layers.
- *
- * Indexes in returned vector correspond to layers ids. Some layers can be fused with others,
- * in this case zero ticks count will be return for that skipped layers. Supported by DNN_BACKEND_OPENCV on DNN_TARGET_CPU only.
- *
- * @param[out] timings vector for tick timings for all layers.
- * @return overall ticks for model inference.
- */
- CV_WRAP int64 getPerfProfile(CV_OUT std::vector<double>& timings);
- private:
- struct Impl;
- Ptr<Impl> impl;
- };
- /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
- * @param cfgFile path to the .cfg file with text description of the network architecture.
- * @param darknetModel path to the .weights file with learned network.
- * @returns Network object that ready to do forward, throw an exception in failure cases.
- * @returns Net object.
- */
- CV_EXPORTS_W Net readNetFromDarknet(const String &cfgFile, const String &darknetModel = String());
- /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
- * @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture.
- * @param bufferModel A buffer contains a content of .weights file with learned network.
- * @returns Net object.
- */
- CV_EXPORTS_W Net readNetFromDarknet(const std::vector<uchar>& bufferCfg,
- const std::vector<uchar>& bufferModel = std::vector<uchar>());
- /** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
- * @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture.
- * @param lenCfg Number of bytes to read from bufferCfg
- * @param bufferModel A buffer contains a content of .weights file with learned network.
- * @param lenModel Number of bytes to read from bufferModel
- * @returns Net object.
- */
- CV_EXPORTS Net readNetFromDarknet(const char *bufferCfg, size_t lenCfg,
- const char *bufferModel = NULL, size_t lenModel = 0);
- /** @brief Reads a network model stored in <a href="http://caffe.berkeleyvision.org">Caffe</a> framework's format.
- * @param prototxt path to the .prototxt file with text description of the network architecture.
- * @param caffeModel path to the .caffemodel file with learned network.
- * @returns Net object.
- */
- CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String());
- /** @brief Reads a network model stored in Caffe model in memory.
- * @param bufferProto buffer containing the content of the .prototxt file
- * @param bufferModel buffer containing the content of the .caffemodel file
- * @returns Net object.
- */
- CV_EXPORTS_W Net readNetFromCaffe(const std::vector<uchar>& bufferProto,
- const std::vector<uchar>& bufferModel = std::vector<uchar>());
- /** @brief Reads a network model stored in Caffe model in memory.
- * @details This is an overloaded member function, provided for convenience.
- * It differs from the above function only in what argument(s) it accepts.
- * @param bufferProto buffer containing the content of the .prototxt file
- * @param lenProto length of bufferProto
- * @param bufferModel buffer containing the content of the .caffemodel file
- * @param lenModel length of bufferModel
- * @returns Net object.
- */
- CV_EXPORTS Net readNetFromCaffe(const char *bufferProto, size_t lenProto,
- const char *bufferModel = NULL, size_t lenModel = 0);
- /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
- * @param model path to the .pb file with binary protobuf description of the network architecture
- * @param config path to the .pbtxt file that contains text graph definition in protobuf format.
- * Resulting Net object is built by text graph using weights from a binary one that
- * let us make it more flexible.
- * @returns Net object.
- */
- CV_EXPORTS_W Net readNetFromTensorflow(const String &model, const String &config = String());
- /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
- * @param bufferModel buffer containing the content of the pb file
- * @param bufferConfig buffer containing the content of the pbtxt file
- * @returns Net object.
- */
- CV_EXPORTS_W Net readNetFromTensorflow(const std::vector<uchar>& bufferModel,
- const std::vector<uchar>& bufferConfig = std::vector<uchar>());
- /** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
- * @details This is an overloaded member function, provided for convenience.
- * It differs from the above function only in what argument(s) it accepts.
- * @param bufferModel buffer containing the content of the pb file
- * @param lenModel length of bufferModel
- * @param bufferConfig buffer containing the content of the pbtxt file
- * @param lenConfig length of bufferConfig
- */
- CV_EXPORTS Net readNetFromTensorflow(const char *bufferModel, size_t lenModel,
- const char *bufferConfig = NULL, size_t lenConfig = 0);
- /**
- * @brief Reads a network model stored in <a href="http://torch.ch">Torch7</a> framework's format.
- * @param model path to the file, dumped from Torch by using torch.save() function.
- * @param isBinary specifies whether the network was serialized in ascii mode or binary.
- * @param evaluate specifies testing phase of network. If true, it's similar to evaluate() method in Torch.
- * @returns Net object.
- *
- * @note Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language,
- * which has various bit-length on different systems.
- *
- * The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object
- * with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors.
- *
- * List of supported layers (i.e. object instances derived from Torch nn.Module class):
- * - nn.Sequential
- * - nn.Parallel
- * - nn.Concat
- * - nn.Linear
- * - nn.SpatialConvolution
- * - nn.SpatialMaxPooling, nn.SpatialAveragePooling
- * - nn.ReLU, nn.TanH, nn.Sigmoid
- * - nn.Reshape
- * - nn.SoftMax, nn.LogSoftMax
- *
- * Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported.
- */
- CV_EXPORTS_W Net readNetFromTorch(const String &model, bool isBinary = true, bool evaluate = true);
- /**
- * @brief Read deep learning network represented in one of the supported formats.
- * @param[in] model Binary file contains trained weights. The following file
- * extensions are expected for models from different frameworks:
- * * `*.caffemodel` (Caffe, http://caffe.berkeleyvision.org/)
- * * `*.pb` (TensorFlow, https://www.tensorflow.org/)
- * * `*.t7` | `*.net` (Torch, http://torch.ch/)
- * * `*.weights` (Darknet, https://pjreddie.com/darknet/)
- * * `*.bin` (DLDT, https://software.intel.com/openvino-toolkit)
- * * `*.onnx` (ONNX, https://onnx.ai/)
- * @param[in] config Text file contains network configuration. It could be a
- * file with the following extensions:
- * * `*.prototxt` (Caffe, http://caffe.berkeleyvision.org/)
- * * `*.pbtxt` (TensorFlow, https://www.tensorflow.org/)
- * * `*.cfg` (Darknet, https://pjreddie.com/darknet/)
- * * `*.xml` (DLDT, https://software.intel.com/openvino-toolkit)
- * @param[in] framework Explicit framework name tag to determine a format.
- * @returns Net object.
- *
- * This function automatically detects an origin framework of trained model
- * and calls an appropriate function such @ref readNetFromCaffe, @ref readNetFromTensorflow,
- * @ref readNetFromTorch or @ref readNetFromDarknet. An order of @p model and @p config
- * arguments does not matter.
- */
- CV_EXPORTS_W Net readNet(const String& model, const String& config = "", const String& framework = "");
- /**
- * @brief Read deep learning network represented in one of the supported formats.
- * @details This is an overloaded member function, provided for convenience.
- * It differs from the above function only in what argument(s) it accepts.
- * @param[in] framework Name of origin framework.
- * @param[in] bufferModel A buffer with a content of binary file with weights
- * @param[in] bufferConfig A buffer with a content of text file contains network configuration.
- * @returns Net object.
- */
- CV_EXPORTS_W Net readNet(const String& framework, const std::vector<uchar>& bufferModel,
- const std::vector<uchar>& bufferConfig = std::vector<uchar>());
- /** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework.
- * @warning This function has the same limitations as readNetFromTorch().
- */
- CV_EXPORTS_W Mat readTorchBlob(const String &filename, bool isBinary = true);
- /** @brief Load a network from Intel's Model Optimizer intermediate representation.
- * @param[in] xml XML configuration file with network's topology.
- * @param[in] bin Binary file with trained weights.
- * @returns Net object.
- * Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
- * backend.
- */
- CV_EXPORTS_W
- Net readNetFromModelOptimizer(const String &xml, const String &bin);
- /** @brief Load a network from Intel's Model Optimizer intermediate representation.
- * @param[in] bufferModelConfig Buffer contains XML configuration with network's topology.
- * @param[in] bufferWeights Buffer contains binary data with trained weights.
- * @returns Net object.
- * Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
- * backend.
- */
- CV_EXPORTS_W
- Net readNetFromModelOptimizer(const std::vector<uchar>& bufferModelConfig, const std::vector<uchar>& bufferWeights);
- /** @brief Load a network from Intel's Model Optimizer intermediate representation.
- * @param[in] bufferModelConfigPtr Pointer to buffer which contains XML configuration with network's topology.
- * @param[in] bufferModelConfigSize Binary size of XML configuration data.
- * @param[in] bufferWeightsPtr Pointer to buffer which contains binary data with trained weights.
- * @param[in] bufferWeightsSize Binary size of trained weights data.
- * @returns Net object.
- * Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
- * backend.
- */
- CV_EXPORTS
- Net readNetFromModelOptimizer(const uchar* bufferModelConfigPtr, size_t bufferModelConfigSize,
- const uchar* bufferWeightsPtr, size_t bufferWeightsSize);
- /** @brief Reads a network model <a href="https://onnx.ai/">ONNX</a>.
- * @param onnxFile path to the .onnx file with text description of the network architecture.
- * @returns Network object that ready to do forward, throw an exception in failure cases.
- */
- CV_EXPORTS_W Net readNetFromONNX(const String &onnxFile);
- /** @brief Reads a network model from <a href="https://onnx.ai/">ONNX</a>
- * in-memory buffer.
- * @param buffer memory address of the first byte of the buffer.
- * @param sizeBuffer size of the buffer.
- * @returns Network object that ready to do forward, throw an exception
- * in failure cases.
- */
- CV_EXPORTS Net readNetFromONNX(const char* buffer, size_t sizeBuffer);
- /** @brief Reads a network model from <a href="https://onnx.ai/">ONNX</a>
- * in-memory buffer.
- * @param buffer in-memory buffer that stores the ONNX model bytes.
- * @returns Network object that ready to do forward, throw an exception
- * in failure cases.
- */
- CV_EXPORTS_W Net readNetFromONNX(const std::vector<uchar>& buffer);
- /** @brief Creates blob from .pb file.
- * @param path to the .pb file with input tensor.
- * @returns Mat.
- */
- CV_EXPORTS_W Mat readTensorFromONNX(const String& path);
- /** @brief Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
- * subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
- * @param image input image (with 1-, 3- or 4-channels).
- * @param size spatial size for output image
- * @param mean scalar with mean values which are subtracted from channels. Values are intended
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * @param scalefactor multiplier for @p image values.
- * @param swapRB flag which indicates that swap first and last channels
- * in 3-channel image is necessary.
- * @param crop flag which indicates whether image will be cropped after resize or not
- * @param ddepth Depth of output blob. Choose CV_32F or CV_8U.
- * @details if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @returns 4-dimensional Mat with NCHW dimensions order.
- */
- CV_EXPORTS_W Mat blobFromImage(InputArray image, double scalefactor=1.0, const Size& size = Size(),
- const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false,
- int ddepth=CV_32F);
- /** @brief Creates 4-dimensional blob from image.
- * @details This is an overloaded member function, provided for convenience.
- * It differs from the above function only in what argument(s) it accepts.
- */
- CV_EXPORTS void blobFromImage(InputArray image, OutputArray blob, double scalefactor=1.0,
- const Size& size = Size(), const Scalar& mean = Scalar(),
- bool swapRB=false, bool crop=false, int ddepth=CV_32F);
- /** @brief Creates 4-dimensional blob from series of images. Optionally resizes and
- * crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
- * swap Blue and Red channels.
- * @param images input images (all with 1-, 3- or 4-channels).
- * @param size spatial size for output image
- * @param mean scalar with mean values which are subtracted from channels. Values are intended
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * @param scalefactor multiplier for @p images values.
- * @param swapRB flag which indicates that swap first and last channels
- * in 3-channel image is necessary.
- * @param crop flag which indicates whether image will be cropped after resize or not
- * @param ddepth Depth of output blob. Choose CV_32F or CV_8U.
- * @details if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @returns 4-dimensional Mat with NCHW dimensions order.
- */
- CV_EXPORTS_W Mat blobFromImages(InputArrayOfArrays images, double scalefactor=1.0,
- Size size = Size(), const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false,
- int ddepth=CV_32F);
- /** @brief Creates 4-dimensional blob from series of images.
- * @details This is an overloaded member function, provided for convenience.
- * It differs from the above function only in what argument(s) it accepts.
- */
- CV_EXPORTS void blobFromImages(InputArrayOfArrays images, OutputArray blob,
- double scalefactor=1.0, Size size = Size(),
- const Scalar& mean = Scalar(), bool swapRB=false, bool crop=false,
- int ddepth=CV_32F);
- /** @brief Parse a 4D blob and output the images it contains as 2D arrays through a simpler data structure
- * (std::vector<cv::Mat>).
- * @param[in] blob_ 4 dimensional array (images, channels, height, width) in floating point precision (CV_32F) from
- * which you would like to extract the images.
- * @param[out] images_ array of 2D Mat containing the images extracted from the blob in floating point precision
- * (CV_32F). They are non normalized neither mean added. The number of returned images equals the first dimension
- * of the blob (batch size). Every image has a number of channels equals to the second dimension of the blob (depth).
- */
- CV_EXPORTS_W void imagesFromBlob(const cv::Mat& blob_, OutputArrayOfArrays images_);
- /** @brief Convert all weights of Caffe network to half precision floating point.
- * @param src Path to origin model from Caffe framework contains single
- * precision floating point weights (usually has `.caffemodel` extension).
- * @param dst Path to destination model with updated weights.
- * @param layersTypes Set of layers types which parameters will be converted.
- * By default, converts only Convolutional and Fully-Connected layers'
- * weights.
- *
- * @note Shrinked model has no origin float32 weights so it can't be used
- * in origin Caffe framework anymore. However the structure of data
- * is taken from NVidia's Caffe fork: https://github.com/NVIDIA/caffe.
- * So the resulting model may be used there.
- */
- CV_EXPORTS_W void shrinkCaffeModel(const String& src, const String& dst,
- const std::vector<String>& layersTypes = std::vector<String>());
- /** @brief Create a text representation for a binary network stored in protocol buffer format.
- * @param[in] model A path to binary network.
- * @param[in] output A path to output text file to be created.
- *
- * @note To reduce output file size, trained weights are not included.
- */
- CV_EXPORTS_W void writeTextGraph(const String& model, const String& output);
- /** @brief Performs non maximum suppression given boxes and corresponding scores.
- * @param bboxes a set of bounding boxes to apply NMS.
- * @param scores a set of corresponding confidences.
- * @param score_threshold a threshold used to filter boxes by score.
- * @param nms_threshold a threshold used in non maximum suppression.
- * @param indices the kept indices of bboxes after NMS.
- * @param eta a coefficient in adaptive threshold formula: \f$nms\_threshold_{i+1}=eta\cdot nms\_threshold_i\f$.
- * @param top_k if `>0`, keep at most @p top_k picked indices.
- */
- CV_EXPORTS void NMSBoxes(const std::vector<Rect>& bboxes, const std::vector<float>& scores,
- const float score_threshold, const float nms_threshold,
- CV_OUT std::vector<int>& indices,
- const float eta = 1.f, const int top_k = 0);
- CV_EXPORTS_W void NMSBoxes(const std::vector<Rect2d>& bboxes, const std::vector<float>& scores,
- const float score_threshold, const float nms_threshold,
- CV_OUT std::vector<int>& indices,
- const float eta = 1.f, const int top_k = 0);
- CV_EXPORTS_AS(NMSBoxesRotated) void NMSBoxes(const std::vector<RotatedRect>& bboxes, const std::vector<float>& scores,
- const float score_threshold, const float nms_threshold,
- CV_OUT std::vector<int>& indices,
- const float eta = 1.f, const int top_k = 0);
- /**
- * @brief Enum of Soft NMS methods.
- * @see softNMSBoxes
- */
- enum class SoftNMSMethod
- {
- SOFTNMS_LINEAR = 1,
- SOFTNMS_GAUSSIAN = 2
- };
- /** @brief Performs soft non maximum suppression given boxes and corresponding scores.
- * Reference: https://arxiv.org/abs/1704.04503
- * @param bboxes a set of bounding boxes to apply Soft NMS.
- * @param scores a set of corresponding confidences.
- * @param updated_scores a set of corresponding updated confidences.
- * @param score_threshold a threshold used to filter boxes by score.
- * @param nms_threshold a threshold used in non maximum suppression.
- * @param indices the kept indices of bboxes after NMS.
- * @param top_k keep at most @p top_k picked indices.
- * @param sigma parameter of Gaussian weighting.
- * @param method Gaussian or linear.
- * @see SoftNMSMethod
- */
- CV_EXPORTS_W void softNMSBoxes(const std::vector<Rect>& bboxes,
- const std::vector<float>& scores,
- CV_OUT std::vector<float>& updated_scores,
- const float score_threshold,
- const float nms_threshold,
- CV_OUT std::vector<int>& indices,
- size_t top_k = 0,
- const float sigma = 0.5,
- SoftNMSMethod method = SoftNMSMethod::SOFTNMS_GAUSSIAN);
- /** @brief This class is presented high-level API for neural networks.
- *
- * Model allows to set params for preprocessing input image.
- * Model creates net from file with trained weights and config,
- * sets preprocessing input and runs forward pass.
- */
- class CV_EXPORTS_W_SIMPLE Model
- {
- public:
- CV_DEPRECATED_EXTERNAL // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
- Model();
- Model(const Model&) = default;
- Model(Model&&) = default;
- Model& operator=(const Model&) = default;
- Model& operator=(Model&&) = default;
- /**
- * @brief Create model from deep learning network represented in one of the supported formats.
- * An order of @p model and @p config arguments does not matter.
- * @param[in] model Binary file contains trained weights.
- * @param[in] config Text file contains network configuration.
- */
- CV_WRAP Model(const String& model, const String& config = "");
- /**
- * @brief Create model from deep learning network.
- * @param[in] network Net object.
- */
- CV_WRAP Model(const Net& network);
- /** @brief Set input size for frame.
- * @param[in] size New input size.
- * @note If shape of the new blob less than 0, then frame size not change.
- */
- CV_WRAP Model& setInputSize(const Size& size);
- /** @overload
- * @param[in] width New input width.
- * @param[in] height New input height.
- */
- CV_WRAP inline
- Model& setInputSize(int width, int height) { return setInputSize(Size(width, height)); }
- /** @brief Set mean value for frame.
- * @param[in] mean Scalar with mean values which are subtracted from channels.
- */
- CV_WRAP Model& setInputMean(const Scalar& mean);
- /** @brief Set scalefactor value for frame.
- * @param[in] scale Multiplier for frame values.
- */
- CV_WRAP Model& setInputScale(double scale);
- /** @brief Set flag crop for frame.
- * @param[in] crop Flag which indicates whether image will be cropped after resize or not.
- */
- CV_WRAP Model& setInputCrop(bool crop);
- /** @brief Set flag swapRB for frame.
- * @param[in] swapRB Flag which indicates that swap first and last channels.
- */
- CV_WRAP Model& setInputSwapRB(bool swapRB);
- /** @brief Set preprocessing parameters for frame.
- * @param[in] size New input size.
- * @param[in] mean Scalar with mean values which are subtracted from channels.
- * @param[in] scale Multiplier for frame values.
- * @param[in] swapRB Flag which indicates that swap first and last channels.
- * @param[in] crop Flag which indicates whether image will be cropped after resize or not.
- * blob(n, c, y, x) = scale * resize( frame(y, x, c) ) - mean(c) )
- */
- CV_WRAP void setInputParams(double scale = 1.0, const Size& size = Size(),
- const Scalar& mean = Scalar(), bool swapRB = false, bool crop = false);
- /** @brief Given the @p input frame, create input blob, run net and return the output @p blobs.
- * @param[in] frame The input image.
- * @param[out] outs Allocated output blobs, which will store results of the computation.
- */
- CV_WRAP void predict(InputArray frame, OutputArrayOfArrays outs) const;
- // ============================== Net proxy methods ==============================
- // Never expose methods with network implementation details, like:
- // - addLayer, addLayerToPrev, connect, setInputsNames, setInputShape, setParam, getParam
- // - getLayer*, getUnconnectedOutLayers, getUnconnectedOutLayersNames, getLayersShapes
- // - forward* methods, setInput
- /// @sa Net::setPreferableBackend
- CV_WRAP Model& setPreferableBackend(dnn::Backend backendId);
- /// @sa Net::setPreferableTarget
- CV_WRAP Model& setPreferableTarget(dnn::Target targetId);
- CV_DEPRECATED_EXTERNAL
- operator Net&() const { return getNetwork_(); }
- //protected: - internal/tests usage only
- Net& getNetwork_() const;
- inline Net& getNetwork_() { return const_cast<const Model*>(this)->getNetwork_(); }
- struct Impl;
- inline Impl* getImpl() const { return impl.get(); }
- inline Impl& getImplRef() const { CV_DbgAssert(impl); return *impl.get(); }
- protected:
- Ptr<Impl> impl;
- };
- /** @brief This class represents high-level API for classification models.
- *
- * ClassificationModel allows to set params for preprocessing input image.
- * ClassificationModel creates net from file with trained weights and config,
- * sets preprocessing input, runs forward pass and return top-1 prediction.
- */
- class CV_EXPORTS_W_SIMPLE ClassificationModel : public Model
- {
- public:
- CV_DEPRECATED_EXTERNAL // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
- ClassificationModel();
- /**
- * @brief Create classification model from network represented in one of the supported formats.
- * An order of @p model and @p config arguments does not matter.
- * @param[in] model Binary file contains trained weights.
- * @param[in] config Text file contains network configuration.
- */
- CV_WRAP ClassificationModel(const String& model, const String& config = "");
- /**
- * @brief Create model from deep learning network.
- * @param[in] network Net object.
- */
- CV_WRAP ClassificationModel(const Net& network);
- /**
- * @brief Set enable/disable softmax post processing option.
- *
- * If this option is true, softmax is applied after forward inference within the classify() function
- * to convert the confidences range to [0.0-1.0].
- * This function allows you to toggle this behavior.
- * Please turn true when not contain softmax layer in model.
- * @param[in] enable Set enable softmax post processing within the classify() function.
- */
- CV_WRAP ClassificationModel& setEnableSoftmaxPostProcessing(bool enable);
- /**
- * @brief Get enable/disable softmax post processing option.
- *
- * This option defaults to false, softmax post processing is not applied within the classify() function.
- */
- CV_WRAP bool getEnableSoftmaxPostProcessing() const;
- /** @brief Given the @p input frame, create input blob, run net and return top-1 prediction.
- * @param[in] frame The input image.
- */
- std::pair<int, float> classify(InputArray frame);
- /** @overload */
- CV_WRAP void classify(InputArray frame, CV_OUT int& classId, CV_OUT float& conf);
- };
- /** @brief This class represents high-level API for keypoints models
- *
- * KeypointsModel allows to set params for preprocessing input image.
- * KeypointsModel creates net from file with trained weights and config,
- * sets preprocessing input, runs forward pass and returns the x and y coordinates of each detected keypoint
- */
- class CV_EXPORTS_W_SIMPLE KeypointsModel: public Model
- {
- public:
- /**
- * @brief Create keypoints model from network represented in one of the supported formats.
- * An order of @p model and @p config arguments does not matter.
- * @param[in] model Binary file contains trained weights.
- * @param[in] config Text file contains network configuration.
- */
- CV_WRAP KeypointsModel(const String& model, const String& config = "");
- /**
- * @brief Create model from deep learning network.
- * @param[in] network Net object.
- */
- CV_WRAP KeypointsModel(const Net& network);
- /** @brief Given the @p input frame, create input blob, run net
- * @param[in] frame The input image.
- * @param thresh minimum confidence threshold to select a keypoint
- * @returns a vector holding the x and y coordinates of each detected keypoint
- *
- */
- CV_WRAP std::vector<Point2f> estimate(InputArray frame, float thresh=0.5);
- };
- /** @brief This class represents high-level API for segmentation models
- *
- * SegmentationModel allows to set params for preprocessing input image.
- * SegmentationModel creates net from file with trained weights and config,
- * sets preprocessing input, runs forward pass and returns the class prediction for each pixel.
- */
- class CV_EXPORTS_W_SIMPLE SegmentationModel: public Model
- {
- public:
- /**
- * @brief Create segmentation model from network represented in one of the supported formats.
- * An order of @p model and @p config arguments does not matter.
- * @param[in] model Binary file contains trained weights.
- * @param[in] config Text file contains network configuration.
- */
- CV_WRAP SegmentationModel(const String& model, const String& config = "");
- /**
- * @brief Create model from deep learning network.
- * @param[in] network Net object.
- */
- CV_WRAP SegmentationModel(const Net& network);
- /** @brief Given the @p input frame, create input blob, run net
- * @param[in] frame The input image.
- * @param[out] mask Allocated class prediction for each pixel
- */
- CV_WRAP void segment(InputArray frame, OutputArray mask);
- };
- /** @brief This class represents high-level API for object detection networks.
- *
- * DetectionModel allows to set params for preprocessing input image.
- * DetectionModel creates net from file with trained weights and config,
- * sets preprocessing input, runs forward pass and return result detections.
- * For DetectionModel SSD, Faster R-CNN, YOLO topologies are supported.
- */
- class CV_EXPORTS_W_SIMPLE DetectionModel : public Model
- {
- public:
- /**
- * @brief Create detection model from network represented in one of the supported formats.
- * An order of @p model and @p config arguments does not matter.
- * @param[in] model Binary file contains trained weights.
- * @param[in] config Text file contains network configuration.
- */
- CV_WRAP DetectionModel(const String& model, const String& config = "");
- /**
- * @brief Create model from deep learning network.
- * @param[in] network Net object.
- */
- CV_WRAP DetectionModel(const Net& network);
- CV_DEPRECATED_EXTERNAL // avoid using in C++ code (need to fix bindings first)
- DetectionModel();
- /**
- * @brief nmsAcrossClasses defaults to false,
- * such that when non max suppression is used during the detect() function, it will do so per-class.
- * This function allows you to toggle this behaviour.
- * @param[in] value The new value for nmsAcrossClasses
- */
- CV_WRAP DetectionModel& setNmsAcrossClasses(bool value);
- /**
- * @brief Getter for nmsAcrossClasses. This variable defaults to false,
- * such that when non max suppression is used during the detect() function, it will do so only per-class
- */
- CV_WRAP bool getNmsAcrossClasses();
- /** @brief Given the @p input frame, create input blob, run net and return result detections.
- * @param[in] frame The input image.
- * @param[out] classIds Class indexes in result detection.
- * @param[out] confidences A set of corresponding confidences.
- * @param[out] boxes A set of bounding boxes.
- * @param[in] confThreshold A threshold used to filter boxes by confidences.
- * @param[in] nmsThreshold A threshold used in non maximum suppression.
- */
- CV_WRAP void detect(InputArray frame, CV_OUT std::vector<int>& classIds,
- CV_OUT std::vector<float>& confidences, CV_OUT std::vector<Rect>& boxes,
- float confThreshold = 0.5f, float nmsThreshold = 0.0f);
- };
- /** @brief This class represents high-level API for text recognition networks.
- *
- * TextRecognitionModel allows to set params for preprocessing input image.
- * TextRecognitionModel creates net from file with trained weights and config,
- * sets preprocessing input, runs forward pass and return recognition result.
- * For TextRecognitionModel, CRNN-CTC is supported.
- */
- class CV_EXPORTS_W_SIMPLE TextRecognitionModel : public Model
- {
- public:
- CV_DEPRECATED_EXTERNAL // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
- TextRecognitionModel();
- /**
- * @brief Create Text Recognition model from deep learning network
- * Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method
- * @param[in] network Net object
- */
- CV_WRAP TextRecognitionModel(const Net& network);
- /**
- * @brief Create text recognition model from network represented in one of the supported formats
- * Call setDecodeType() and setVocabulary() after constructor to initialize the decoding method
- * @param[in] model Binary file contains trained weights
- * @param[in] config Text file contains network configuration
- */
- CV_WRAP inline
- TextRecognitionModel(const std::string& model, const std::string& config = "")
- : TextRecognitionModel(readNet(model, config)) { /* nothing */ }
- /**
- * @brief Set the decoding method of translating the network output into string
- * @param[in] decodeType The decoding method of translating the network output into string, currently supported type:
- * - `"CTC-greedy"` greedy decoding for the output of CTC-based methods
- * - `"CTC-prefix-beam-search"` Prefix beam search decoding for the output of CTC-based methods
- */
- CV_WRAP
- TextRecognitionModel& setDecodeType(const std::string& decodeType);
- /**
- * @brief Get the decoding method
- * @return the decoding method
- */
- CV_WRAP
- const std::string& getDecodeType() const;
- /**
- * @brief Set the decoding method options for `"CTC-prefix-beam-search"` decode usage
- * @param[in] beamSize Beam size for search
- * @param[in] vocPruneSize Parameter to optimize big vocabulary search,
- * only take top @p vocPruneSize tokens in each search step, @p vocPruneSize <= 0 stands for disable this prune.
- */
- CV_WRAP
- TextRecognitionModel& setDecodeOptsCTCPrefixBeamSearch(int beamSize, int vocPruneSize = 0);
- /**
- * @brief Set the vocabulary for recognition.
- * @param[in] vocabulary the associated vocabulary of the network.
- */
- CV_WRAP
- TextRecognitionModel& setVocabulary(const std::vector<std::string>& vocabulary);
- /**
- * @brief Get the vocabulary for recognition.
- * @return vocabulary the associated vocabulary
- */
- CV_WRAP
- const std::vector<std::string>& getVocabulary() const;
- /**
- * @brief Given the @p input frame, create input blob, run net and return recognition result
- * @param[in] frame The input image
- * @return The text recognition result
- */
- CV_WRAP
- std::string recognize(InputArray frame) const;
- /**
- * @brief Given the @p input frame, create input blob, run net and return recognition result
- * @param[in] frame The input image
- * @param[in] roiRects List of text detection regions of interest (cv::Rect, CV_32SC4). ROIs is be cropped as the network inputs
- * @param[out] results A set of text recognition results.
- */
- CV_WRAP
- void recognize(InputArray frame, InputArrayOfArrays roiRects, CV_OUT std::vector<std::string>& results) const;
- };
- /** @brief Base class for text detection networks
- */
- class CV_EXPORTS_W_SIMPLE TextDetectionModel : public Model
- {
- protected:
- CV_DEPRECATED_EXTERNAL // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
- TextDetectionModel();
- public:
- /** @brief Performs detection
- *
- * Given the input @p frame, prepare network input, run network inference, post-process network output and return result detections.
- *
- * Each result is quadrangle's 4 points in this order:
- * - bottom-left
- * - top-left
- * - top-right
- * - bottom-right
- *
- * Use cv::getPerspectiveTransform function to retrieve image region without perspective transformations.
- *
- * @note If DL model doesn't support that kind of output then result may be derived from detectTextRectangles() output.
- *
- * @param[in] frame The input image
- * @param[out] detections array with detections' quadrangles (4 points per result)
- * @param[out] confidences array with detection confidences
- */
- CV_WRAP
- void detect(
- InputArray frame,
- CV_OUT std::vector< std::vector<Point> >& detections,
- CV_OUT std::vector<float>& confidences
- ) const;
- /** @overload */
- CV_WRAP
- void detect(
- InputArray frame,
- CV_OUT std::vector< std::vector<Point> >& detections
- ) const;
- /** @brief Performs detection
- *
- * Given the input @p frame, prepare network input, run network inference, post-process network output and return result detections.
- *
- * Each result is rotated rectangle.
- *
- * @note Result may be inaccurate in case of strong perspective transformations.
- *
- * @param[in] frame the input image
- * @param[out] detections array with detections' RotationRect results
- * @param[out] confidences array with detection confidences
- */
- CV_WRAP
- void detectTextRectangles(
- InputArray frame,
- CV_OUT std::vector<cv::RotatedRect>& detections,
- CV_OUT std::vector<float>& confidences
- ) const;
- /** @overload */
- CV_WRAP
- void detectTextRectangles(
- InputArray frame,
- CV_OUT std::vector<cv::RotatedRect>& detections
- ) const;
- };
- /** @brief This class represents high-level API for text detection DL networks compatible with EAST model.
- *
- * Configurable parameters:
- * - (float) confThreshold - used to filter boxes by confidences, default: 0.5f
- * - (float) nmsThreshold - used in non maximum suppression, default: 0.0f
- */
- class CV_EXPORTS_W_SIMPLE TextDetectionModel_EAST : public TextDetectionModel
- {
- public:
- CV_DEPRECATED_EXTERNAL // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
- TextDetectionModel_EAST();
- /**
- * @brief Create text detection algorithm from deep learning network
- * @param[in] network Net object
- */
- CV_WRAP TextDetectionModel_EAST(const Net& network);
- /**
- * @brief Create text detection model from network represented in one of the supported formats.
- * An order of @p model and @p config arguments does not matter.
- * @param[in] model Binary file contains trained weights.
- * @param[in] config Text file contains network configuration.
- */
- CV_WRAP inline
- TextDetectionModel_EAST(const std::string& model, const std::string& config = "")
- : TextDetectionModel_EAST(readNet(model, config)) { /* nothing */ }
- /**
- * @brief Set the detection confidence threshold
- * @param[in] confThreshold A threshold used to filter boxes by confidences
- */
- CV_WRAP
- TextDetectionModel_EAST& setConfidenceThreshold(float confThreshold);
- /**
- * @brief Get the detection confidence threshold
- */
- CV_WRAP
- float getConfidenceThreshold() const;
- /**
- * @brief Set the detection NMS filter threshold
- * @param[in] nmsThreshold A threshold used in non maximum suppression
- */
- CV_WRAP
- TextDetectionModel_EAST& setNMSThreshold(float nmsThreshold);
- /**
- * @brief Get the detection confidence threshold
- */
- CV_WRAP
- float getNMSThreshold() const;
- };
- /** @brief This class represents high-level API for text detection DL networks compatible with DB model.
- *
- * Related publications: @cite liao2020real
- * Paper: https://arxiv.org/abs/1911.08947
- * For more information about the hyper-parameters setting, please refer to https://github.com/MhLiao/DB
- *
- * Configurable parameters:
- * - (float) binaryThreshold - The threshold of the binary map. It is usually set to 0.3.
- * - (float) polygonThreshold - The threshold of text polygons. It is usually set to 0.5, 0.6, and 0.7. Default is 0.5f
- * - (double) unclipRatio - The unclip ratio of the detected text region, which determines the output size. It is usually set to 2.0.
- * - (int) maxCandidates - The max number of the output results.
- */
- class CV_EXPORTS_W_SIMPLE TextDetectionModel_DB : public TextDetectionModel
- {
- public:
- CV_DEPRECATED_EXTERNAL // avoid using in C++ code, will be moved to "protected" (need to fix bindings first)
- TextDetectionModel_DB();
- /**
- * @brief Create text detection algorithm from deep learning network.
- * @param[in] network Net object.
- */
- CV_WRAP TextDetectionModel_DB(const Net& network);
- /**
- * @brief Create text detection model from network represented in one of the supported formats.
- * An order of @p model and @p config arguments does not matter.
- * @param[in] model Binary file contains trained weights.
- * @param[in] config Text file contains network configuration.
- */
- CV_WRAP inline
- TextDetectionModel_DB(const std::string& model, const std::string& config = "")
- : TextDetectionModel_DB(readNet(model, config)) { /* nothing */ }
- CV_WRAP TextDetectionModel_DB& setBinaryThreshold(float binaryThreshold);
- CV_WRAP float getBinaryThreshold() const;
- CV_WRAP TextDetectionModel_DB& setPolygonThreshold(float polygonThreshold);
- CV_WRAP float getPolygonThreshold() const;
- CV_WRAP TextDetectionModel_DB& setUnclipRatio(double unclipRatio);
- CV_WRAP double getUnclipRatio() const;
- CV_WRAP TextDetectionModel_DB& setMaxCandidates(int maxCandidates);
- CV_WRAP int getMaxCandidates() const;
- };
- //! @}
- CV__DNN_INLINE_NS_END
- }
- }
- #include <opencv2/dnn/layer.hpp>
- #include <opencv2/dnn/dnn.inl.hpp>
- /// @deprecated Include this header directly from application. Automatic inclusion will be removed
- #include <opencv2/dnn/utils/inference_engine.hpp>
- #endif /* OPENCV_DNN_DNN_HPP */
|