123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109 |
- //
- // This file is auto-generated. Please don't modify it!
- //
- #pragma once
- #ifdef __cplusplus
- //#import "opencv.hpp"
- #import "opencv2/dnn.hpp"
- #import "opencv2/dnn/dnn.hpp"
- #else
- #define CV_EXPORTS
- #endif
- #import <Foundation/Foundation.h>
- #import "Model.h"
- @class FloatVector;
- @class Mat;
- @class Point2i;
- @class RotatedRect;
- NS_ASSUME_NONNULL_BEGIN
- // C++: class TextDetectionModel
- /**
- * Base class for text detection networks
- *
- * Member of `Dnn`
- */
- CV_EXPORTS @interface TextDetectionModel : Model
- #ifdef __cplusplus
- @property(readonly)cv::Ptr<cv::dnn::TextDetectionModel> nativePtrTextDetectionModel;
- #endif
- #ifdef __cplusplus
- - (instancetype)initWithNativePtr:(cv::Ptr<cv::dnn::TextDetectionModel>)nativePtr;
- + (instancetype)fromNative:(cv::Ptr<cv::dnn::TextDetectionModel>)nativePtr;
- #endif
- #pragma mark - Methods
- //
- // void cv::dnn::TextDetectionModel::detect(Mat frame, vector_vector_Point& detections, vector_float& confidences)
- //
- /**
- * Performs detection
- *
- * Given the input @p frame, prepare network input, run network inference, post-process network output and return result detections.
- *
- * Each result is quadrangle's 4 points in this order:
- * - bottom-left
- * - top-left
- * - top-right
- * - bottom-right
- *
- * Use cv::getPerspectiveTransform function to retrieve image region without perspective transformations.
- *
- * NOTE: If DL model doesn't support that kind of output then result may be derived from detectTextRectangles() output.
- *
- * @param frame The input image
- * @param detections array with detections' quadrangles (4 points per result)
- * @param confidences array with detection confidences
- */
- - (void)detect:(Mat*)frame detections:(NSMutableArray<NSMutableArray<Point2i*>*>*)detections confidences:(FloatVector*)confidences NS_SWIFT_NAME(detect(frame:detections:confidences:));
- //
- // void cv::dnn::TextDetectionModel::detect(Mat frame, vector_vector_Point& detections)
- //
- - (void)detect:(Mat*)frame detections:(NSMutableArray<NSMutableArray<Point2i*>*>*)detections NS_SWIFT_NAME(detect(frame:detections:));
- //
- // void cv::dnn::TextDetectionModel::detectTextRectangles(Mat frame, vector_RotatedRect& detections, vector_float& confidences)
- //
- /**
- * Performs detection
- *
- * Given the input @p frame, prepare network input, run network inference, post-process network output and return result detections.
- *
- * Each result is rotated rectangle.
- *
- * NOTE: Result may be inaccurate in case of strong perspective transformations.
- *
- * @param frame the input image
- * @param detections array with detections' RotationRect results
- * @param confidences array with detection confidences
- */
- - (void)detectTextRectangles:(Mat*)frame detections:(NSMutableArray<RotatedRect*>*)detections confidences:(FloatVector*)confidences NS_SWIFT_NAME(detectTextRectangles(frame:detections:confidences:));
- //
- // void cv::dnn::TextDetectionModel::detectTextRectangles(Mat frame, vector_RotatedRect& detections)
- //
- - (void)detectTextRectangles:(Mat*)frame detections:(NSMutableArray<RotatedRect*>*)detections NS_SWIFT_NAME(detectTextRectangles(frame:detections:));
- @end
- NS_ASSUME_NONNULL_END
|