123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114 |
- //
- // This file is auto-generated. Please don't modify it!
- //
- #pragma once
- #ifdef __cplusplus
- //#import "opencv.hpp"
- #import "opencv2/ml.hpp"
- #else
- #define CV_EXPORTS
- #endif
- #import <Foundation/Foundation.h>
- #import "StatModel.h"
- @class Mat;
- NS_ASSUME_NONNULL_BEGIN
- // C++: class NormalBayesClassifier
- /**
- * Bayes classifier for normally distributed data.
- *
- * @see REF: ml_intro_bayes
- *
- * Member of `Ml`
- */
- CV_EXPORTS @interface NormalBayesClassifier : StatModel
- #ifdef __cplusplus
- @property(readonly)cv::Ptr<cv::ml::NormalBayesClassifier> nativePtrNormalBayesClassifier;
- #endif
- #ifdef __cplusplus
- - (instancetype)initWithNativePtr:(cv::Ptr<cv::ml::NormalBayesClassifier>)nativePtr;
- + (instancetype)fromNative:(cv::Ptr<cv::ml::NormalBayesClassifier>)nativePtr;
- #endif
- #pragma mark - Methods
- //
- // float cv::ml::NormalBayesClassifier::predictProb(Mat inputs, Mat& outputs, Mat& outputProbs, int flags = 0)
- //
- /**
- * Predicts the response for sample(s).
- *
- * The method estimates the most probable classes for input vectors. Input vectors (one or more)
- * are stored as rows of the matrix inputs. In case of multiple input vectors, there should be one
- * output vector outputs. The predicted class for a single input vector is returned by the method.
- * The vector outputProbs contains the output probabilities corresponding to each element of
- * result.
- */
- - (float)predictProb:(Mat*)inputs outputs:(Mat*)outputs outputProbs:(Mat*)outputProbs flags:(int)flags NS_SWIFT_NAME(predictProb(inputs:outputs:outputProbs:flags:));
- /**
- * Predicts the response for sample(s).
- *
- * The method estimates the most probable classes for input vectors. Input vectors (one or more)
- * are stored as rows of the matrix inputs. In case of multiple input vectors, there should be one
- * output vector outputs. The predicted class for a single input vector is returned by the method.
- * The vector outputProbs contains the output probabilities corresponding to each element of
- * result.
- */
- - (float)predictProb:(Mat*)inputs outputs:(Mat*)outputs outputProbs:(Mat*)outputProbs NS_SWIFT_NAME(predictProb(inputs:outputs:outputProbs:));
- //
- // static Ptr_NormalBayesClassifier cv::ml::NormalBayesClassifier::create()
- //
- /**
- * Creates empty model
- * Use StatModel::train to train the model after creation.
- */
- + (NormalBayesClassifier*)create NS_SWIFT_NAME(create());
- //
- // static Ptr_NormalBayesClassifier cv::ml::NormalBayesClassifier::load(String filepath, String nodeName = String())
- //
- /**
- * Loads and creates a serialized NormalBayesClassifier from a file
- *
- * Use NormalBayesClassifier::save to serialize and store an NormalBayesClassifier to disk.
- * Load the NormalBayesClassifier from this file again, by calling this function with the path to the file.
- * Optionally specify the node for the file containing the classifier
- *
- * @param filepath path to serialized NormalBayesClassifier
- * @param nodeName name of node containing the classifier
- */
- + (NormalBayesClassifier*)load:(NSString*)filepath nodeName:(NSString*)nodeName NS_SWIFT_NAME(load(filepath:nodeName:));
- /**
- * Loads and creates a serialized NormalBayesClassifier from a file
- *
- * Use NormalBayesClassifier::save to serialize and store an NormalBayesClassifier to disk.
- * Load the NormalBayesClassifier from this file again, by calling this function with the path to the file.
- * Optionally specify the node for the file containing the classifier
- *
- * @param filepath path to serialized NormalBayesClassifier
- */
- + (NormalBayesClassifier*)load:(NSString*)filepath NS_SWIFT_NAME(load(filepath:));
- @end
- NS_ASSUME_NONNULL_END
|