123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182 |
- //
- // This file is auto-generated. Please don't modify it!
- //
- #pragma once
- #ifdef __cplusplus
- //#import "opencv.hpp"
- #import "opencv2/ml.hpp"
- #else
- #define CV_EXPORTS
- #endif
- #import <Foundation/Foundation.h>
- #import "DTrees.h"
- @class Mat;
- @class TermCriteria;
- NS_ASSUME_NONNULL_BEGIN
- // C++: class RTrees
- /**
- * The class implements the random forest predictor.
- *
- * @see REF: ml_intro_rtrees
- *
- * Member of `Ml`
- */
- CV_EXPORTS @interface RTrees : DTrees
- #ifdef __cplusplus
- @property(readonly)cv::Ptr<cv::ml::RTrees> nativePtrRTrees;
- #endif
- #ifdef __cplusplus
- - (instancetype)initWithNativePtr:(cv::Ptr<cv::ml::RTrees>)nativePtr;
- + (instancetype)fromNative:(cv::Ptr<cv::ml::RTrees>)nativePtr;
- #endif
- #pragma mark - Methods
- //
- // bool cv::ml::RTrees::getCalculateVarImportance()
- //
- /**
- * @see `-setCalculateVarImportance:`
- */
- - (BOOL)getCalculateVarImportance NS_SWIFT_NAME(getCalculateVarImportance());
- //
- // void cv::ml::RTrees::setCalculateVarImportance(bool val)
- //
- /**
- * getCalculateVarImportance @see `-getCalculateVarImportance:`
- */
- - (void)setCalculateVarImportance:(BOOL)val NS_SWIFT_NAME(setCalculateVarImportance(val:));
- //
- // int cv::ml::RTrees::getActiveVarCount()
- //
- /**
- * @see `-setActiveVarCount:`
- */
- - (int)getActiveVarCount NS_SWIFT_NAME(getActiveVarCount());
- //
- // void cv::ml::RTrees::setActiveVarCount(int val)
- //
- /**
- * getActiveVarCount @see `-getActiveVarCount:`
- */
- - (void)setActiveVarCount:(int)val NS_SWIFT_NAME(setActiveVarCount(val:));
- //
- // TermCriteria cv::ml::RTrees::getTermCriteria()
- //
- /**
- * @see `-setTermCriteria:`
- */
- - (TermCriteria*)getTermCriteria NS_SWIFT_NAME(getTermCriteria());
- //
- // void cv::ml::RTrees::setTermCriteria(TermCriteria val)
- //
- /**
- * getTermCriteria @see `-getTermCriteria:`
- */
- - (void)setTermCriteria:(TermCriteria*)val NS_SWIFT_NAME(setTermCriteria(val:));
- //
- // Mat cv::ml::RTrees::getVarImportance()
- //
- /**
- * Returns the variable importance array.
- * The method returns the variable importance vector, computed at the training stage when
- * CalculateVarImportance is set to true. If this flag was set to false, the empty matrix is
- * returned.
- */
- - (Mat*)getVarImportance NS_SWIFT_NAME(getVarImportance());
- //
- // void cv::ml::RTrees::getVotes(Mat samples, Mat& results, int flags)
- //
- /**
- * Returns the result of each individual tree in the forest.
- * In case the model is a regression problem, the method will return each of the trees'
- * results for each of the sample cases. If the model is a classifier, it will return
- * a Mat with samples + 1 rows, where the first row gives the class number and the
- * following rows return the votes each class had for each sample.
- * @param samples Array containing the samples for which votes will be calculated.
- * @param results Array where the result of the calculation will be written.
- * @param flags Flags for defining the type of RTrees.
- */
- - (void)getVotes:(Mat*)samples results:(Mat*)results flags:(int)flags NS_SWIFT_NAME(getVotes(samples:results:flags:));
- //
- // double cv::ml::RTrees::getOOBError()
- //
- /**
- * Returns the OOB error value, computed at the training stage when calcOOBError is set to true.
- * If this flag was set to false, 0 is returned. The OOB error is also scaled by sample weighting.
- */
- - (double)getOOBError NS_SWIFT_NAME(getOOBError());
- //
- // static Ptr_RTrees cv::ml::RTrees::create()
- //
- /**
- * Creates the empty model.
- * Use StatModel::train to train the model, StatModel::train to create and train the model,
- * Algorithm::load to load the pre-trained model.
- */
- + (RTrees*)create NS_SWIFT_NAME(create());
- //
- // static Ptr_RTrees cv::ml::RTrees::load(String filepath, String nodeName = String())
- //
- /**
- * Loads and creates a serialized RTree from a file
- *
- * Use RTree::save to serialize and store an RTree to disk.
- * Load the RTree from this file again, by calling this function with the path to the file.
- * Optionally specify the node for the file containing the classifier
- *
- * @param filepath path to serialized RTree
- * @param nodeName name of node containing the classifier
- */
- + (RTrees*)load:(NSString*)filepath nodeName:(NSString*)nodeName NS_SWIFT_NAME(load(filepath:nodeName:));
- /**
- * Loads and creates a serialized RTree from a file
- *
- * Use RTree::save to serialize and store an RTree to disk.
- * Load the RTree from this file again, by calling this function with the path to the file.
- * Optionally specify the node for the file containing the classifier
- *
- * @param filepath path to serialized RTree
- */
- + (RTrees*)load:(NSString*)filepath NS_SWIFT_NAME(load(filepath:));
- @end
- NS_ASSUME_NONNULL_END
|