123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176 |
- //
- // This file is auto-generated. Please don't modify it!
- //
- #pragma once
- #ifdef __cplusplus
- //#import "opencv.hpp"
- #import "opencv2/ml.hpp"
- #else
- #define CV_EXPORTS
- #endif
- #import <Foundation/Foundation.h>
- #import "Algorithm.h"
- @class Mat;
- @class TrainData;
- // C++: enum StatModelFlags (cv.ml.StatModel.Flags)
- typedef NS_ENUM(int, StatModelFlags) {
- UPDATE_MODEL = 1,
- RAW_OUTPUT = 1,
- COMPRESSED_INPUT = 2,
- PREPROCESSED_INPUT = 4
- };
- NS_ASSUME_NONNULL_BEGIN
- // C++: class StatModel
- /**
- * Base class for statistical models in OpenCV ML.
- *
- * Member of `Ml`
- */
- CV_EXPORTS @interface StatModel : Algorithm
- #ifdef __cplusplus
- @property(readonly)cv::Ptr<cv::ml::StatModel> nativePtrStatModel;
- #endif
- #ifdef __cplusplus
- - (instancetype)initWithNativePtr:(cv::Ptr<cv::ml::StatModel>)nativePtr;
- + (instancetype)fromNative:(cv::Ptr<cv::ml::StatModel>)nativePtr;
- #endif
- #pragma mark - Methods
- //
- // int cv::ml::StatModel::getVarCount()
- //
- /**
- * Returns the number of variables in training samples
- */
- - (int)getVarCount NS_SWIFT_NAME(getVarCount());
- //
- // bool cv::ml::StatModel::empty()
- //
- - (BOOL)empty NS_SWIFT_NAME(empty());
- //
- // bool cv::ml::StatModel::isTrained()
- //
- /**
- * Returns true if the model is trained
- */
- - (BOOL)isTrained NS_SWIFT_NAME(isTrained());
- //
- // bool cv::ml::StatModel::isClassifier()
- //
- /**
- * Returns true if the model is classifier
- */
- - (BOOL)isClassifier NS_SWIFT_NAME(isClassifier());
- //
- // bool cv::ml::StatModel::train(Ptr_TrainData trainData, int flags = 0)
- //
- /**
- * Trains the statistical model
- *
- * @param trainData training data that can be loaded from file using TrainData::loadFromCSV or
- * created with TrainData::create.
- * @param flags optional flags, depending on the model. Some of the models can be updated with the
- * new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).
- */
- - (BOOL)train:(TrainData*)trainData flags:(int)flags NS_SWIFT_NAME(train(trainData:flags:));
- /**
- * Trains the statistical model
- *
- * @param trainData training data that can be loaded from file using TrainData::loadFromCSV or
- * created with TrainData::create.
- * new training samples, not completely overwritten (such as NormalBayesClassifier or ANN_MLP).
- */
- - (BOOL)train:(TrainData*)trainData NS_SWIFT_NAME(train(trainData:));
- //
- // bool cv::ml::StatModel::train(Mat samples, int layout, Mat responses)
- //
- /**
- * Trains the statistical model
- *
- * @param samples training samples
- * @param layout See ml::SampleTypes.
- * @param responses vector of responses associated with the training samples.
- */
- - (BOOL)train:(Mat*)samples layout:(int)layout responses:(Mat*)responses NS_SWIFT_NAME(train(samples:layout:responses:));
- //
- // float cv::ml::StatModel::calcError(Ptr_TrainData data, bool test, Mat& resp)
- //
- /**
- * Computes error on the training or test dataset
- *
- * @param data the training data
- * @param test if true, the error is computed over the test subset of the data, otherwise it's
- * computed over the training subset of the data. Please note that if you loaded a completely
- * different dataset to evaluate already trained classifier, you will probably want not to set
- * the test subset at all with TrainData::setTrainTestSplitRatio and specify test=false, so
- * that the error is computed for the whole new set. Yes, this sounds a bit confusing.
- * @param resp the optional output responses.
- *
- * The method uses StatModel::predict to compute the error. For regression models the error is
- * computed as RMS, for classifiers - as a percent of missclassified samples (0%-100%).
- */
- - (float)calcError:(TrainData*)data test:(BOOL)test resp:(Mat*)resp NS_SWIFT_NAME(calcError(data:test:resp:));
- //
- // float cv::ml::StatModel::predict(Mat samples, Mat& results = Mat(), int flags = 0)
- //
- /**
- * Predicts response(s) for the provided sample(s)
- *
- * @param samples The input samples, floating-point matrix
- * @param results The optional output matrix of results.
- * @param flags The optional flags, model-dependent. See cv::ml::StatModel::Flags.
- */
- - (float)predict:(Mat*)samples results:(Mat*)results flags:(int)flags NS_SWIFT_NAME(predict(samples:results:flags:));
- /**
- * Predicts response(s) for the provided sample(s)
- *
- * @param samples The input samples, floating-point matrix
- * @param results The optional output matrix of results.
- */
- - (float)predict:(Mat*)samples results:(Mat*)results NS_SWIFT_NAME(predict(samples:results:));
- /**
- * Predicts response(s) for the provided sample(s)
- *
- * @param samples The input samples, floating-point matrix
- */
- - (float)predict:(Mat*)samples NS_SWIFT_NAME(predict(samples:));
- @end
- NS_ASSUME_NONNULL_END
|