123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217 |
- //
- // This file is auto-generated. Please don't modify it!
- //
- #pragma once
- #ifdef __cplusplus
- //#import "opencv.hpp"
- #import "opencv2/imgproc.hpp"
- #import "imgproc/bindings.hpp"
- #else
- #define CV_EXPORTS
- #endif
- #import <Foundation/Foundation.h>
- #import "Core.h"
- @class CLAHE;
- @class FloatVector;
- @class GeneralizedHoughBallard;
- @class GeneralizedHoughGuil;
- @class Int4;
- @class IntVector;
- @class LineSegmentDetector;
- @class Mat;
- @class Moments;
- @class Point2d;
- @class Point2f;
- @class Point2i;
- @class Rect2i;
- @class RotatedRect;
- @class Scalar;
- @class Size2i;
- @class TermCriteria;
- // C++: enum AdaptiveThresholdTypes (cv.AdaptiveThresholdTypes)
- typedef NS_ENUM(int, AdaptiveThresholdTypes) {
- ADAPTIVE_THRESH_MEAN_C = 0,
- ADAPTIVE_THRESH_GAUSSIAN_C = 1
- };
- // C++: enum ColorConversionCodes (cv.ColorConversionCodes)
- typedef NS_ENUM(int, ColorConversionCodes) {
- COLOR_BGR2BGRA = 0,
- COLOR_RGB2RGBA = COLOR_BGR2BGRA,
- COLOR_BGRA2BGR = 1,
- COLOR_RGBA2RGB = COLOR_BGRA2BGR,
- COLOR_BGR2RGBA = 2,
- COLOR_RGB2BGRA = COLOR_BGR2RGBA,
- COLOR_RGBA2BGR = 3,
- COLOR_BGRA2RGB = COLOR_RGBA2BGR,
- COLOR_BGR2RGB = 4,
- COLOR_RGB2BGR = COLOR_BGR2RGB,
- COLOR_BGRA2RGBA = 5,
- COLOR_RGBA2BGRA = COLOR_BGRA2RGBA,
- COLOR_BGR2GRAY = 6,
- COLOR_RGB2GRAY = 7,
- COLOR_GRAY2BGR = 8,
- COLOR_GRAY2RGB = COLOR_GRAY2BGR,
- COLOR_GRAY2BGRA = 9,
- COLOR_GRAY2RGBA = COLOR_GRAY2BGRA,
- COLOR_BGRA2GRAY = 10,
- COLOR_RGBA2GRAY = 11,
- COLOR_BGR2BGR565 = 12,
- COLOR_RGB2BGR565 = 13,
- COLOR_BGR5652BGR = 14,
- COLOR_BGR5652RGB = 15,
- COLOR_BGRA2BGR565 = 16,
- COLOR_RGBA2BGR565 = 17,
- COLOR_BGR5652BGRA = 18,
- COLOR_BGR5652RGBA = 19,
- COLOR_GRAY2BGR565 = 20,
- COLOR_BGR5652GRAY = 21,
- COLOR_BGR2BGR555 = 22,
- COLOR_RGB2BGR555 = 23,
- COLOR_BGR5552BGR = 24,
- COLOR_BGR5552RGB = 25,
- COLOR_BGRA2BGR555 = 26,
- COLOR_RGBA2BGR555 = 27,
- COLOR_BGR5552BGRA = 28,
- COLOR_BGR5552RGBA = 29,
- COLOR_GRAY2BGR555 = 30,
- COLOR_BGR5552GRAY = 31,
- COLOR_BGR2XYZ = 32,
- COLOR_RGB2XYZ = 33,
- COLOR_XYZ2BGR = 34,
- COLOR_XYZ2RGB = 35,
- COLOR_BGR2YCrCb = 36,
- COLOR_RGB2YCrCb = 37,
- COLOR_YCrCb2BGR = 38,
- COLOR_YCrCb2RGB = 39,
- COLOR_BGR2HSV = 40,
- COLOR_RGB2HSV = 41,
- COLOR_BGR2Lab = 44,
- COLOR_RGB2Lab = 45,
- COLOR_BGR2Luv = 50,
- COLOR_RGB2Luv = 51,
- COLOR_BGR2HLS = 52,
- COLOR_RGB2HLS = 53,
- COLOR_HSV2BGR = 54,
- COLOR_HSV2RGB = 55,
- COLOR_Lab2BGR = 56,
- COLOR_Lab2RGB = 57,
- COLOR_Luv2BGR = 58,
- COLOR_Luv2RGB = 59,
- COLOR_HLS2BGR = 60,
- COLOR_HLS2RGB = 61,
- COLOR_BGR2HSV_FULL = 66,
- COLOR_RGB2HSV_FULL = 67,
- COLOR_BGR2HLS_FULL = 68,
- COLOR_RGB2HLS_FULL = 69,
- COLOR_HSV2BGR_FULL = 70,
- COLOR_HSV2RGB_FULL = 71,
- COLOR_HLS2BGR_FULL = 72,
- COLOR_HLS2RGB_FULL = 73,
- COLOR_LBGR2Lab = 74,
- COLOR_LRGB2Lab = 75,
- COLOR_LBGR2Luv = 76,
- COLOR_LRGB2Luv = 77,
- COLOR_Lab2LBGR = 78,
- COLOR_Lab2LRGB = 79,
- COLOR_Luv2LBGR = 80,
- COLOR_Luv2LRGB = 81,
- COLOR_BGR2YUV = 82,
- COLOR_RGB2YUV = 83,
- COLOR_YUV2BGR = 84,
- COLOR_YUV2RGB = 85,
- COLOR_YUV2RGB_NV12 = 90,
- COLOR_YUV2BGR_NV12 = 91,
- COLOR_YUV2RGB_NV21 = 92,
- COLOR_YUV2BGR_NV21 = 93,
- COLOR_YUV420sp2RGB = COLOR_YUV2RGB_NV21,
- COLOR_YUV420sp2BGR = COLOR_YUV2BGR_NV21,
- COLOR_YUV2RGBA_NV12 = 94,
- COLOR_YUV2BGRA_NV12 = 95,
- COLOR_YUV2RGBA_NV21 = 96,
- COLOR_YUV2BGRA_NV21 = 97,
- COLOR_YUV420sp2RGBA = COLOR_YUV2RGBA_NV21,
- COLOR_YUV420sp2BGRA = COLOR_YUV2BGRA_NV21,
- COLOR_YUV2RGB_YV12 = 98,
- COLOR_YUV2BGR_YV12 = 99,
- COLOR_YUV2RGB_IYUV = 100,
- COLOR_YUV2BGR_IYUV = 101,
- COLOR_YUV2RGB_I420 = COLOR_YUV2RGB_IYUV,
- COLOR_YUV2BGR_I420 = COLOR_YUV2BGR_IYUV,
- COLOR_YUV420p2RGB = COLOR_YUV2RGB_YV12,
- COLOR_YUV420p2BGR = COLOR_YUV2BGR_YV12,
- COLOR_YUV2RGBA_YV12 = 102,
- COLOR_YUV2BGRA_YV12 = 103,
- COLOR_YUV2RGBA_IYUV = 104,
- COLOR_YUV2BGRA_IYUV = 105,
- COLOR_YUV2RGBA_I420 = COLOR_YUV2RGBA_IYUV,
- COLOR_YUV2BGRA_I420 = COLOR_YUV2BGRA_IYUV,
- COLOR_YUV420p2RGBA = COLOR_YUV2RGBA_YV12,
- COLOR_YUV420p2BGRA = COLOR_YUV2BGRA_YV12,
- COLOR_YUV2GRAY_420 = 106,
- COLOR_YUV2GRAY_NV21 = COLOR_YUV2GRAY_420,
- COLOR_YUV2GRAY_NV12 = COLOR_YUV2GRAY_420,
- COLOR_YUV2GRAY_YV12 = COLOR_YUV2GRAY_420,
- COLOR_YUV2GRAY_IYUV = COLOR_YUV2GRAY_420,
- COLOR_YUV2GRAY_I420 = COLOR_YUV2GRAY_420,
- COLOR_YUV420sp2GRAY = COLOR_YUV2GRAY_420,
- COLOR_YUV420p2GRAY = COLOR_YUV2GRAY_420,
- COLOR_YUV2RGB_UYVY = 107,
- COLOR_YUV2BGR_UYVY = 108,
- COLOR_YUV2RGB_Y422 = COLOR_YUV2RGB_UYVY,
- COLOR_YUV2BGR_Y422 = COLOR_YUV2BGR_UYVY,
- COLOR_YUV2RGB_UYNV = COLOR_YUV2RGB_UYVY,
- COLOR_YUV2BGR_UYNV = COLOR_YUV2BGR_UYVY,
- COLOR_YUV2RGBA_UYVY = 111,
- COLOR_YUV2BGRA_UYVY = 112,
- COLOR_YUV2RGBA_Y422 = COLOR_YUV2RGBA_UYVY,
- COLOR_YUV2BGRA_Y422 = COLOR_YUV2BGRA_UYVY,
- COLOR_YUV2RGBA_UYNV = COLOR_YUV2RGBA_UYVY,
- COLOR_YUV2BGRA_UYNV = COLOR_YUV2BGRA_UYVY,
- COLOR_YUV2RGB_YUY2 = 115,
- COLOR_YUV2BGR_YUY2 = 116,
- COLOR_YUV2RGB_YVYU = 117,
- COLOR_YUV2BGR_YVYU = 118,
- COLOR_YUV2RGB_YUYV = COLOR_YUV2RGB_YUY2,
- COLOR_YUV2BGR_YUYV = COLOR_YUV2BGR_YUY2,
- COLOR_YUV2RGB_YUNV = COLOR_YUV2RGB_YUY2,
- COLOR_YUV2BGR_YUNV = COLOR_YUV2BGR_YUY2,
- COLOR_YUV2RGBA_YUY2 = 119,
- COLOR_YUV2BGRA_YUY2 = 120,
- COLOR_YUV2RGBA_YVYU = 121,
- COLOR_YUV2BGRA_YVYU = 122,
- COLOR_YUV2RGBA_YUYV = COLOR_YUV2RGBA_YUY2,
- COLOR_YUV2BGRA_YUYV = COLOR_YUV2BGRA_YUY2,
- COLOR_YUV2RGBA_YUNV = COLOR_YUV2RGBA_YUY2,
- COLOR_YUV2BGRA_YUNV = COLOR_YUV2BGRA_YUY2,
- COLOR_YUV2GRAY_UYVY = 123,
- COLOR_YUV2GRAY_YUY2 = 124,
- COLOR_YUV2GRAY_Y422 = COLOR_YUV2GRAY_UYVY,
- COLOR_YUV2GRAY_UYNV = COLOR_YUV2GRAY_UYVY,
- COLOR_YUV2GRAY_YVYU = COLOR_YUV2GRAY_YUY2,
- COLOR_YUV2GRAY_YUYV = COLOR_YUV2GRAY_YUY2,
- COLOR_YUV2GRAY_YUNV = COLOR_YUV2GRAY_YUY2,
- COLOR_RGBA2mRGBA = 125,
- COLOR_mRGBA2RGBA = 126,
- COLOR_RGB2YUV_I420 = 127,
- COLOR_BGR2YUV_I420 = 128,
- COLOR_RGB2YUV_IYUV = COLOR_RGB2YUV_I420,
- COLOR_BGR2YUV_IYUV = COLOR_BGR2YUV_I420,
- COLOR_RGBA2YUV_I420 = 129,
- COLOR_BGRA2YUV_I420 = 130,
- COLOR_RGBA2YUV_IYUV = COLOR_RGBA2YUV_I420,
- COLOR_BGRA2YUV_IYUV = COLOR_BGRA2YUV_I420,
- COLOR_RGB2YUV_YV12 = 131,
- COLOR_BGR2YUV_YV12 = 132,
- COLOR_RGBA2YUV_YV12 = 133,
- COLOR_BGRA2YUV_YV12 = 134,
- COLOR_BayerBG2BGR = 46,
- COLOR_BayerGB2BGR = 47,
- COLOR_BayerRG2BGR = 48,
- COLOR_BayerGR2BGR = 49,
- COLOR_BayerRGGB2BGR = COLOR_BayerBG2BGR,
- COLOR_BayerGRBG2BGR = COLOR_BayerGB2BGR,
- COLOR_BayerBGGR2BGR = COLOR_BayerRG2BGR,
- COLOR_BayerGBRG2BGR = COLOR_BayerGR2BGR,
- COLOR_BayerRGGB2RGB = COLOR_BayerBGGR2BGR,
- COLOR_BayerGRBG2RGB = COLOR_BayerGBRG2BGR,
- COLOR_BayerBGGR2RGB = COLOR_BayerRGGB2BGR,
- COLOR_BayerGBRG2RGB = COLOR_BayerGRBG2BGR,
- COLOR_BayerBG2RGB = COLOR_BayerRG2BGR,
- COLOR_BayerGB2RGB = COLOR_BayerGR2BGR,
- COLOR_BayerRG2RGB = COLOR_BayerBG2BGR,
- COLOR_BayerGR2RGB = COLOR_BayerGB2BGR,
- COLOR_BayerBG2GRAY = 86,
- COLOR_BayerGB2GRAY = 87,
- COLOR_BayerRG2GRAY = 88,
- COLOR_BayerGR2GRAY = 89,
- COLOR_BayerRGGB2GRAY = COLOR_BayerBG2GRAY,
- COLOR_BayerGRBG2GRAY = COLOR_BayerGB2GRAY,
- COLOR_BayerBGGR2GRAY = COLOR_BayerRG2GRAY,
- COLOR_BayerGBRG2GRAY = COLOR_BayerGR2GRAY,
- COLOR_BayerBG2BGR_VNG = 62,
- COLOR_BayerGB2BGR_VNG = 63,
- COLOR_BayerRG2BGR_VNG = 64,
- COLOR_BayerGR2BGR_VNG = 65,
- COLOR_BayerRGGB2BGR_VNG = COLOR_BayerBG2BGR_VNG,
- COLOR_BayerGRBG2BGR_VNG = COLOR_BayerGB2BGR_VNG,
- COLOR_BayerBGGR2BGR_VNG = COLOR_BayerRG2BGR_VNG,
- COLOR_BayerGBRG2BGR_VNG = COLOR_BayerGR2BGR_VNG,
- COLOR_BayerRGGB2RGB_VNG = COLOR_BayerBGGR2BGR_VNG,
- COLOR_BayerGRBG2RGB_VNG = COLOR_BayerGBRG2BGR_VNG,
- COLOR_BayerBGGR2RGB_VNG = COLOR_BayerRGGB2BGR_VNG,
- COLOR_BayerGBRG2RGB_VNG = COLOR_BayerGRBG2BGR_VNG,
- COLOR_BayerBG2RGB_VNG = COLOR_BayerRG2BGR_VNG,
- COLOR_BayerGB2RGB_VNG = COLOR_BayerGR2BGR_VNG,
- COLOR_BayerRG2RGB_VNG = COLOR_BayerBG2BGR_VNG,
- COLOR_BayerGR2RGB_VNG = COLOR_BayerGB2BGR_VNG,
- COLOR_BayerBG2BGR_EA = 135,
- COLOR_BayerGB2BGR_EA = 136,
- COLOR_BayerRG2BGR_EA = 137,
- COLOR_BayerGR2BGR_EA = 138,
- COLOR_BayerRGGB2BGR_EA = COLOR_BayerBG2BGR_EA,
- COLOR_BayerGRBG2BGR_EA = COLOR_BayerGB2BGR_EA,
- COLOR_BayerBGGR2BGR_EA = COLOR_BayerRG2BGR_EA,
- COLOR_BayerGBRG2BGR_EA = COLOR_BayerGR2BGR_EA,
- COLOR_BayerRGGB2RGB_EA = COLOR_BayerBGGR2BGR_EA,
- COLOR_BayerGRBG2RGB_EA = COLOR_BayerGBRG2BGR_EA,
- COLOR_BayerBGGR2RGB_EA = COLOR_BayerRGGB2BGR_EA,
- COLOR_BayerGBRG2RGB_EA = COLOR_BayerGRBG2BGR_EA,
- COLOR_BayerBG2RGB_EA = COLOR_BayerRG2BGR_EA,
- COLOR_BayerGB2RGB_EA = COLOR_BayerGR2BGR_EA,
- COLOR_BayerRG2RGB_EA = COLOR_BayerBG2BGR_EA,
- COLOR_BayerGR2RGB_EA = COLOR_BayerGB2BGR_EA,
- COLOR_BayerBG2BGRA = 139,
- COLOR_BayerGB2BGRA = 140,
- COLOR_BayerRG2BGRA = 141,
- COLOR_BayerGR2BGRA = 142,
- COLOR_BayerRGGB2BGRA = COLOR_BayerBG2BGRA,
- COLOR_BayerGRBG2BGRA = COLOR_BayerGB2BGRA,
- COLOR_BayerBGGR2BGRA = COLOR_BayerRG2BGRA,
- COLOR_BayerGBRG2BGRA = COLOR_BayerGR2BGRA,
- COLOR_BayerRGGB2RGBA = COLOR_BayerBGGR2BGRA,
- COLOR_BayerGRBG2RGBA = COLOR_BayerGBRG2BGRA,
- COLOR_BayerBGGR2RGBA = COLOR_BayerRGGB2BGRA,
- COLOR_BayerGBRG2RGBA = COLOR_BayerGRBG2BGRA,
- COLOR_BayerBG2RGBA = COLOR_BayerRG2BGRA,
- COLOR_BayerGB2RGBA = COLOR_BayerGR2BGRA,
- COLOR_BayerRG2RGBA = COLOR_BayerBG2BGRA,
- COLOR_BayerGR2RGBA = COLOR_BayerGB2BGRA,
- COLOR_COLORCVT_MAX = 143
- };
- // C++: enum ColormapTypes (cv.ColormapTypes)
- typedef NS_ENUM(int, ColormapTypes) {
- COLORMAP_AUTUMN = 0,
- COLORMAP_BONE = 1,
- COLORMAP_JET = 2,
- COLORMAP_WINTER = 3,
- COLORMAP_RAINBOW = 4,
- COLORMAP_OCEAN = 5,
- COLORMAP_SUMMER = 6,
- COLORMAP_SPRING = 7,
- COLORMAP_COOL = 8,
- COLORMAP_HSV = 9,
- COLORMAP_PINK = 10,
- COLORMAP_HOT = 11,
- COLORMAP_PARULA = 12,
- COLORMAP_MAGMA = 13,
- COLORMAP_INFERNO = 14,
- COLORMAP_PLASMA = 15,
- COLORMAP_VIRIDIS = 16,
- COLORMAP_CIVIDIS = 17,
- COLORMAP_TWILIGHT = 18,
- COLORMAP_TWILIGHT_SHIFTED = 19,
- COLORMAP_TURBO = 20,
- COLORMAP_DEEPGREEN = 21
- };
- // C++: enum ConnectedComponentsAlgorithmsTypes (cv.ConnectedComponentsAlgorithmsTypes)
- typedef NS_ENUM(int, ConnectedComponentsAlgorithmsTypes) {
- CCL_DEFAULT = -1,
- CCL_WU = 0,
- CCL_GRANA = 1,
- CCL_BOLELLI = 2,
- CCL_SAUF = 3,
- CCL_BBDT = 4,
- CCL_SPAGHETTI = 5
- };
- // C++: enum ConnectedComponentsTypes (cv.ConnectedComponentsTypes)
- typedef NS_ENUM(int, ConnectedComponentsTypes) {
- CC_STAT_LEFT = 0,
- CC_STAT_TOP = 1,
- CC_STAT_WIDTH = 2,
- CC_STAT_HEIGHT = 3,
- CC_STAT_AREA = 4,
- CC_STAT_MAX = 5
- };
- // C++: enum ContourApproximationModes (cv.ContourApproximationModes)
- typedef NS_ENUM(int, ContourApproximationModes) {
- CHAIN_APPROX_NONE = 1,
- CHAIN_APPROX_SIMPLE = 2,
- CHAIN_APPROX_TC89_L1 = 3,
- CHAIN_APPROX_TC89_KCOS = 4
- };
- // C++: enum DistanceTransformLabelTypes (cv.DistanceTransformLabelTypes)
- typedef NS_ENUM(int, DistanceTransformLabelTypes) {
- DIST_LABEL_CCOMP = 0,
- DIST_LABEL_PIXEL = 1
- };
- // C++: enum DistanceTransformMasks (cv.DistanceTransformMasks)
- typedef NS_ENUM(int, DistanceTransformMasks) {
- DIST_MASK_3 = 3,
- DIST_MASK_5 = 5,
- DIST_MASK_PRECISE = 0
- };
- // C++: enum DistanceTypes (cv.DistanceTypes)
- typedef NS_ENUM(int, DistanceTypes) {
- DIST_USER = -1,
- DIST_L1 = 1,
- DIST_L2 = 2,
- DIST_C = 3,
- DIST_L12 = 4,
- DIST_FAIR = 5,
- DIST_WELSCH = 6,
- DIST_HUBER = 7
- };
- // C++: enum FloodFillFlags (cv.FloodFillFlags)
- typedef NS_ENUM(int, FloodFillFlags) {
- FLOODFILL_FIXED_RANGE = 1 << 16,
- FLOODFILL_MASK_ONLY = 1 << 17
- };
- // C++: enum GrabCutClasses (cv.GrabCutClasses)
- typedef NS_ENUM(int, GrabCutClasses) {
- GC_BGD = 0,
- GC_FGD = 1,
- GC_PR_BGD = 2,
- GC_PR_FGD = 3
- };
- // C++: enum GrabCutModes (cv.GrabCutModes)
- typedef NS_ENUM(int, GrabCutModes) {
- GC_INIT_WITH_RECT = 0,
- GC_INIT_WITH_MASK = 1,
- GC_EVAL = 2,
- GC_EVAL_FREEZE_MODEL = 3
- };
- // C++: enum HersheyFonts (cv.HersheyFonts)
- typedef NS_ENUM(int, HersheyFonts) {
- FONT_HERSHEY_SIMPLEX = 0,
- FONT_HERSHEY_PLAIN = 1,
- FONT_HERSHEY_DUPLEX = 2,
- FONT_HERSHEY_COMPLEX = 3,
- FONT_HERSHEY_TRIPLEX = 4,
- FONT_HERSHEY_COMPLEX_SMALL = 5,
- FONT_HERSHEY_SCRIPT_SIMPLEX = 6,
- FONT_HERSHEY_SCRIPT_COMPLEX = 7,
- FONT_ITALIC = 16
- };
- // C++: enum HistCompMethods (cv.HistCompMethods)
- typedef NS_ENUM(int, HistCompMethods) {
- HISTCMP_CORREL = 0,
- HISTCMP_CHISQR = 1,
- HISTCMP_INTERSECT = 2,
- HISTCMP_BHATTACHARYYA = 3,
- HISTCMP_HELLINGER = HISTCMP_BHATTACHARYYA,
- HISTCMP_CHISQR_ALT = 4,
- HISTCMP_KL_DIV = 5
- };
- // C++: enum HoughModes (cv.HoughModes)
- typedef NS_ENUM(int, HoughModes) {
- HOUGH_STANDARD = 0,
- HOUGH_PROBABILISTIC = 1,
- HOUGH_MULTI_SCALE = 2,
- HOUGH_GRADIENT = 3,
- HOUGH_GRADIENT_ALT = 4
- };
- // C++: enum InterpolationFlags (cv.InterpolationFlags)
- typedef NS_ENUM(int, InterpolationFlags) {
- INTER_NEAREST = 0,
- INTER_LINEAR = 1,
- INTER_CUBIC = 2,
- INTER_AREA = 3,
- INTER_LANCZOS4 = 4,
- INTER_LINEAR_EXACT = 5,
- INTER_NEAREST_EXACT = 6,
- INTER_MAX = 7,
- WARP_FILL_OUTLIERS = 8,
- WARP_INVERSE_MAP = 16
- };
- // C++: enum InterpolationMasks (cv.InterpolationMasks)
- typedef NS_ENUM(int, InterpolationMasks) {
- INTER_BITS = 5,
- INTER_BITS2 = INTER_BITS * 2,
- INTER_TAB_SIZE = 1 << INTER_BITS,
- INTER_TAB_SIZE2 = INTER_TAB_SIZE * INTER_TAB_SIZE
- };
- // C++: enum LineSegmentDetectorModes (cv.LineSegmentDetectorModes)
- typedef NS_ENUM(int, LineSegmentDetectorModes) {
- LSD_REFINE_NONE = 0,
- LSD_REFINE_STD = 1,
- LSD_REFINE_ADV = 2
- };
- // C++: enum LineTypes (cv.LineTypes)
- typedef NS_ENUM(int, LineTypes) {
- FILLED = -1,
- LINE_4 = 4,
- LINE_8 = 8,
- LINE_AA = 16
- };
- // C++: enum MarkerTypes (cv.MarkerTypes)
- typedef NS_ENUM(int, MarkerTypes) {
- MARKER_CROSS = 0,
- MARKER_TILTED_CROSS = 1,
- MARKER_STAR = 2,
- MARKER_DIAMOND = 3,
- MARKER_SQUARE = 4,
- MARKER_TRIANGLE_UP = 5,
- MARKER_TRIANGLE_DOWN = 6
- };
- // C++: enum MorphShapes (cv.MorphShapes)
- typedef NS_ENUM(int, MorphShapes) {
- MORPH_RECT = 0,
- MORPH_CROSS = 1,
- MORPH_ELLIPSE = 2
- };
- // C++: enum MorphTypes (cv.MorphTypes)
- typedef NS_ENUM(int, MorphTypes) {
- MORPH_ERODE = 0,
- MORPH_DILATE = 1,
- MORPH_OPEN = 2,
- MORPH_CLOSE = 3,
- MORPH_GRADIENT = 4,
- MORPH_TOPHAT = 5,
- MORPH_BLACKHAT = 6,
- MORPH_HITMISS = 7
- };
- // C++: enum RectanglesIntersectTypes (cv.RectanglesIntersectTypes)
- typedef NS_ENUM(int, RectanglesIntersectTypes) {
- INTERSECT_NONE = 0,
- INTERSECT_PARTIAL = 1,
- INTERSECT_FULL = 2
- };
- // C++: enum RetrievalModes (cv.RetrievalModes)
- typedef NS_ENUM(int, RetrievalModes) {
- RETR_EXTERNAL = 0,
- RETR_LIST = 1,
- RETR_CCOMP = 2,
- RETR_TREE = 3,
- RETR_FLOODFILL = 4
- };
- // C++: enum ShapeMatchModes (cv.ShapeMatchModes)
- typedef NS_ENUM(int, ShapeMatchModes) {
- CONTOURS_MATCH_I1 = 1,
- CONTOURS_MATCH_I2 = 2,
- CONTOURS_MATCH_I3 = 3
- };
- // C++: enum SpecialFilter (cv.SpecialFilter)
- typedef NS_ENUM(int, SpecialFilter) {
- FILTER_SCHARR = -1
- };
- // C++: enum TemplateMatchModes (cv.TemplateMatchModes)
- typedef NS_ENUM(int, TemplateMatchModes) {
- TM_SQDIFF = 0,
- TM_SQDIFF_NORMED = 1,
- TM_CCORR = 2,
- TM_CCORR_NORMED = 3,
- TM_CCOEFF = 4,
- TM_CCOEFF_NORMED = 5
- };
- // C++: enum ThresholdTypes (cv.ThresholdTypes)
- typedef NS_ENUM(int, ThresholdTypes) {
- THRESH_BINARY = 0,
- THRESH_BINARY_INV = 1,
- THRESH_TRUNC = 2,
- THRESH_TOZERO = 3,
- THRESH_TOZERO_INV = 4,
- THRESH_MASK = 7,
- THRESH_OTSU = 8,
- THRESH_TRIANGLE = 16
- };
- // C++: enum WarpPolarMode (cv.WarpPolarMode)
- typedef NS_ENUM(int, WarpPolarMode) {
- WARP_POLAR_LINEAR = 0,
- WARP_POLAR_LOG = 256
- };
- NS_ASSUME_NONNULL_BEGIN
- // C++: class Imgproc
- /**
- * The Imgproc module
- *
- * Member classes: `GeneralizedHough`, `GeneralizedHoughBallard`, `GeneralizedHoughGuil`, `CLAHE`, `Subdiv2D`, `LineSegmentDetector`, `IntelligentScissorsMB`, `Moments`
- *
- * Member enums: `SpecialFilter`, `MorphTypes`, `MorphShapes`, `InterpolationFlags`, `WarpPolarMode`, `InterpolationMasks`, `DistanceTypes`, `DistanceTransformMasks`, `ThresholdTypes`, `AdaptiveThresholdTypes`, `GrabCutClasses`, `GrabCutModes`, `DistanceTransformLabelTypes`, `FloodFillFlags`, `ConnectedComponentsTypes`, `ConnectedComponentsAlgorithmsTypes`, `RetrievalModes`, `ContourApproximationModes`, `ShapeMatchModes`, `HoughModes`, `LineSegmentDetectorModes`, `HistCompMethods`, `ColorConversionCodes`, `RectanglesIntersectTypes`, `LineTypes`, `HersheyFonts`, `MarkerTypes`, `TemplateMatchModes`, `ColormapTypes`
- */
- CV_EXPORTS @interface Imgproc : NSObject
- #pragma mark - Class Constants
- @property (class, readonly) int CV_GAUSSIAN_5x5 NS_SWIFT_NAME(CV_GAUSSIAN_5x5);
- @property (class, readonly) int CV_SCHARR NS_SWIFT_NAME(CV_SCHARR);
- @property (class, readonly) int CV_MAX_SOBEL_KSIZE NS_SWIFT_NAME(CV_MAX_SOBEL_KSIZE);
- @property (class, readonly) int CV_RGBA2mRGBA NS_SWIFT_NAME(CV_RGBA2mRGBA);
- @property (class, readonly) int CV_mRGBA2RGBA NS_SWIFT_NAME(CV_mRGBA2RGBA);
- @property (class, readonly) int CV_WARP_FILL_OUTLIERS NS_SWIFT_NAME(CV_WARP_FILL_OUTLIERS);
- @property (class, readonly) int CV_WARP_INVERSE_MAP NS_SWIFT_NAME(CV_WARP_INVERSE_MAP);
- @property (class, readonly) int CV_CHAIN_CODE NS_SWIFT_NAME(CV_CHAIN_CODE);
- @property (class, readonly) int CV_LINK_RUNS NS_SWIFT_NAME(CV_LINK_RUNS);
- @property (class, readonly) int CV_POLY_APPROX_DP NS_SWIFT_NAME(CV_POLY_APPROX_DP);
- @property (class, readonly) int CV_CLOCKWISE NS_SWIFT_NAME(CV_CLOCKWISE);
- @property (class, readonly) int CV_COUNTER_CLOCKWISE NS_SWIFT_NAME(CV_COUNTER_CLOCKWISE);
- @property (class, readonly) int CV_CANNY_L2_GRADIENT NS_SWIFT_NAME(CV_CANNY_L2_GRADIENT);
- #pragma mark - Methods
- //
- // Ptr_LineSegmentDetector cv::createLineSegmentDetector(int refine = LSD_REFINE_STD, double scale = 0.8, double sigma_scale = 0.6, double quant = 2.0, double ang_th = 22.5, double log_eps = 0, double density_th = 0.7, int n_bins = 1024)
- //
- /**
- * Creates a smart pointer to a LineSegmentDetector object and initializes it.
- *
- * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
- * to edit those, as to tailor it for their own application.
- *
- * @param refine The way found lines will be refined, see #LineSegmentDetectorModes
- * @param scale The scale of the image that will be used to find the lines. Range (0..1].
- * @param sigma_scale Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale.
- * @param quant Bound to the quantization error on the gradient norm.
- * @param ang_th Gradient angle tolerance in degrees.
- * @param log_eps Detection threshold: -log10(NFA) \> log_eps. Used only when advance refinement is chosen.
- * @param density_th Minimal density of aligned region points in the enclosing rectangle.
- * @param n_bins Number of bins in pseudo-ordering of gradient modulus.
- */
- + (LineSegmentDetector*)createLineSegmentDetector:(int)refine scale:(double)scale sigma_scale:(double)sigma_scale quant:(double)quant ang_th:(double)ang_th log_eps:(double)log_eps density_th:(double)density_th n_bins:(int)n_bins NS_SWIFT_NAME(createLineSegmentDetector(refine:scale:sigma_scale:quant:ang_th:log_eps:density_th:n_bins:));
- /**
- * Creates a smart pointer to a LineSegmentDetector object and initializes it.
- *
- * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
- * to edit those, as to tailor it for their own application.
- *
- * @param refine The way found lines will be refined, see #LineSegmentDetectorModes
- * @param scale The scale of the image that will be used to find the lines. Range (0..1].
- * @param sigma_scale Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale.
- * @param quant Bound to the quantization error on the gradient norm.
- * @param ang_th Gradient angle tolerance in degrees.
- * @param log_eps Detection threshold: -log10(NFA) \> log_eps. Used only when advance refinement is chosen.
- * @param density_th Minimal density of aligned region points in the enclosing rectangle.
- */
- + (LineSegmentDetector*)createLineSegmentDetector:(int)refine scale:(double)scale sigma_scale:(double)sigma_scale quant:(double)quant ang_th:(double)ang_th log_eps:(double)log_eps density_th:(double)density_th NS_SWIFT_NAME(createLineSegmentDetector(refine:scale:sigma_scale:quant:ang_th:log_eps:density_th:));
- /**
- * Creates a smart pointer to a LineSegmentDetector object and initializes it.
- *
- * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
- * to edit those, as to tailor it for their own application.
- *
- * @param refine The way found lines will be refined, see #LineSegmentDetectorModes
- * @param scale The scale of the image that will be used to find the lines. Range (0..1].
- * @param sigma_scale Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale.
- * @param quant Bound to the quantization error on the gradient norm.
- * @param ang_th Gradient angle tolerance in degrees.
- * @param log_eps Detection threshold: -log10(NFA) \> log_eps. Used only when advance refinement is chosen.
- */
- + (LineSegmentDetector*)createLineSegmentDetector:(int)refine scale:(double)scale sigma_scale:(double)sigma_scale quant:(double)quant ang_th:(double)ang_th log_eps:(double)log_eps NS_SWIFT_NAME(createLineSegmentDetector(refine:scale:sigma_scale:quant:ang_th:log_eps:));
- /**
- * Creates a smart pointer to a LineSegmentDetector object and initializes it.
- *
- * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
- * to edit those, as to tailor it for their own application.
- *
- * @param refine The way found lines will be refined, see #LineSegmentDetectorModes
- * @param scale The scale of the image that will be used to find the lines. Range (0..1].
- * @param sigma_scale Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale.
- * @param quant Bound to the quantization error on the gradient norm.
- * @param ang_th Gradient angle tolerance in degrees.
- */
- + (LineSegmentDetector*)createLineSegmentDetector:(int)refine scale:(double)scale sigma_scale:(double)sigma_scale quant:(double)quant ang_th:(double)ang_th NS_SWIFT_NAME(createLineSegmentDetector(refine:scale:sigma_scale:quant:ang_th:));
- /**
- * Creates a smart pointer to a LineSegmentDetector object and initializes it.
- *
- * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
- * to edit those, as to tailor it for their own application.
- *
- * @param refine The way found lines will be refined, see #LineSegmentDetectorModes
- * @param scale The scale of the image that will be used to find the lines. Range (0..1].
- * @param sigma_scale Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale.
- * @param quant Bound to the quantization error on the gradient norm.
- */
- + (LineSegmentDetector*)createLineSegmentDetector:(int)refine scale:(double)scale sigma_scale:(double)sigma_scale quant:(double)quant NS_SWIFT_NAME(createLineSegmentDetector(refine:scale:sigma_scale:quant:));
- /**
- * Creates a smart pointer to a LineSegmentDetector object and initializes it.
- *
- * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
- * to edit those, as to tailor it for their own application.
- *
- * @param refine The way found lines will be refined, see #LineSegmentDetectorModes
- * @param scale The scale of the image that will be used to find the lines. Range (0..1].
- * @param sigma_scale Sigma for Gaussian filter. It is computed as sigma = sigma_scale/scale.
- */
- + (LineSegmentDetector*)createLineSegmentDetector:(int)refine scale:(double)scale sigma_scale:(double)sigma_scale NS_SWIFT_NAME(createLineSegmentDetector(refine:scale:sigma_scale:));
- /**
- * Creates a smart pointer to a LineSegmentDetector object and initializes it.
- *
- * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
- * to edit those, as to tailor it for their own application.
- *
- * @param refine The way found lines will be refined, see #LineSegmentDetectorModes
- * @param scale The scale of the image that will be used to find the lines. Range (0..1].
- */
- + (LineSegmentDetector*)createLineSegmentDetector:(int)refine scale:(double)scale NS_SWIFT_NAME(createLineSegmentDetector(refine:scale:));
- /**
- * Creates a smart pointer to a LineSegmentDetector object and initializes it.
- *
- * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
- * to edit those, as to tailor it for their own application.
- *
- * @param refine The way found lines will be refined, see #LineSegmentDetectorModes
- */
- + (LineSegmentDetector*)createLineSegmentDetector:(int)refine NS_SWIFT_NAME(createLineSegmentDetector(refine:));
- /**
- * Creates a smart pointer to a LineSegmentDetector object and initializes it.
- *
- * The LineSegmentDetector algorithm is defined using the standard values. Only advanced users may want
- * to edit those, as to tailor it for their own application.
- *
- */
- + (LineSegmentDetector*)createLineSegmentDetector NS_SWIFT_NAME(createLineSegmentDetector());
- //
- // Mat cv::getGaussianKernel(int ksize, double sigma, int ktype = CV_64F)
- //
- /**
- * Returns Gaussian filter coefficients.
- *
- * The function computes and returns the `$$\texttt{ksize} \times 1$$` matrix of Gaussian filter
- * coefficients:
- *
- * `$$G_i= \alpha *e^{-(i-( \texttt{ksize} -1)/2)^2/(2* \texttt{sigma}^2)},$$`
- *
- * where `$$i=0..\texttt{ksize}-1$$` and `$$\alpha$$` is the scale factor chosen so that `$$\sum_i G_i=1$$`.
- *
- * Two of such generated kernels can be passed to sepFilter2D. Those functions automatically recognize
- * smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and handle them accordingly.
- * You may also use the higher-level GaussianBlur.
- * @param ksize Aperture size. It should be odd ( `$$\texttt{ksize} \mod 2 = 1$$` ) and positive.
- * @param sigma Gaussian standard deviation. If it is non-positive, it is computed from ksize as
- * `sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`.
- * @param ktype Type of filter coefficients. It can be CV_32F or CV_64F .
- * @see `+sepFilter2D:dst:ddepth:kernelX:kernelY:anchor:delta:borderType:`, `+getDerivKernels:ky:dx:dy:ksize:normalize:ktype:`, `+getStructuringElement:ksize:anchor:`, `+GaussianBlur:dst:ksize:sigmaX:sigmaY:borderType:`
- */
- + (Mat*)getGaussianKernel:(int)ksize sigma:(double)sigma ktype:(int)ktype NS_SWIFT_NAME(getGaussianKernel(ksize:sigma:ktype:));
- /**
- * Returns Gaussian filter coefficients.
- *
- * The function computes and returns the `$$\texttt{ksize} \times 1$$` matrix of Gaussian filter
- * coefficients:
- *
- * `$$G_i= \alpha *e^{-(i-( \texttt{ksize} -1)/2)^2/(2* \texttt{sigma}^2)},$$`
- *
- * where `$$i=0..\texttt{ksize}-1$$` and `$$\alpha$$` is the scale factor chosen so that `$$\sum_i G_i=1$$`.
- *
- * Two of such generated kernels can be passed to sepFilter2D. Those functions automatically recognize
- * smoothing kernels (a symmetrical kernel with sum of weights equal to 1) and handle them accordingly.
- * You may also use the higher-level GaussianBlur.
- * @param ksize Aperture size. It should be odd ( `$$\texttt{ksize} \mod 2 = 1$$` ) and positive.
- * @param sigma Gaussian standard deviation. If it is non-positive, it is computed from ksize as
- * `sigma = 0.3*((ksize-1)*0.5 - 1) + 0.8`.
- * @see `+sepFilter2D:dst:ddepth:kernelX:kernelY:anchor:delta:borderType:`, `+getDerivKernels:ky:dx:dy:ksize:normalize:ktype:`, `+getStructuringElement:ksize:anchor:`, `+GaussianBlur:dst:ksize:sigmaX:sigmaY:borderType:`
- */
- + (Mat*)getGaussianKernel:(int)ksize sigma:(double)sigma NS_SWIFT_NAME(getGaussianKernel(ksize:sigma:));
- //
- // void cv::getDerivKernels(Mat& kx, Mat& ky, int dx, int dy, int ksize, bool normalize = false, int ktype = CV_32F)
- //
- /**
- * Returns filter coefficients for computing spatial image derivatives.
- *
- * The function computes and returns the filter coefficients for spatial image derivatives. When
- * `ksize=FILTER_SCHARR`, the Scharr `$$3 \times 3$$` kernels are generated (see #Scharr). Otherwise, Sobel
- * kernels are generated (see #Sobel). The filters are normally passed to #sepFilter2D or to
- *
- * @param kx Output matrix of row filter coefficients. It has the type ktype .
- * @param ky Output matrix of column filter coefficients. It has the type ktype .
- * @param dx Derivative order in respect of x.
- * @param dy Derivative order in respect of y.
- * @param ksize Aperture size. It can be FILTER_SCHARR, 1, 3, 5, or 7.
- * @param normalize Flag indicating whether to normalize (scale down) the filter coefficients or not.
- * Theoretically, the coefficients should have the denominator `$$=2^{ksize*2-dx-dy-2}$$`. If you are
- * going to filter floating-point images, you are likely to use the normalized kernels. But if you
- * compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve
- * all the fractional bits, you may want to set normalize=false .
- * @param ktype Type of filter coefficients. It can be CV_32f or CV_64F .
- */
- + (void)getDerivKernels:(Mat*)kx ky:(Mat*)ky dx:(int)dx dy:(int)dy ksize:(int)ksize normalize:(BOOL)normalize ktype:(int)ktype NS_SWIFT_NAME(getDerivKernels(kx:ky:dx:dy:ksize:normalize:ktype:));
- /**
- * Returns filter coefficients for computing spatial image derivatives.
- *
- * The function computes and returns the filter coefficients for spatial image derivatives. When
- * `ksize=FILTER_SCHARR`, the Scharr `$$3 \times 3$$` kernels are generated (see #Scharr). Otherwise, Sobel
- * kernels are generated (see #Sobel). The filters are normally passed to #sepFilter2D or to
- *
- * @param kx Output matrix of row filter coefficients. It has the type ktype .
- * @param ky Output matrix of column filter coefficients. It has the type ktype .
- * @param dx Derivative order in respect of x.
- * @param dy Derivative order in respect of y.
- * @param ksize Aperture size. It can be FILTER_SCHARR, 1, 3, 5, or 7.
- * @param normalize Flag indicating whether to normalize (scale down) the filter coefficients or not.
- * Theoretically, the coefficients should have the denominator `$$=2^{ksize*2-dx-dy-2}$$`. If you are
- * going to filter floating-point images, you are likely to use the normalized kernels. But if you
- * compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve
- * all the fractional bits, you may want to set normalize=false .
- */
- + (void)getDerivKernels:(Mat*)kx ky:(Mat*)ky dx:(int)dx dy:(int)dy ksize:(int)ksize normalize:(BOOL)normalize NS_SWIFT_NAME(getDerivKernels(kx:ky:dx:dy:ksize:normalize:));
- /**
- * Returns filter coefficients for computing spatial image derivatives.
- *
- * The function computes and returns the filter coefficients for spatial image derivatives. When
- * `ksize=FILTER_SCHARR`, the Scharr `$$3 \times 3$$` kernels are generated (see #Scharr). Otherwise, Sobel
- * kernels are generated (see #Sobel). The filters are normally passed to #sepFilter2D or to
- *
- * @param kx Output matrix of row filter coefficients. It has the type ktype .
- * @param ky Output matrix of column filter coefficients. It has the type ktype .
- * @param dx Derivative order in respect of x.
- * @param dy Derivative order in respect of y.
- * @param ksize Aperture size. It can be FILTER_SCHARR, 1, 3, 5, or 7.
- * Theoretically, the coefficients should have the denominator `$$=2^{ksize*2-dx-dy-2}$$`. If you are
- * going to filter floating-point images, you are likely to use the normalized kernels. But if you
- * compute derivatives of an 8-bit image, store the results in a 16-bit image, and wish to preserve
- * all the fractional bits, you may want to set normalize=false .
- */
- + (void)getDerivKernels:(Mat*)kx ky:(Mat*)ky dx:(int)dx dy:(int)dy ksize:(int)ksize NS_SWIFT_NAME(getDerivKernels(kx:ky:dx:dy:ksize:));
- //
- // Mat cv::getGaborKernel(Size ksize, double sigma, double theta, double lambd, double gamma, double psi = CV_PI*0.5, int ktype = CV_64F)
- //
- /**
- * Returns Gabor filter coefficients.
- *
- * For more details about gabor filter equations and parameters, see: [Gabor
- * Filter](http://en.wikipedia.org/wiki/Gabor_filter).
- *
- * @param ksize Size of the filter returned.
- * @param sigma Standard deviation of the gaussian envelope.
- * @param theta Orientation of the normal to the parallel stripes of a Gabor function.
- * @param lambd Wavelength of the sinusoidal factor.
- * @param gamma Spatial aspect ratio.
- * @param psi Phase offset.
- * @param ktype Type of filter coefficients. It can be CV_32F or CV_64F .
- */
- + (Mat*)getGaborKernel:(Size2i*)ksize sigma:(double)sigma theta:(double)theta lambd:(double)lambd gamma:(double)gamma psi:(double)psi ktype:(int)ktype NS_SWIFT_NAME(getGaborKernel(ksize:sigma:theta:lambd:gamma:psi:ktype:));
- /**
- * Returns Gabor filter coefficients.
- *
- * For more details about gabor filter equations and parameters, see: [Gabor
- * Filter](http://en.wikipedia.org/wiki/Gabor_filter).
- *
- * @param ksize Size of the filter returned.
- * @param sigma Standard deviation of the gaussian envelope.
- * @param theta Orientation of the normal to the parallel stripes of a Gabor function.
- * @param lambd Wavelength of the sinusoidal factor.
- * @param gamma Spatial aspect ratio.
- * @param psi Phase offset.
- */
- + (Mat*)getGaborKernel:(Size2i*)ksize sigma:(double)sigma theta:(double)theta lambd:(double)lambd gamma:(double)gamma psi:(double)psi NS_SWIFT_NAME(getGaborKernel(ksize:sigma:theta:lambd:gamma:psi:));
- /**
- * Returns Gabor filter coefficients.
- *
- * For more details about gabor filter equations and parameters, see: [Gabor
- * Filter](http://en.wikipedia.org/wiki/Gabor_filter).
- *
- * @param ksize Size of the filter returned.
- * @param sigma Standard deviation of the gaussian envelope.
- * @param theta Orientation of the normal to the parallel stripes of a Gabor function.
- * @param lambd Wavelength of the sinusoidal factor.
- * @param gamma Spatial aspect ratio.
- */
- + (Mat*)getGaborKernel:(Size2i*)ksize sigma:(double)sigma theta:(double)theta lambd:(double)lambd gamma:(double)gamma NS_SWIFT_NAME(getGaborKernel(ksize:sigma:theta:lambd:gamma:));
- //
- // Mat cv::getStructuringElement(MorphShapes shape, Size ksize, Point anchor = Point(-1,-1))
- //
- /**
- * Returns a structuring element of the specified size and shape for morphological operations.
- *
- * The function constructs and returns the structuring element that can be further passed to #erode,
- * #dilate or #morphologyEx. But you can also construct an arbitrary binary mask yourself and use it as
- * the structuring element.
- *
- * @param shape Element shape that could be one of #MorphShapes
- * @param ksize Size of the structuring element.
- * @param anchor Anchor position within the element. The default value `$$(-1, -1)$$` means that the
- * anchor is at the center. Note that only the shape of a cross-shaped element depends on the anchor
- * position. In other cases the anchor just regulates how much the result of the morphological
- * operation is shifted.
- */
- + (Mat*)getStructuringElement:(MorphShapes)shape ksize:(Size2i*)ksize anchor:(Point2i*)anchor NS_SWIFT_NAME(getStructuringElement(shape:ksize:anchor:));
- /**
- * Returns a structuring element of the specified size and shape for morphological operations.
- *
- * The function constructs and returns the structuring element that can be further passed to #erode,
- * #dilate or #morphologyEx. But you can also construct an arbitrary binary mask yourself and use it as
- * the structuring element.
- *
- * @param shape Element shape that could be one of #MorphShapes
- * @param ksize Size of the structuring element.
- * anchor is at the center. Note that only the shape of a cross-shaped element depends on the anchor
- * position. In other cases the anchor just regulates how much the result of the morphological
- * operation is shifted.
- */
- + (Mat*)getStructuringElement:(MorphShapes)shape ksize:(Size2i*)ksize NS_SWIFT_NAME(getStructuringElement(shape:ksize:));
- //
- // void cv::medianBlur(Mat src, Mat& dst, int ksize)
- //
- /**
- * Blurs an image using the median filter.
- *
- * The function smoothes an image using the median filter with the `$$\texttt{ksize} \times
- * \texttt{ksize}$$` aperture. Each channel of a multi-channel image is processed independently.
- * In-place operation is supported.
- *
- * NOTE: The median filter uses #BORDER_REPLICATE internally to cope with border pixels, see #BorderTypes
- *
- * @param src input 1-, 3-, or 4-channel image; when ksize is 3 or 5, the image depth should be
- * CV_8U, CV_16U, or CV_32F, for larger aperture sizes, it can only be CV_8U.
- * @param dst destination array of the same size and type as src.
- * @param ksize aperture linear size; it must be odd and greater than 1, for example: 3, 5, 7 ...
- * @see `+bilateralFilter:dst:d:sigmaColor:sigmaSpace:borderType:`, `+blur:dst:ksize:anchor:borderType:`, `+boxFilter:dst:ddepth:ksize:anchor:normalize:borderType:`, `+GaussianBlur:dst:ksize:sigmaX:sigmaY:borderType:`
- */
- + (void)medianBlur:(Mat*)src dst:(Mat*)dst ksize:(int)ksize NS_SWIFT_NAME(medianBlur(src:dst:ksize:));
- //
- // void cv::GaussianBlur(Mat src, Mat& dst, Size ksize, double sigmaX, double sigmaY = 0, BorderTypes borderType = BORDER_DEFAULT)
- //
- /**
- * Blurs an image using a Gaussian filter.
- *
- * The function convolves the source image with the specified Gaussian kernel. In-place filtering is
- * supported.
- *
- * @param src input image; the image can have any number of channels, which are processed
- * independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- * @param dst output image of the same size and type as src.
- * @param ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be
- * positive and odd. Or, they can be zero's and then they are computed from sigma.
- * @param sigmaX Gaussian kernel standard deviation in X direction.
- * @param sigmaY Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be
- * equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height,
- * respectively (see #getGaussianKernel for details); to fully control the result regardless of
- * possible future modifications of all this semantics, it is recommended to specify all of ksize,
- * sigmaX, and sigmaY.
- * @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
- *
- * @see `+sepFilter2D:dst:ddepth:kernelX:kernelY:anchor:delta:borderType:`, `+filter2D:dst:ddepth:kernel:anchor:delta:borderType:`, `+blur:dst:ksize:anchor:borderType:`, `+boxFilter:dst:ddepth:ksize:anchor:normalize:borderType:`, `+bilateralFilter:dst:d:sigmaColor:sigmaSpace:borderType:`, `+medianBlur:dst:ksize:`
- */
- + (void)GaussianBlur:(Mat*)src dst:(Mat*)dst ksize:(Size2i*)ksize sigmaX:(double)sigmaX sigmaY:(double)sigmaY borderType:(BorderTypes)borderType NS_SWIFT_NAME(GaussianBlur(src:dst:ksize:sigmaX:sigmaY:borderType:));
- /**
- * Blurs an image using a Gaussian filter.
- *
- * The function convolves the source image with the specified Gaussian kernel. In-place filtering is
- * supported.
- *
- * @param src input image; the image can have any number of channels, which are processed
- * independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- * @param dst output image of the same size and type as src.
- * @param ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be
- * positive and odd. Or, they can be zero's and then they are computed from sigma.
- * @param sigmaX Gaussian kernel standard deviation in X direction.
- * @param sigmaY Gaussian kernel standard deviation in Y direction; if sigmaY is zero, it is set to be
- * equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height,
- * respectively (see #getGaussianKernel for details); to fully control the result regardless of
- * possible future modifications of all this semantics, it is recommended to specify all of ksize,
- * sigmaX, and sigmaY.
- *
- * @see `+sepFilter2D:dst:ddepth:kernelX:kernelY:anchor:delta:borderType:`, `+filter2D:dst:ddepth:kernel:anchor:delta:borderType:`, `+blur:dst:ksize:anchor:borderType:`, `+boxFilter:dst:ddepth:ksize:anchor:normalize:borderType:`, `+bilateralFilter:dst:d:sigmaColor:sigmaSpace:borderType:`, `+medianBlur:dst:ksize:`
- */
- + (void)GaussianBlur:(Mat*)src dst:(Mat*)dst ksize:(Size2i*)ksize sigmaX:(double)sigmaX sigmaY:(double)sigmaY NS_SWIFT_NAME(GaussianBlur(src:dst:ksize:sigmaX:sigmaY:));
- /**
- * Blurs an image using a Gaussian filter.
- *
- * The function convolves the source image with the specified Gaussian kernel. In-place filtering is
- * supported.
- *
- * @param src input image; the image can have any number of channels, which are processed
- * independently, but the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- * @param dst output image of the same size and type as src.
- * @param ksize Gaussian kernel size. ksize.width and ksize.height can differ but they both must be
- * positive and odd. Or, they can be zero's and then they are computed from sigma.
- * @param sigmaX Gaussian kernel standard deviation in X direction.
- * equal to sigmaX, if both sigmas are zeros, they are computed from ksize.width and ksize.height,
- * respectively (see #getGaussianKernel for details); to fully control the result regardless of
- * possible future modifications of all this semantics, it is recommended to specify all of ksize,
- * sigmaX, and sigmaY.
- *
- * @see `+sepFilter2D:dst:ddepth:kernelX:kernelY:anchor:delta:borderType:`, `+filter2D:dst:ddepth:kernel:anchor:delta:borderType:`, `+blur:dst:ksize:anchor:borderType:`, `+boxFilter:dst:ddepth:ksize:anchor:normalize:borderType:`, `+bilateralFilter:dst:d:sigmaColor:sigmaSpace:borderType:`, `+medianBlur:dst:ksize:`
- */
- + (void)GaussianBlur:(Mat*)src dst:(Mat*)dst ksize:(Size2i*)ksize sigmaX:(double)sigmaX NS_SWIFT_NAME(GaussianBlur(src:dst:ksize:sigmaX:));
- //
- // void cv::bilateralFilter(Mat src, Mat& dst, int d, double sigmaColor, double sigmaSpace, BorderTypes borderType = BORDER_DEFAULT)
- //
- /**
- * Applies the bilateral filter to an image.
- *
- * The function applies bilateral filtering to the input image, as described in
- * http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html
- * bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp. However, it is
- * very slow compared to most filters.
- *
- * _Sigma values_: For simplicity, you can set the 2 sigma values to be the same. If they are small (\<
- * 10), the filter will not have much effect, whereas if they are large (\> 150), they will have a very
- * strong effect, making the image look "cartoonish".
- *
- * _Filter size_: Large filters (d \> 5) are very slow, so it is recommended to use d=5 for real-time
- * applications, and perhaps d=9 for offline applications that need heavy noise filtering.
- *
- * This filter does not work inplace.
- * @param src Source 8-bit or floating-point, 1-channel or 3-channel image.
- * @param dst Destination image of the same size and type as src .
- * @param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
- * it is computed from sigmaSpace.
- * @param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
- * farther colors within the pixel neighborhood (see sigmaSpace) will be mixed together, resulting
- * in larger areas of semi-equal color.
- * @param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that
- * farther pixels will influence each other as long as their colors are close enough (see sigmaColor
- * ). When d\>0, it specifies the neighborhood size regardless of sigmaSpace. Otherwise, d is
- * proportional to sigmaSpace.
- * @param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes
- */
- + (void)bilateralFilter:(Mat*)src dst:(Mat*)dst d:(int)d sigmaColor:(double)sigmaColor sigmaSpace:(double)sigmaSpace borderType:(BorderTypes)borderType NS_SWIFT_NAME(bilateralFilter(src:dst:d:sigmaColor:sigmaSpace:borderType:));
- /**
- * Applies the bilateral filter to an image.
- *
- * The function applies bilateral filtering to the input image, as described in
- * http://www.dai.ed.ac.uk/CVonline/LOCAL_COPIES/MANDUCHI1/Bilateral_Filtering.html
- * bilateralFilter can reduce unwanted noise very well while keeping edges fairly sharp. However, it is
- * very slow compared to most filters.
- *
- * _Sigma values_: For simplicity, you can set the 2 sigma values to be the same. If they are small (\<
- * 10), the filter will not have much effect, whereas if they are large (\> 150), they will have a very
- * strong effect, making the image look "cartoonish".
- *
- * _Filter size_: Large filters (d \> 5) are very slow, so it is recommended to use d=5 for real-time
- * applications, and perhaps d=9 for offline applications that need heavy noise filtering.
- *
- * This filter does not work inplace.
- * @param src Source 8-bit or floating-point, 1-channel or 3-channel image.
- * @param dst Destination image of the same size and type as src .
- * @param d Diameter of each pixel neighborhood that is used during filtering. If it is non-positive,
- * it is computed from sigmaSpace.
- * @param sigmaColor Filter sigma in the color space. A larger value of the parameter means that
- * farther colors within the pixel neighborhood (see sigmaSpace) will be mixed together, resulting
- * in larger areas of semi-equal color.
- * @param sigmaSpace Filter sigma in the coordinate space. A larger value of the parameter means that
- * farther pixels will influence each other as long as their colors are close enough (see sigmaColor
- * ). When d\>0, it specifies the neighborhood size regardless of sigmaSpace. Otherwise, d is
- * proportional to sigmaSpace.
- */
- + (void)bilateralFilter:(Mat*)src dst:(Mat*)dst d:(int)d sigmaColor:(double)sigmaColor sigmaSpace:(double)sigmaSpace NS_SWIFT_NAME(bilateralFilter(src:dst:d:sigmaColor:sigmaSpace:));
- //
- // void cv::boxFilter(Mat src, Mat& dst, int ddepth, Size ksize, Point anchor = Point(-1,-1), bool normalize = true, BorderTypes borderType = BORDER_DEFAULT)
- //
- /**
- * Blurs an image using the box filter.
- *
- * The function smooths an image using the kernel:
- *
- * `$$\texttt{K} = \alpha \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}$$`
- *
- * where
- *
- * `$$\alpha = \begin{cases} \frac{1}{\texttt{ksize.width*ksize.height}} & \texttt{when } \texttt{normalize=true} \\1 & \texttt{otherwise}\end{cases}$$`
- *
- * Unnormalized box filter is useful for computing various integral characteristics over each pixel
- * neighborhood, such as covariance matrices of image derivatives (used in dense optical flow
- * algorithms, and so on). If you need to compute pixel sums over variable-size windows, use #integral.
- *
- * @param src input image.
- * @param dst output image of the same size and type as src.
- * @param ddepth the output image depth (-1 to use src.depth()).
- * @param ksize blurring kernel size.
- * @param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
- * center.
- * @param normalize flag, specifying whether the kernel is normalized by its area or not.
- * @param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
- * @see `+blur:dst:ksize:anchor:borderType:`, `+bilateralFilter:dst:d:sigmaColor:sigmaSpace:borderType:`, `+GaussianBlur:dst:ksize:sigmaX:sigmaY:borderType:`, `+medianBlur:dst:ksize:`, `+integral:sum:sdepth:`
- */
- + (void)boxFilter:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth ksize:(Size2i*)ksize anchor:(Point2i*)anchor normalize:(BOOL)normalize borderType:(BorderTypes)borderType NS_SWIFT_NAME(boxFilter(src:dst:ddepth:ksize:anchor:normalize:borderType:));
- /**
- * Blurs an image using the box filter.
- *
- * The function smooths an image using the kernel:
- *
- * `$$\texttt{K} = \alpha \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}$$`
- *
- * where
- *
- * `$$\alpha = \begin{cases} \frac{1}{\texttt{ksize.width*ksize.height}} & \texttt{when } \texttt{normalize=true} \\1 & \texttt{otherwise}\end{cases}$$`
- *
- * Unnormalized box filter is useful for computing various integral characteristics over each pixel
- * neighborhood, such as covariance matrices of image derivatives (used in dense optical flow
- * algorithms, and so on). If you need to compute pixel sums over variable-size windows, use #integral.
- *
- * @param src input image.
- * @param dst output image of the same size and type as src.
- * @param ddepth the output image depth (-1 to use src.depth()).
- * @param ksize blurring kernel size.
- * @param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
- * center.
- * @param normalize flag, specifying whether the kernel is normalized by its area or not.
- * @see `+blur:dst:ksize:anchor:borderType:`, `+bilateralFilter:dst:d:sigmaColor:sigmaSpace:borderType:`, `+GaussianBlur:dst:ksize:sigmaX:sigmaY:borderType:`, `+medianBlur:dst:ksize:`, `+integral:sum:sdepth:`
- */
- + (void)boxFilter:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth ksize:(Size2i*)ksize anchor:(Point2i*)anchor normalize:(BOOL)normalize NS_SWIFT_NAME(boxFilter(src:dst:ddepth:ksize:anchor:normalize:));
- /**
- * Blurs an image using the box filter.
- *
- * The function smooths an image using the kernel:
- *
- * `$$\texttt{K} = \alpha \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}$$`
- *
- * where
- *
- * `$$\alpha = \begin{cases} \frac{1}{\texttt{ksize.width*ksize.height}} & \texttt{when } \texttt{normalize=true} \\1 & \texttt{otherwise}\end{cases}$$`
- *
- * Unnormalized box filter is useful for computing various integral characteristics over each pixel
- * neighborhood, such as covariance matrices of image derivatives (used in dense optical flow
- * algorithms, and so on). If you need to compute pixel sums over variable-size windows, use #integral.
- *
- * @param src input image.
- * @param dst output image of the same size and type as src.
- * @param ddepth the output image depth (-1 to use src.depth()).
- * @param ksize blurring kernel size.
- * @param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
- * center.
- * @see `+blur:dst:ksize:anchor:borderType:`, `+bilateralFilter:dst:d:sigmaColor:sigmaSpace:borderType:`, `+GaussianBlur:dst:ksize:sigmaX:sigmaY:borderType:`, `+medianBlur:dst:ksize:`, `+integral:sum:sdepth:`
- */
- + (void)boxFilter:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth ksize:(Size2i*)ksize anchor:(Point2i*)anchor NS_SWIFT_NAME(boxFilter(src:dst:ddepth:ksize:anchor:));
- /**
- * Blurs an image using the box filter.
- *
- * The function smooths an image using the kernel:
- *
- * `$$\texttt{K} = \alpha \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \end{bmatrix}$$`
- *
- * where
- *
- * `$$\alpha = \begin{cases} \frac{1}{\texttt{ksize.width*ksize.height}} & \texttt{when } \texttt{normalize=true} \\1 & \texttt{otherwise}\end{cases}$$`
- *
- * Unnormalized box filter is useful for computing various integral characteristics over each pixel
- * neighborhood, such as covariance matrices of image derivatives (used in dense optical flow
- * algorithms, and so on). If you need to compute pixel sums over variable-size windows, use #integral.
- *
- * @param src input image.
- * @param dst output image of the same size and type as src.
- * @param ddepth the output image depth (-1 to use src.depth()).
- * @param ksize blurring kernel size.
- * center.
- * @see `+blur:dst:ksize:anchor:borderType:`, `+bilateralFilter:dst:d:sigmaColor:sigmaSpace:borderType:`, `+GaussianBlur:dst:ksize:sigmaX:sigmaY:borderType:`, `+medianBlur:dst:ksize:`, `+integral:sum:sdepth:`
- */
- + (void)boxFilter:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth ksize:(Size2i*)ksize NS_SWIFT_NAME(boxFilter(src:dst:ddepth:ksize:));
- //
- // void cv::sqrBoxFilter(Mat src, Mat& dst, int ddepth, Size ksize, Point anchor = Point(-1, -1), bool normalize = true, BorderTypes borderType = BORDER_DEFAULT)
- //
- /**
- * Calculates the normalized sum of squares of the pixel values overlapping the filter.
- *
- * For every pixel `$$ (x, y) $$` in the source image, the function calculates the sum of squares of those neighboring
- * pixel values which overlap the filter placed over the pixel `$$ (x, y) $$`.
- *
- * The unnormalized square box filter can be useful in computing local image statistics such as the local
- * variance and standard deviation around the neighborhood of a pixel.
- *
- * @param src input image
- * @param dst output image of the same size and type as src
- * @param ddepth the output image depth (-1 to use src.depth())
- * @param ksize kernel size
- * @param anchor kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel
- * center.
- * @param normalize flag, specifying whether the kernel is to be normalized by it's area or not.
- * @param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
- * @see `+boxFilter:dst:ddepth:ksize:anchor:normalize:borderType:`
- */
- + (void)sqrBoxFilter:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth ksize:(Size2i*)ksize anchor:(Point2i*)anchor normalize:(BOOL)normalize borderType:(BorderTypes)borderType NS_SWIFT_NAME(sqrBoxFilter(src:dst:ddepth:ksize:anchor:normalize:borderType:));
- /**
- * Calculates the normalized sum of squares of the pixel values overlapping the filter.
- *
- * For every pixel `$$ (x, y) $$` in the source image, the function calculates the sum of squares of those neighboring
- * pixel values which overlap the filter placed over the pixel `$$ (x, y) $$`.
- *
- * The unnormalized square box filter can be useful in computing local image statistics such as the local
- * variance and standard deviation around the neighborhood of a pixel.
- *
- * @param src input image
- * @param dst output image of the same size and type as src
- * @param ddepth the output image depth (-1 to use src.depth())
- * @param ksize kernel size
- * @param anchor kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel
- * center.
- * @param normalize flag, specifying whether the kernel is to be normalized by it's area or not.
- * @see `+boxFilter:dst:ddepth:ksize:anchor:normalize:borderType:`
- */
- + (void)sqrBoxFilter:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth ksize:(Size2i*)ksize anchor:(Point2i*)anchor normalize:(BOOL)normalize NS_SWIFT_NAME(sqrBoxFilter(src:dst:ddepth:ksize:anchor:normalize:));
- /**
- * Calculates the normalized sum of squares of the pixel values overlapping the filter.
- *
- * For every pixel `$$ (x, y) $$` in the source image, the function calculates the sum of squares of those neighboring
- * pixel values which overlap the filter placed over the pixel `$$ (x, y) $$`.
- *
- * The unnormalized square box filter can be useful in computing local image statistics such as the local
- * variance and standard deviation around the neighborhood of a pixel.
- *
- * @param src input image
- * @param dst output image of the same size and type as src
- * @param ddepth the output image depth (-1 to use src.depth())
- * @param ksize kernel size
- * @param anchor kernel anchor point. The default value of Point(-1, -1) denotes that the anchor is at the kernel
- * center.
- * @see `+boxFilter:dst:ddepth:ksize:anchor:normalize:borderType:`
- */
- + (void)sqrBoxFilter:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth ksize:(Size2i*)ksize anchor:(Point2i*)anchor NS_SWIFT_NAME(sqrBoxFilter(src:dst:ddepth:ksize:anchor:));
- /**
- * Calculates the normalized sum of squares of the pixel values overlapping the filter.
- *
- * For every pixel `$$ (x, y) $$` in the source image, the function calculates the sum of squares of those neighboring
- * pixel values which overlap the filter placed over the pixel `$$ (x, y) $$`.
- *
- * The unnormalized square box filter can be useful in computing local image statistics such as the local
- * variance and standard deviation around the neighborhood of a pixel.
- *
- * @param src input image
- * @param dst output image of the same size and type as src
- * @param ddepth the output image depth (-1 to use src.depth())
- * @param ksize kernel size
- * center.
- * @see `+boxFilter:dst:ddepth:ksize:anchor:normalize:borderType:`
- */
- + (void)sqrBoxFilter:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth ksize:(Size2i*)ksize NS_SWIFT_NAME(sqrBoxFilter(src:dst:ddepth:ksize:));
- //
- // void cv::blur(Mat src, Mat& dst, Size ksize, Point anchor = Point(-1,-1), BorderTypes borderType = BORDER_DEFAULT)
- //
- /**
- * Blurs an image using the normalized box filter.
- *
- * The function smooths an image using the kernel:
- *
- * `$$\texttt{K} = \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \end{bmatrix}$$`
- *
- * The call `blur(src, dst, ksize, anchor, borderType)` is equivalent to `boxFilter(src, dst, src.type(), ksize,
- * anchor, true, borderType)`.
- *
- * @param src input image; it can have any number of channels, which are processed independently, but
- * the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- * @param dst output image of the same size and type as src.
- * @param ksize blurring kernel size.
- * @param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
- * center.
- * @param borderType border mode used to extrapolate pixels outside of the image, see #BorderTypes. #BORDER_WRAP is not supported.
- * @see `+boxFilter:dst:ddepth:ksize:anchor:normalize:borderType:`, `+bilateralFilter:dst:d:sigmaColor:sigmaSpace:borderType:`, `+GaussianBlur:dst:ksize:sigmaX:sigmaY:borderType:`, `+medianBlur:dst:ksize:`
- */
- + (void)blur:(Mat*)src dst:(Mat*)dst ksize:(Size2i*)ksize anchor:(Point2i*)anchor borderType:(BorderTypes)borderType NS_SWIFT_NAME(blur(src:dst:ksize:anchor:borderType:));
- /**
- * Blurs an image using the normalized box filter.
- *
- * The function smooths an image using the kernel:
- *
- * `$$\texttt{K} = \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \end{bmatrix}$$`
- *
- * The call `blur(src, dst, ksize, anchor, borderType)` is equivalent to `boxFilter(src, dst, src.type(), ksize,
- * anchor, true, borderType)`.
- *
- * @param src input image; it can have any number of channels, which are processed independently, but
- * the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- * @param dst output image of the same size and type as src.
- * @param ksize blurring kernel size.
- * @param anchor anchor point; default value Point(-1,-1) means that the anchor is at the kernel
- * center.
- * @see `+boxFilter:dst:ddepth:ksize:anchor:normalize:borderType:`, `+bilateralFilter:dst:d:sigmaColor:sigmaSpace:borderType:`, `+GaussianBlur:dst:ksize:sigmaX:sigmaY:borderType:`, `+medianBlur:dst:ksize:`
- */
- + (void)blur:(Mat*)src dst:(Mat*)dst ksize:(Size2i*)ksize anchor:(Point2i*)anchor NS_SWIFT_NAME(blur(src:dst:ksize:anchor:));
- /**
- * Blurs an image using the normalized box filter.
- *
- * The function smooths an image using the kernel:
- *
- * `$$\texttt{K} = \frac{1}{\texttt{ksize.width*ksize.height}} \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \hdotsfor{6} \\ 1 & 1 & 1 & \cdots & 1 & 1 \\ \end{bmatrix}$$`
- *
- * The call `blur(src, dst, ksize, anchor, borderType)` is equivalent to `boxFilter(src, dst, src.type(), ksize,
- * anchor, true, borderType)`.
- *
- * @param src input image; it can have any number of channels, which are processed independently, but
- * the depth should be CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- * @param dst output image of the same size and type as src.
- * @param ksize blurring kernel size.
- * center.
- * @see `+boxFilter:dst:ddepth:ksize:anchor:normalize:borderType:`, `+bilateralFilter:dst:d:sigmaColor:sigmaSpace:borderType:`, `+GaussianBlur:dst:ksize:sigmaX:sigmaY:borderType:`, `+medianBlur:dst:ksize:`
- */
- + (void)blur:(Mat*)src dst:(Mat*)dst ksize:(Size2i*)ksize NS_SWIFT_NAME(blur(src:dst:ksize:));
- //
- // void cv::filter2D(Mat src, Mat& dst, int ddepth, Mat kernel, Point anchor = Point(-1,-1), double delta = 0, BorderTypes borderType = BORDER_DEFAULT)
- //
- /**
- * Convolves an image with the kernel.
- *
- * The function applies an arbitrary linear filter to an image. In-place operation is supported. When
- * the aperture is partially outside the image, the function interpolates outlier pixel values
- * according to the specified border mode.
- *
- * The function does actually compute correlation, not the convolution:
- *
- * `$$\texttt{dst} (x,y) = \sum _{ \substack{0\leq x' < \texttt{kernel.cols}\\{0\leq y' < \texttt{kernel.rows}}}} \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )$$`
- *
- * That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip
- * the kernel using #flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows -
- * anchor.y - 1)`.
- *
- * The function uses the DFT-based algorithm in case of sufficiently large kernels (~`11 x 11` or
- * larger) and the direct algorithm for small kernels.
- *
- * @param src input image.
- * @param dst output image of the same size and the same number of channels as src.
- * @param ddepth desired depth of the destination image, see REF: filter_depths "combinations"
- * @param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point
- * matrix; if you want to apply different kernels to different channels, split the image into
- * separate color planes using split and process them individually.
- * @param anchor anchor of the kernel that indicates the relative position of a filtered point within
- * the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor
- * is at the kernel center.
- * @param delta optional value added to the filtered pixels before storing them in dst.
- * @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
- * @see `+sepFilter2D:dst:ddepth:kernelX:kernelY:anchor:delta:borderType:`, `dft`, `+matchTemplate:templ:result:method:mask:`
- */
- + (void)filter2D:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth kernel:(Mat*)kernel anchor:(Point2i*)anchor delta:(double)delta borderType:(BorderTypes)borderType NS_SWIFT_NAME(filter2D(src:dst:ddepth:kernel:anchor:delta:borderType:));
- /**
- * Convolves an image with the kernel.
- *
- * The function applies an arbitrary linear filter to an image. In-place operation is supported. When
- * the aperture is partially outside the image, the function interpolates outlier pixel values
- * according to the specified border mode.
- *
- * The function does actually compute correlation, not the convolution:
- *
- * `$$\texttt{dst} (x,y) = \sum _{ \substack{0\leq x' < \texttt{kernel.cols}\\{0\leq y' < \texttt{kernel.rows}}}} \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )$$`
- *
- * That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip
- * the kernel using #flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows -
- * anchor.y - 1)`.
- *
- * The function uses the DFT-based algorithm in case of sufficiently large kernels (~`11 x 11` or
- * larger) and the direct algorithm for small kernels.
- *
- * @param src input image.
- * @param dst output image of the same size and the same number of channels as src.
- * @param ddepth desired depth of the destination image, see REF: filter_depths "combinations"
- * @param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point
- * matrix; if you want to apply different kernels to different channels, split the image into
- * separate color planes using split and process them individually.
- * @param anchor anchor of the kernel that indicates the relative position of a filtered point within
- * the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor
- * is at the kernel center.
- * @param delta optional value added to the filtered pixels before storing them in dst.
- * @see `+sepFilter2D:dst:ddepth:kernelX:kernelY:anchor:delta:borderType:`, `dft`, `+matchTemplate:templ:result:method:mask:`
- */
- + (void)filter2D:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth kernel:(Mat*)kernel anchor:(Point2i*)anchor delta:(double)delta NS_SWIFT_NAME(filter2D(src:dst:ddepth:kernel:anchor:delta:));
- /**
- * Convolves an image with the kernel.
- *
- * The function applies an arbitrary linear filter to an image. In-place operation is supported. When
- * the aperture is partially outside the image, the function interpolates outlier pixel values
- * according to the specified border mode.
- *
- * The function does actually compute correlation, not the convolution:
- *
- * `$$\texttt{dst} (x,y) = \sum _{ \substack{0\leq x' < \texttt{kernel.cols}\\{0\leq y' < \texttt{kernel.rows}}}} \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )$$`
- *
- * That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip
- * the kernel using #flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows -
- * anchor.y - 1)`.
- *
- * The function uses the DFT-based algorithm in case of sufficiently large kernels (~`11 x 11` or
- * larger) and the direct algorithm for small kernels.
- *
- * @param src input image.
- * @param dst output image of the same size and the same number of channels as src.
- * @param ddepth desired depth of the destination image, see REF: filter_depths "combinations"
- * @param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point
- * matrix; if you want to apply different kernels to different channels, split the image into
- * separate color planes using split and process them individually.
- * @param anchor anchor of the kernel that indicates the relative position of a filtered point within
- * the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor
- * is at the kernel center.
- * @see `+sepFilter2D:dst:ddepth:kernelX:kernelY:anchor:delta:borderType:`, `dft`, `+matchTemplate:templ:result:method:mask:`
- */
- + (void)filter2D:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth kernel:(Mat*)kernel anchor:(Point2i*)anchor NS_SWIFT_NAME(filter2D(src:dst:ddepth:kernel:anchor:));
- /**
- * Convolves an image with the kernel.
- *
- * The function applies an arbitrary linear filter to an image. In-place operation is supported. When
- * the aperture is partially outside the image, the function interpolates outlier pixel values
- * according to the specified border mode.
- *
- * The function does actually compute correlation, not the convolution:
- *
- * `$$\texttt{dst} (x,y) = \sum _{ \substack{0\leq x' < \texttt{kernel.cols}\\{0\leq y' < \texttt{kernel.rows}}}} \texttt{kernel} (x',y')* \texttt{src} (x+x'- \texttt{anchor.x} ,y+y'- \texttt{anchor.y} )$$`
- *
- * That is, the kernel is not mirrored around the anchor point. If you need a real convolution, flip
- * the kernel using #flip and set the new anchor to `(kernel.cols - anchor.x - 1, kernel.rows -
- * anchor.y - 1)`.
- *
- * The function uses the DFT-based algorithm in case of sufficiently large kernels (~`11 x 11` or
- * larger) and the direct algorithm for small kernels.
- *
- * @param src input image.
- * @param dst output image of the same size and the same number of channels as src.
- * @param ddepth desired depth of the destination image, see REF: filter_depths "combinations"
- * @param kernel convolution kernel (or rather a correlation kernel), a single-channel floating point
- * matrix; if you want to apply different kernels to different channels, split the image into
- * separate color planes using split and process them individually.
- * the kernel; the anchor should lie within the kernel; default value (-1,-1) means that the anchor
- * is at the kernel center.
- * @see `+sepFilter2D:dst:ddepth:kernelX:kernelY:anchor:delta:borderType:`, `dft`, `+matchTemplate:templ:result:method:mask:`
- */
- + (void)filter2D:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth kernel:(Mat*)kernel NS_SWIFT_NAME(filter2D(src:dst:ddepth:kernel:));
- //
- // void cv::sepFilter2D(Mat src, Mat& dst, int ddepth, Mat kernelX, Mat kernelY, Point anchor = Point(-1,-1), double delta = 0, BorderTypes borderType = BORDER_DEFAULT)
- //
- /**
- * Applies a separable linear filter to an image.
- *
- * The function applies a separable linear filter to the image. That is, first, every row of src is
- * filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D
- * kernel kernelY. The final result shifted by delta is stored in dst .
- *
- * @param src Source image.
- * @param dst Destination image of the same size and the same number of channels as src .
- * @param ddepth Destination image depth, see REF: filter_depths "combinations"
- * @param kernelX Coefficients for filtering each row.
- * @param kernelY Coefficients for filtering each column.
- * @param anchor Anchor position within the kernel. The default value `$$(-1,-1)$$` means that the anchor
- * is at the kernel center.
- * @param delta Value added to the filtered results before storing them.
- * @param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
- * @see `+filter2D:dst:ddepth:kernel:anchor:delta:borderType:`, `+Sobel:dst:ddepth:dx:dy:ksize:scale:delta:borderType:`, `+GaussianBlur:dst:ksize:sigmaX:sigmaY:borderType:`, `+boxFilter:dst:ddepth:ksize:anchor:normalize:borderType:`, `+blur:dst:ksize:anchor:borderType:`
- */
- + (void)sepFilter2D:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth kernelX:(Mat*)kernelX kernelY:(Mat*)kernelY anchor:(Point2i*)anchor delta:(double)delta borderType:(BorderTypes)borderType NS_SWIFT_NAME(sepFilter2D(src:dst:ddepth:kernelX:kernelY:anchor:delta:borderType:));
- /**
- * Applies a separable linear filter to an image.
- *
- * The function applies a separable linear filter to the image. That is, first, every row of src is
- * filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D
- * kernel kernelY. The final result shifted by delta is stored in dst .
- *
- * @param src Source image.
- * @param dst Destination image of the same size and the same number of channels as src .
- * @param ddepth Destination image depth, see REF: filter_depths "combinations"
- * @param kernelX Coefficients for filtering each row.
- * @param kernelY Coefficients for filtering each column.
- * @param anchor Anchor position within the kernel. The default value `$$(-1,-1)$$` means that the anchor
- * is at the kernel center.
- * @param delta Value added to the filtered results before storing them.
- * @see `+filter2D:dst:ddepth:kernel:anchor:delta:borderType:`, `+Sobel:dst:ddepth:dx:dy:ksize:scale:delta:borderType:`, `+GaussianBlur:dst:ksize:sigmaX:sigmaY:borderType:`, `+boxFilter:dst:ddepth:ksize:anchor:normalize:borderType:`, `+blur:dst:ksize:anchor:borderType:`
- */
- + (void)sepFilter2D:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth kernelX:(Mat*)kernelX kernelY:(Mat*)kernelY anchor:(Point2i*)anchor delta:(double)delta NS_SWIFT_NAME(sepFilter2D(src:dst:ddepth:kernelX:kernelY:anchor:delta:));
- /**
- * Applies a separable linear filter to an image.
- *
- * The function applies a separable linear filter to the image. That is, first, every row of src is
- * filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D
- * kernel kernelY. The final result shifted by delta is stored in dst .
- *
- * @param src Source image.
- * @param dst Destination image of the same size and the same number of channels as src .
- * @param ddepth Destination image depth, see REF: filter_depths "combinations"
- * @param kernelX Coefficients for filtering each row.
- * @param kernelY Coefficients for filtering each column.
- * @param anchor Anchor position within the kernel. The default value `$$(-1,-1)$$` means that the anchor
- * is at the kernel center.
- * @see `+filter2D:dst:ddepth:kernel:anchor:delta:borderType:`, `+Sobel:dst:ddepth:dx:dy:ksize:scale:delta:borderType:`, `+GaussianBlur:dst:ksize:sigmaX:sigmaY:borderType:`, `+boxFilter:dst:ddepth:ksize:anchor:normalize:borderType:`, `+blur:dst:ksize:anchor:borderType:`
- */
- + (void)sepFilter2D:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth kernelX:(Mat*)kernelX kernelY:(Mat*)kernelY anchor:(Point2i*)anchor NS_SWIFT_NAME(sepFilter2D(src:dst:ddepth:kernelX:kernelY:anchor:));
- /**
- * Applies a separable linear filter to an image.
- *
- * The function applies a separable linear filter to the image. That is, first, every row of src is
- * filtered with the 1D kernel kernelX. Then, every column of the result is filtered with the 1D
- * kernel kernelY. The final result shifted by delta is stored in dst .
- *
- * @param src Source image.
- * @param dst Destination image of the same size and the same number of channels as src .
- * @param ddepth Destination image depth, see REF: filter_depths "combinations"
- * @param kernelX Coefficients for filtering each row.
- * @param kernelY Coefficients for filtering each column.
- * is at the kernel center.
- * @see `+filter2D:dst:ddepth:kernel:anchor:delta:borderType:`, `+Sobel:dst:ddepth:dx:dy:ksize:scale:delta:borderType:`, `+GaussianBlur:dst:ksize:sigmaX:sigmaY:borderType:`, `+boxFilter:dst:ddepth:ksize:anchor:normalize:borderType:`, `+blur:dst:ksize:anchor:borderType:`
- */
- + (void)sepFilter2D:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth kernelX:(Mat*)kernelX kernelY:(Mat*)kernelY NS_SWIFT_NAME(sepFilter2D(src:dst:ddepth:kernelX:kernelY:));
- //
- // void cv::Sobel(Mat src, Mat& dst, int ddepth, int dx, int dy, int ksize = 3, double scale = 1, double delta = 0, BorderTypes borderType = BORDER_DEFAULT)
- //
- /**
- * Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.
- *
- * In all cases except one, the `$$\texttt{ksize} \times \texttt{ksize}$$` separable kernel is used to
- * calculate the derivative. When `$$\texttt{ksize = 1}$$`, the `$$3 \times 1$$` or `$$1 \times 3$$`
- * kernel is used (that is, no Gaussian smoothing is done). `ksize = 1` can only be used for the first
- * or the second x- or y- derivatives.
- *
- * There is also the special value `ksize = #FILTER_SCHARR (-1)` that corresponds to the `$$3\times3$$` Scharr
- * filter that may give more accurate results than the `$$3\times3$$` Sobel. The Scharr aperture is
- *
- * `$$\newcommand{\vecthreethree}[9]{ \begin{bmatrix} #1 & #2 & #3\\\\ #4 & #5 & #6\\\\ #7 & #8 & #9 \end{bmatrix} } \vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}$$`
- *
- * for the x-derivative, or transposed for the y-derivative.
- *
- * The function calculates an image derivative by convolving the image with the appropriate kernel:
- *
- * `$$\texttt{dst} = \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}$$`
- *
- * The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less
- * resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3)
- * or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first
- * case corresponds to a kernel of:
- *
- * `$$\newcommand{\vecthreethree}[9]{ \begin{bmatrix} #1 & #2 & #3\\\\ #4 & #5 & #6\\\\ #7 & #8 & #9 \end{bmatrix} } \vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}$$`
- *
- * The second case corresponds to a kernel of:
- *
- * `$$\newcommand{\vecthreethree}[9]{ \begin{bmatrix} #1 & #2 & #3\\\\ #4 & #5 & #6\\\\ #7 & #8 & #9 \end{bmatrix} } \vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}$$`
- *
- * @param src input image.
- * @param dst output image of the same size and the same number of channels as src .
- * @param ddepth output image depth, see REF: filter_depths "combinations"; in the case of
- * 8-bit input images it will result in truncated derivatives.
- * @param dx order of the derivative x.
- * @param dy order of the derivative y.
- * @param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7.
- * @param scale optional scale factor for the computed derivative values; by default, no scaling is
- * applied (see #getDerivKernels for details).
- * @param delta optional delta value that is added to the results prior to storing them in dst.
- * @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
- * @see `+Scharr:dst:ddepth:dx:dy:scale:delta:borderType:`, `+Laplacian:dst:ddepth:ksize:scale:delta:borderType:`, `+sepFilter2D:dst:ddepth:kernelX:kernelY:anchor:delta:borderType:`, `+filter2D:dst:ddepth:kernel:anchor:delta:borderType:`, `+GaussianBlur:dst:ksize:sigmaX:sigmaY:borderType:`, `cartToPolar`
- */
- + (void)Sobel:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth dx:(int)dx dy:(int)dy ksize:(int)ksize scale:(double)scale delta:(double)delta borderType:(BorderTypes)borderType NS_SWIFT_NAME(Sobel(src:dst:ddepth:dx:dy:ksize:scale:delta:borderType:));
- /**
- * Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.
- *
- * In all cases except one, the `$$\texttt{ksize} \times \texttt{ksize}$$` separable kernel is used to
- * calculate the derivative. When `$$\texttt{ksize = 1}$$`, the `$$3 \times 1$$` or `$$1 \times 3$$`
- * kernel is used (that is, no Gaussian smoothing is done). `ksize = 1` can only be used for the first
- * or the second x- or y- derivatives.
- *
- * There is also the special value `ksize = #FILTER_SCHARR (-1)` that corresponds to the `$$3\times3$$` Scharr
- * filter that may give more accurate results than the `$$3\times3$$` Sobel. The Scharr aperture is
- *
- * `$$\newcommand{\vecthreethree}[9]{ \begin{bmatrix} #1 & #2 & #3\\\\ #4 & #5 & #6\\\\ #7 & #8 & #9 \end{bmatrix} } \vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}$$`
- *
- * for the x-derivative, or transposed for the y-derivative.
- *
- * The function calculates an image derivative by convolving the image with the appropriate kernel:
- *
- * `$$\texttt{dst} = \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}$$`
- *
- * The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less
- * resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3)
- * or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first
- * case corresponds to a kernel of:
- *
- * `$$\newcommand{\vecthreethree}[9]{ \begin{bmatrix} #1 & #2 & #3\\\\ #4 & #5 & #6\\\\ #7 & #8 & #9 \end{bmatrix} } \vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}$$`
- *
- * The second case corresponds to a kernel of:
- *
- * `$$\newcommand{\vecthreethree}[9]{ \begin{bmatrix} #1 & #2 & #3\\\\ #4 & #5 & #6\\\\ #7 & #8 & #9 \end{bmatrix} } \vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}$$`
- *
- * @param src input image.
- * @param dst output image of the same size and the same number of channels as src .
- * @param ddepth output image depth, see REF: filter_depths "combinations"; in the case of
- * 8-bit input images it will result in truncated derivatives.
- * @param dx order of the derivative x.
- * @param dy order of the derivative y.
- * @param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7.
- * @param scale optional scale factor for the computed derivative values; by default, no scaling is
- * applied (see #getDerivKernels for details).
- * @param delta optional delta value that is added to the results prior to storing them in dst.
- * @see `+Scharr:dst:ddepth:dx:dy:scale:delta:borderType:`, `+Laplacian:dst:ddepth:ksize:scale:delta:borderType:`, `+sepFilter2D:dst:ddepth:kernelX:kernelY:anchor:delta:borderType:`, `+filter2D:dst:ddepth:kernel:anchor:delta:borderType:`, `+GaussianBlur:dst:ksize:sigmaX:sigmaY:borderType:`, `cartToPolar`
- */
- + (void)Sobel:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth dx:(int)dx dy:(int)dy ksize:(int)ksize scale:(double)scale delta:(double)delta NS_SWIFT_NAME(Sobel(src:dst:ddepth:dx:dy:ksize:scale:delta:));
- /**
- * Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.
- *
- * In all cases except one, the `$$\texttt{ksize} \times \texttt{ksize}$$` separable kernel is used to
- * calculate the derivative. When `$$\texttt{ksize = 1}$$`, the `$$3 \times 1$$` or `$$1 \times 3$$`
- * kernel is used (that is, no Gaussian smoothing is done). `ksize = 1` can only be used for the first
- * or the second x- or y- derivatives.
- *
- * There is also the special value `ksize = #FILTER_SCHARR (-1)` that corresponds to the `$$3\times3$$` Scharr
- * filter that may give more accurate results than the `$$3\times3$$` Sobel. The Scharr aperture is
- *
- * `$$\newcommand{\vecthreethree}[9]{ \begin{bmatrix} #1 & #2 & #3\\\\ #4 & #5 & #6\\\\ #7 & #8 & #9 \end{bmatrix} } \vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}$$`
- *
- * for the x-derivative, or transposed for the y-derivative.
- *
- * The function calculates an image derivative by convolving the image with the appropriate kernel:
- *
- * `$$\texttt{dst} = \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}$$`
- *
- * The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less
- * resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3)
- * or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first
- * case corresponds to a kernel of:
- *
- * `$$\newcommand{\vecthreethree}[9]{ \begin{bmatrix} #1 & #2 & #3\\\\ #4 & #5 & #6\\\\ #7 & #8 & #9 \end{bmatrix} } \vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}$$`
- *
- * The second case corresponds to a kernel of:
- *
- * `$$\newcommand{\vecthreethree}[9]{ \begin{bmatrix} #1 & #2 & #3\\\\ #4 & #5 & #6\\\\ #7 & #8 & #9 \end{bmatrix} } \vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}$$`
- *
- * @param src input image.
- * @param dst output image of the same size and the same number of channels as src .
- * @param ddepth output image depth, see REF: filter_depths "combinations"; in the case of
- * 8-bit input images it will result in truncated derivatives.
- * @param dx order of the derivative x.
- * @param dy order of the derivative y.
- * @param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7.
- * @param scale optional scale factor for the computed derivative values; by default, no scaling is
- * applied (see #getDerivKernels for details).
- * @see `+Scharr:dst:ddepth:dx:dy:scale:delta:borderType:`, `+Laplacian:dst:ddepth:ksize:scale:delta:borderType:`, `+sepFilter2D:dst:ddepth:kernelX:kernelY:anchor:delta:borderType:`, `+filter2D:dst:ddepth:kernel:anchor:delta:borderType:`, `+GaussianBlur:dst:ksize:sigmaX:sigmaY:borderType:`, `cartToPolar`
- */
- + (void)Sobel:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth dx:(int)dx dy:(int)dy ksize:(int)ksize scale:(double)scale NS_SWIFT_NAME(Sobel(src:dst:ddepth:dx:dy:ksize:scale:));
- /**
- * Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.
- *
- * In all cases except one, the `$$\texttt{ksize} \times \texttt{ksize}$$` separable kernel is used to
- * calculate the derivative. When `$$\texttt{ksize = 1}$$`, the `$$3 \times 1$$` or `$$1 \times 3$$`
- * kernel is used (that is, no Gaussian smoothing is done). `ksize = 1` can only be used for the first
- * or the second x- or y- derivatives.
- *
- * There is also the special value `ksize = #FILTER_SCHARR (-1)` that corresponds to the `$$3\times3$$` Scharr
- * filter that may give more accurate results than the `$$3\times3$$` Sobel. The Scharr aperture is
- *
- * `$$\newcommand{\vecthreethree}[9]{ \begin{bmatrix} #1 & #2 & #3\\\\ #4 & #5 & #6\\\\ #7 & #8 & #9 \end{bmatrix} } \vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}$$`
- *
- * for the x-derivative, or transposed for the y-derivative.
- *
- * The function calculates an image derivative by convolving the image with the appropriate kernel:
- *
- * `$$\texttt{dst} = \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}$$`
- *
- * The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less
- * resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3)
- * or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first
- * case corresponds to a kernel of:
- *
- * `$$\newcommand{\vecthreethree}[9]{ \begin{bmatrix} #1 & #2 & #3\\\\ #4 & #5 & #6\\\\ #7 & #8 & #9 \end{bmatrix} } \vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}$$`
- *
- * The second case corresponds to a kernel of:
- *
- * `$$\newcommand{\vecthreethree}[9]{ \begin{bmatrix} #1 & #2 & #3\\\\ #4 & #5 & #6\\\\ #7 & #8 & #9 \end{bmatrix} } \vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}$$`
- *
- * @param src input image.
- * @param dst output image of the same size and the same number of channels as src .
- * @param ddepth output image depth, see REF: filter_depths "combinations"; in the case of
- * 8-bit input images it will result in truncated derivatives.
- * @param dx order of the derivative x.
- * @param dy order of the derivative y.
- * @param ksize size of the extended Sobel kernel; it must be 1, 3, 5, or 7.
- * applied (see #getDerivKernels for details).
- * @see `+Scharr:dst:ddepth:dx:dy:scale:delta:borderType:`, `+Laplacian:dst:ddepth:ksize:scale:delta:borderType:`, `+sepFilter2D:dst:ddepth:kernelX:kernelY:anchor:delta:borderType:`, `+filter2D:dst:ddepth:kernel:anchor:delta:borderType:`, `+GaussianBlur:dst:ksize:sigmaX:sigmaY:borderType:`, `cartToPolar`
- */
- + (void)Sobel:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth dx:(int)dx dy:(int)dy ksize:(int)ksize NS_SWIFT_NAME(Sobel(src:dst:ddepth:dx:dy:ksize:));
- /**
- * Calculates the first, second, third, or mixed image derivatives using an extended Sobel operator.
- *
- * In all cases except one, the `$$\texttt{ksize} \times \texttt{ksize}$$` separable kernel is used to
- * calculate the derivative. When `$$\texttt{ksize = 1}$$`, the `$$3 \times 1$$` or `$$1 \times 3$$`
- * kernel is used (that is, no Gaussian smoothing is done). `ksize = 1` can only be used for the first
- * or the second x- or y- derivatives.
- *
- * There is also the special value `ksize = #FILTER_SCHARR (-1)` that corresponds to the `$$3\times3$$` Scharr
- * filter that may give more accurate results than the `$$3\times3$$` Sobel. The Scharr aperture is
- *
- * `$$\newcommand{\vecthreethree}[9]{ \begin{bmatrix} #1 & #2 & #3\\\\ #4 & #5 & #6\\\\ #7 & #8 & #9 \end{bmatrix} } \vecthreethree{-3}{0}{3}{-10}{0}{10}{-3}{0}{3}$$`
- *
- * for the x-derivative, or transposed for the y-derivative.
- *
- * The function calculates an image derivative by convolving the image with the appropriate kernel:
- *
- * `$$\texttt{dst} = \frac{\partial^{xorder+yorder} \texttt{src}}{\partial x^{xorder} \partial y^{yorder}}$$`
- *
- * The Sobel operators combine Gaussian smoothing and differentiation, so the result is more or less
- * resistant to the noise. Most often, the function is called with ( xorder = 1, yorder = 0, ksize = 3)
- * or ( xorder = 0, yorder = 1, ksize = 3) to calculate the first x- or y- image derivative. The first
- * case corresponds to a kernel of:
- *
- * `$$\newcommand{\vecthreethree}[9]{ \begin{bmatrix} #1 & #2 & #3\\\\ #4 & #5 & #6\\\\ #7 & #8 & #9 \end{bmatrix} } \vecthreethree{-1}{0}{1}{-2}{0}{2}{-1}{0}{1}$$`
- *
- * The second case corresponds to a kernel of:
- *
- * `$$\newcommand{\vecthreethree}[9]{ \begin{bmatrix} #1 & #2 & #3\\\\ #4 & #5 & #6\\\\ #7 & #8 & #9 \end{bmatrix} } \vecthreethree{-1}{-2}{-1}{0}{0}{0}{1}{2}{1}$$`
- *
- * @param src input image.
- * @param dst output image of the same size and the same number of channels as src .
- * @param ddepth output image depth, see REF: filter_depths "combinations"; in the case of
- * 8-bit input images it will result in truncated derivatives.
- * @param dx order of the derivative x.
- * @param dy order of the derivative y.
- * applied (see #getDerivKernels for details).
- * @see `+Scharr:dst:ddepth:dx:dy:scale:delta:borderType:`, `+Laplacian:dst:ddepth:ksize:scale:delta:borderType:`, `+sepFilter2D:dst:ddepth:kernelX:kernelY:anchor:delta:borderType:`, `+filter2D:dst:ddepth:kernel:anchor:delta:borderType:`, `+GaussianBlur:dst:ksize:sigmaX:sigmaY:borderType:`, `cartToPolar`
- */
- + (void)Sobel:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth dx:(int)dx dy:(int)dy NS_SWIFT_NAME(Sobel(src:dst:ddepth:dx:dy:));
- //
- // void cv::spatialGradient(Mat src, Mat& dx, Mat& dy, int ksize = 3, BorderTypes borderType = BORDER_DEFAULT)
- //
- /**
- * Calculates the first order image derivative in both x and y using a Sobel operator
- *
- * Equivalent to calling:
- *
- *
- * Sobel( src, dx, CV_16SC1, 1, 0, 3 );
- * Sobel( src, dy, CV_16SC1, 0, 1, 3 );
- *
- *
- * @param src input image.
- * @param dx output image with first-order derivative in x.
- * @param dy output image with first-order derivative in y.
- * @param ksize size of Sobel kernel. It must be 3.
- * @param borderType pixel extrapolation method, see #BorderTypes.
- * Only #BORDER_DEFAULT=#BORDER_REFLECT_101 and #BORDER_REPLICATE are supported.
- *
- * @see `+Sobel:dst:ddepth:dx:dy:ksize:scale:delta:borderType:`
- */
- + (void)spatialGradient:(Mat*)src dx:(Mat*)dx dy:(Mat*)dy ksize:(int)ksize borderType:(BorderTypes)borderType NS_SWIFT_NAME(spatialGradient(src:dx:dy:ksize:borderType:));
- /**
- * Calculates the first order image derivative in both x and y using a Sobel operator
- *
- * Equivalent to calling:
- *
- *
- * Sobel( src, dx, CV_16SC1, 1, 0, 3 );
- * Sobel( src, dy, CV_16SC1, 0, 1, 3 );
- *
- *
- * @param src input image.
- * @param dx output image with first-order derivative in x.
- * @param dy output image with first-order derivative in y.
- * @param ksize size of Sobel kernel. It must be 3.
- * Only #BORDER_DEFAULT=#BORDER_REFLECT_101 and #BORDER_REPLICATE are supported.
- *
- * @see `+Sobel:dst:ddepth:dx:dy:ksize:scale:delta:borderType:`
- */
- + (void)spatialGradient:(Mat*)src dx:(Mat*)dx dy:(Mat*)dy ksize:(int)ksize NS_SWIFT_NAME(spatialGradient(src:dx:dy:ksize:));
- /**
- * Calculates the first order image derivative in both x and y using a Sobel operator
- *
- * Equivalent to calling:
- *
- *
- * Sobel( src, dx, CV_16SC1, 1, 0, 3 );
- * Sobel( src, dy, CV_16SC1, 0, 1, 3 );
- *
- *
- * @param src input image.
- * @param dx output image with first-order derivative in x.
- * @param dy output image with first-order derivative in y.
- * Only #BORDER_DEFAULT=#BORDER_REFLECT_101 and #BORDER_REPLICATE are supported.
- *
- * @see `+Sobel:dst:ddepth:dx:dy:ksize:scale:delta:borderType:`
- */
- + (void)spatialGradient:(Mat*)src dx:(Mat*)dx dy:(Mat*)dy NS_SWIFT_NAME(spatialGradient(src:dx:dy:));
- //
- // void cv::Scharr(Mat src, Mat& dst, int ddepth, int dx, int dy, double scale = 1, double delta = 0, BorderTypes borderType = BORDER_DEFAULT)
- //
- /**
- * Calculates the first x- or y- image derivative using Scharr operator.
- *
- * The function computes the first x- or y- spatial image derivative using the Scharr operator. The
- * call
- *
- * `$$\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}$$`
- *
- * is equivalent to
- *
- * `$$\texttt{Sobel(src, dst, ddepth, dx, dy, FILTER\_SCHARR, scale, delta, borderType)} .$$`
- *
- * @param src input image.
- * @param dst output image of the same size and the same number of channels as src.
- * @param ddepth output image depth, see REF: filter_depths "combinations"
- * @param dx order of the derivative x.
- * @param dy order of the derivative y.
- * @param scale optional scale factor for the computed derivative values; by default, no scaling is
- * applied (see #getDerivKernels for details).
- * @param delta optional delta value that is added to the results prior to storing them in dst.
- * @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
- * @see `cartToPolar`
- */
- + (void)Scharr:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth dx:(int)dx dy:(int)dy scale:(double)scale delta:(double)delta borderType:(BorderTypes)borderType NS_SWIFT_NAME(Scharr(src:dst:ddepth:dx:dy:scale:delta:borderType:));
- /**
- * Calculates the first x- or y- image derivative using Scharr operator.
- *
- * The function computes the first x- or y- spatial image derivative using the Scharr operator. The
- * call
- *
- * `$$\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}$$`
- *
- * is equivalent to
- *
- * `$$\texttt{Sobel(src, dst, ddepth, dx, dy, FILTER\_SCHARR, scale, delta, borderType)} .$$`
- *
- * @param src input image.
- * @param dst output image of the same size and the same number of channels as src.
- * @param ddepth output image depth, see REF: filter_depths "combinations"
- * @param dx order of the derivative x.
- * @param dy order of the derivative y.
- * @param scale optional scale factor for the computed derivative values; by default, no scaling is
- * applied (see #getDerivKernels for details).
- * @param delta optional delta value that is added to the results prior to storing them in dst.
- * @see `cartToPolar`
- */
- + (void)Scharr:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth dx:(int)dx dy:(int)dy scale:(double)scale delta:(double)delta NS_SWIFT_NAME(Scharr(src:dst:ddepth:dx:dy:scale:delta:));
- /**
- * Calculates the first x- or y- image derivative using Scharr operator.
- *
- * The function computes the first x- or y- spatial image derivative using the Scharr operator. The
- * call
- *
- * `$$\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}$$`
- *
- * is equivalent to
- *
- * `$$\texttt{Sobel(src, dst, ddepth, dx, dy, FILTER\_SCHARR, scale, delta, borderType)} .$$`
- *
- * @param src input image.
- * @param dst output image of the same size and the same number of channels as src.
- * @param ddepth output image depth, see REF: filter_depths "combinations"
- * @param dx order of the derivative x.
- * @param dy order of the derivative y.
- * @param scale optional scale factor for the computed derivative values; by default, no scaling is
- * applied (see #getDerivKernels for details).
- * @see `cartToPolar`
- */
- + (void)Scharr:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth dx:(int)dx dy:(int)dy scale:(double)scale NS_SWIFT_NAME(Scharr(src:dst:ddepth:dx:dy:scale:));
- /**
- * Calculates the first x- or y- image derivative using Scharr operator.
- *
- * The function computes the first x- or y- spatial image derivative using the Scharr operator. The
- * call
- *
- * `$$\texttt{Scharr(src, dst, ddepth, dx, dy, scale, delta, borderType)}$$`
- *
- * is equivalent to
- *
- * `$$\texttt{Sobel(src, dst, ddepth, dx, dy, FILTER\_SCHARR, scale, delta, borderType)} .$$`
- *
- * @param src input image.
- * @param dst output image of the same size and the same number of channels as src.
- * @param ddepth output image depth, see REF: filter_depths "combinations"
- * @param dx order of the derivative x.
- * @param dy order of the derivative y.
- * applied (see #getDerivKernels for details).
- * @see `cartToPolar`
- */
- + (void)Scharr:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth dx:(int)dx dy:(int)dy NS_SWIFT_NAME(Scharr(src:dst:ddepth:dx:dy:));
- //
- // void cv::Laplacian(Mat src, Mat& dst, int ddepth, int ksize = 1, double scale = 1, double delta = 0, BorderTypes borderType = BORDER_DEFAULT)
- //
- /**
- * Calculates the Laplacian of an image.
- *
- * The function calculates the Laplacian of the source image by adding up the second x and y
- * derivatives calculated using the Sobel operator:
- *
- * `$$\texttt{dst} = \Delta \texttt{src} = \frac{\partial^2 \texttt{src}}{\partial x^2} + \frac{\partial^2 \texttt{src}}{\partial y^2}$$`
- *
- * This is done when `ksize > 1`. When `ksize == 1`, the Laplacian is computed by filtering the image
- * with the following `$$3 \times 3$$` aperture:
- *
- * `$$\newcommand{\vecthreethree}[9]{ \begin{bmatrix} #1 & #2 & #3\\\\ #4 & #5 & #6\\\\ #7 & #8 & #9 \end{bmatrix} } \vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}$$`
- *
- * @param src Source image.
- * @param dst Destination image of the same size and the same number of channels as src .
- * @param ddepth Desired depth of the destination image.
- * @param ksize Aperture size used to compute the second-derivative filters. See #getDerivKernels for
- * details. The size must be positive and odd.
- * @param scale Optional scale factor for the computed Laplacian values. By default, no scaling is
- * applied. See #getDerivKernels for details.
- * @param delta Optional delta value that is added to the results prior to storing them in dst .
- * @param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
- * @see `+Sobel:dst:ddepth:dx:dy:ksize:scale:delta:borderType:`, `+Scharr:dst:ddepth:dx:dy:scale:delta:borderType:`
- */
- + (void)Laplacian:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth ksize:(int)ksize scale:(double)scale delta:(double)delta borderType:(BorderTypes)borderType NS_SWIFT_NAME(Laplacian(src:dst:ddepth:ksize:scale:delta:borderType:));
- /**
- * Calculates the Laplacian of an image.
- *
- * The function calculates the Laplacian of the source image by adding up the second x and y
- * derivatives calculated using the Sobel operator:
- *
- * `$$\texttt{dst} = \Delta \texttt{src} = \frac{\partial^2 \texttt{src}}{\partial x^2} + \frac{\partial^2 \texttt{src}}{\partial y^2}$$`
- *
- * This is done when `ksize > 1`. When `ksize == 1`, the Laplacian is computed by filtering the image
- * with the following `$$3 \times 3$$` aperture:
- *
- * `$$\newcommand{\vecthreethree}[9]{ \begin{bmatrix} #1 & #2 & #3\\\\ #4 & #5 & #6\\\\ #7 & #8 & #9 \end{bmatrix} } \vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}$$`
- *
- * @param src Source image.
- * @param dst Destination image of the same size and the same number of channels as src .
- * @param ddepth Desired depth of the destination image.
- * @param ksize Aperture size used to compute the second-derivative filters. See #getDerivKernels for
- * details. The size must be positive and odd.
- * @param scale Optional scale factor for the computed Laplacian values. By default, no scaling is
- * applied. See #getDerivKernels for details.
- * @param delta Optional delta value that is added to the results prior to storing them in dst .
- * @see `+Sobel:dst:ddepth:dx:dy:ksize:scale:delta:borderType:`, `+Scharr:dst:ddepth:dx:dy:scale:delta:borderType:`
- */
- + (void)Laplacian:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth ksize:(int)ksize scale:(double)scale delta:(double)delta NS_SWIFT_NAME(Laplacian(src:dst:ddepth:ksize:scale:delta:));
- /**
- * Calculates the Laplacian of an image.
- *
- * The function calculates the Laplacian of the source image by adding up the second x and y
- * derivatives calculated using the Sobel operator:
- *
- * `$$\texttt{dst} = \Delta \texttt{src} = \frac{\partial^2 \texttt{src}}{\partial x^2} + \frac{\partial^2 \texttt{src}}{\partial y^2}$$`
- *
- * This is done when `ksize > 1`. When `ksize == 1`, the Laplacian is computed by filtering the image
- * with the following `$$3 \times 3$$` aperture:
- *
- * `$$\newcommand{\vecthreethree}[9]{ \begin{bmatrix} #1 & #2 & #3\\\\ #4 & #5 & #6\\\\ #7 & #8 & #9 \end{bmatrix} } \vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}$$`
- *
- * @param src Source image.
- * @param dst Destination image of the same size and the same number of channels as src .
- * @param ddepth Desired depth of the destination image.
- * @param ksize Aperture size used to compute the second-derivative filters. See #getDerivKernels for
- * details. The size must be positive and odd.
- * @param scale Optional scale factor for the computed Laplacian values. By default, no scaling is
- * applied. See #getDerivKernels for details.
- * @see `+Sobel:dst:ddepth:dx:dy:ksize:scale:delta:borderType:`, `+Scharr:dst:ddepth:dx:dy:scale:delta:borderType:`
- */
- + (void)Laplacian:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth ksize:(int)ksize scale:(double)scale NS_SWIFT_NAME(Laplacian(src:dst:ddepth:ksize:scale:));
- /**
- * Calculates the Laplacian of an image.
- *
- * The function calculates the Laplacian of the source image by adding up the second x and y
- * derivatives calculated using the Sobel operator:
- *
- * `$$\texttt{dst} = \Delta \texttt{src} = \frac{\partial^2 \texttt{src}}{\partial x^2} + \frac{\partial^2 \texttt{src}}{\partial y^2}$$`
- *
- * This is done when `ksize > 1`. When `ksize == 1`, the Laplacian is computed by filtering the image
- * with the following `$$3 \times 3$$` aperture:
- *
- * `$$\newcommand{\vecthreethree}[9]{ \begin{bmatrix} #1 & #2 & #3\\\\ #4 & #5 & #6\\\\ #7 & #8 & #9 \end{bmatrix} } \vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}$$`
- *
- * @param src Source image.
- * @param dst Destination image of the same size and the same number of channels as src .
- * @param ddepth Desired depth of the destination image.
- * @param ksize Aperture size used to compute the second-derivative filters. See #getDerivKernels for
- * details. The size must be positive and odd.
- * applied. See #getDerivKernels for details.
- * @see `+Sobel:dst:ddepth:dx:dy:ksize:scale:delta:borderType:`, `+Scharr:dst:ddepth:dx:dy:scale:delta:borderType:`
- */
- + (void)Laplacian:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth ksize:(int)ksize NS_SWIFT_NAME(Laplacian(src:dst:ddepth:ksize:));
- /**
- * Calculates the Laplacian of an image.
- *
- * The function calculates the Laplacian of the source image by adding up the second x and y
- * derivatives calculated using the Sobel operator:
- *
- * `$$\texttt{dst} = \Delta \texttt{src} = \frac{\partial^2 \texttt{src}}{\partial x^2} + \frac{\partial^2 \texttt{src}}{\partial y^2}$$`
- *
- * This is done when `ksize > 1`. When `ksize == 1`, the Laplacian is computed by filtering the image
- * with the following `$$3 \times 3$$` aperture:
- *
- * `$$\newcommand{\vecthreethree}[9]{ \begin{bmatrix} #1 & #2 & #3\\\\ #4 & #5 & #6\\\\ #7 & #8 & #9 \end{bmatrix} } \vecthreethree {0}{1}{0}{1}{-4}{1}{0}{1}{0}$$`
- *
- * @param src Source image.
- * @param dst Destination image of the same size and the same number of channels as src .
- * @param ddepth Desired depth of the destination image.
- * details. The size must be positive and odd.
- * applied. See #getDerivKernels for details.
- * @see `+Sobel:dst:ddepth:dx:dy:ksize:scale:delta:borderType:`, `+Scharr:dst:ddepth:dx:dy:scale:delta:borderType:`
- */
- + (void)Laplacian:(Mat*)src dst:(Mat*)dst ddepth:(int)ddepth NS_SWIFT_NAME(Laplacian(src:dst:ddepth:));
- //
- // void cv::Canny(Mat image, Mat& edges, double threshold1, double threshold2, int apertureSize = 3, bool L2gradient = false)
- //
- /**
- * Finds edges in an image using the Canny algorithm CITE: Canny86 .
- *
- * The function finds edges in the input image and marks them in the output map edges using the
- * Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The
- * largest value is used to find initial segments of strong edges. See
- * <http://en.wikipedia.org/wiki/Canny_edge_detector>
- *
- * @param image 8-bit input image.
- * @param edges output edge map; single channels 8-bit image, which has the same size as image .
- * @param threshold1 first threshold for the hysteresis procedure.
- * @param threshold2 second threshold for the hysteresis procedure.
- * @param apertureSize aperture size for the Sobel operator.
- * @param L2gradient a flag, indicating whether a more accurate `$$L_2$$` norm
- * `$$=\sqrt{(dI/dx)^2 + (dI/dy)^2}$$` should be used to calculate the image gradient magnitude (
- * L2gradient=true ), or whether the default `$$L_1$$` norm `$$=|dI/dx|+|dI/dy|$$` is enough (
- * L2gradient=false ).
- */
- + (void)Canny:(Mat*)image edges:(Mat*)edges threshold1:(double)threshold1 threshold2:(double)threshold2 apertureSize:(int)apertureSize L2gradient:(BOOL)L2gradient NS_SWIFT_NAME(Canny(image:edges:threshold1:threshold2:apertureSize:L2gradient:));
- /**
- * Finds edges in an image using the Canny algorithm CITE: Canny86 .
- *
- * The function finds edges in the input image and marks them in the output map edges using the
- * Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The
- * largest value is used to find initial segments of strong edges. See
- * <http://en.wikipedia.org/wiki/Canny_edge_detector>
- *
- * @param image 8-bit input image.
- * @param edges output edge map; single channels 8-bit image, which has the same size as image .
- * @param threshold1 first threshold for the hysteresis procedure.
- * @param threshold2 second threshold for the hysteresis procedure.
- * @param apertureSize aperture size for the Sobel operator.
- * `$$=\sqrt{(dI/dx)^2 + (dI/dy)^2}$$` should be used to calculate the image gradient magnitude (
- * L2gradient=true ), or whether the default `$$L_1$$` norm `$$=|dI/dx|+|dI/dy|$$` is enough (
- * L2gradient=false ).
- */
- + (void)Canny:(Mat*)image edges:(Mat*)edges threshold1:(double)threshold1 threshold2:(double)threshold2 apertureSize:(int)apertureSize NS_SWIFT_NAME(Canny(image:edges:threshold1:threshold2:apertureSize:));
- /**
- * Finds edges in an image using the Canny algorithm CITE: Canny86 .
- *
- * The function finds edges in the input image and marks them in the output map edges using the
- * Canny algorithm. The smallest value between threshold1 and threshold2 is used for edge linking. The
- * largest value is used to find initial segments of strong edges. See
- * <http://en.wikipedia.org/wiki/Canny_edge_detector>
- *
- * @param image 8-bit input image.
- * @param edges output edge map; single channels 8-bit image, which has the same size as image .
- * @param threshold1 first threshold for the hysteresis procedure.
- * @param threshold2 second threshold for the hysteresis procedure.
- * `$$=\sqrt{(dI/dx)^2 + (dI/dy)^2}$$` should be used to calculate the image gradient magnitude (
- * L2gradient=true ), or whether the default `$$L_1$$` norm `$$=|dI/dx|+|dI/dy|$$` is enough (
- * L2gradient=false ).
- */
- + (void)Canny:(Mat*)image edges:(Mat*)edges threshold1:(double)threshold1 threshold2:(double)threshold2 NS_SWIFT_NAME(Canny(image:edges:threshold1:threshold2:));
- //
- // void cv::Canny(Mat dx, Mat dy, Mat& edges, double threshold1, double threshold2, bool L2gradient = false)
- //
- /**
- * \overload
- *
- * Finds edges in an image using the Canny algorithm with custom image gradient.
- *
- * @param dx 16-bit x derivative of input image (CV_16SC1 or CV_16SC3).
- * @param dy 16-bit y derivative of input image (same type as dx).
- * @param edges output edge map; single channels 8-bit image, which has the same size as image .
- * @param threshold1 first threshold for the hysteresis procedure.
- * @param threshold2 second threshold for the hysteresis procedure.
- * @param L2gradient a flag, indicating whether a more accurate `$$L_2$$` norm
- * `$$=\sqrt{(dI/dx)^2 + (dI/dy)^2}$$` should be used to calculate the image gradient magnitude (
- * L2gradient=true ), or whether the default `$$L_1$$` norm `$$=|dI/dx|+|dI/dy|$$` is enough (
- * L2gradient=false ).
- */
- + (void)Canny:(Mat*)dx dy:(Mat*)dy edges:(Mat*)edges threshold1:(double)threshold1 threshold2:(double)threshold2 L2gradient:(BOOL)L2gradient NS_SWIFT_NAME(Canny(dx:dy:edges:threshold1:threshold2:L2gradient:));
- /**
- * \overload
- *
- * Finds edges in an image using the Canny algorithm with custom image gradient.
- *
- * @param dx 16-bit x derivative of input image (CV_16SC1 or CV_16SC3).
- * @param dy 16-bit y derivative of input image (same type as dx).
- * @param edges output edge map; single channels 8-bit image, which has the same size as image .
- * @param threshold1 first threshold for the hysteresis procedure.
- * @param threshold2 second threshold for the hysteresis procedure.
- * `$$=\sqrt{(dI/dx)^2 + (dI/dy)^2}$$` should be used to calculate the image gradient magnitude (
- * L2gradient=true ), or whether the default `$$L_1$$` norm `$$=|dI/dx|+|dI/dy|$$` is enough (
- * L2gradient=false ).
- */
- + (void)Canny:(Mat*)dx dy:(Mat*)dy edges:(Mat*)edges threshold1:(double)threshold1 threshold2:(double)threshold2 NS_SWIFT_NAME(Canny(dx:dy:edges:threshold1:threshold2:));
- //
- // void cv::cornerMinEigenVal(Mat src, Mat& dst, int blockSize, int ksize = 3, BorderTypes borderType = BORDER_DEFAULT)
- //
- /**
- * Calculates the minimal eigenvalue of gradient matrices for corner detection.
- *
- * The function is similar to cornerEigenValsAndVecs but it calculates and stores only the minimal
- * eigenvalue of the covariance matrix of derivatives, that is, `$$\min(\lambda_1, \lambda_2)$$` in terms
- * of the formulae in the cornerEigenValsAndVecs description.
- *
- * @param src Input single-channel 8-bit or floating-point image.
- * @param dst Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as
- * src .
- * @param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ).
- * @param ksize Aperture parameter for the Sobel operator.
- * @param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
- */
- + (void)cornerMinEigenVal:(Mat*)src dst:(Mat*)dst blockSize:(int)blockSize ksize:(int)ksize borderType:(BorderTypes)borderType NS_SWIFT_NAME(cornerMinEigenVal(src:dst:blockSize:ksize:borderType:));
- /**
- * Calculates the minimal eigenvalue of gradient matrices for corner detection.
- *
- * The function is similar to cornerEigenValsAndVecs but it calculates and stores only the minimal
- * eigenvalue of the covariance matrix of derivatives, that is, `$$\min(\lambda_1, \lambda_2)$$` in terms
- * of the formulae in the cornerEigenValsAndVecs description.
- *
- * @param src Input single-channel 8-bit or floating-point image.
- * @param dst Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as
- * src .
- * @param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ).
- * @param ksize Aperture parameter for the Sobel operator.
- */
- + (void)cornerMinEigenVal:(Mat*)src dst:(Mat*)dst blockSize:(int)blockSize ksize:(int)ksize NS_SWIFT_NAME(cornerMinEigenVal(src:dst:blockSize:ksize:));
- /**
- * Calculates the minimal eigenvalue of gradient matrices for corner detection.
- *
- * The function is similar to cornerEigenValsAndVecs but it calculates and stores only the minimal
- * eigenvalue of the covariance matrix of derivatives, that is, `$$\min(\lambda_1, \lambda_2)$$` in terms
- * of the formulae in the cornerEigenValsAndVecs description.
- *
- * @param src Input single-channel 8-bit or floating-point image.
- * @param dst Image to store the minimal eigenvalues. It has the type CV_32FC1 and the same size as
- * src .
- * @param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ).
- */
- + (void)cornerMinEigenVal:(Mat*)src dst:(Mat*)dst blockSize:(int)blockSize NS_SWIFT_NAME(cornerMinEigenVal(src:dst:blockSize:));
- //
- // void cv::cornerHarris(Mat src, Mat& dst, int blockSize, int ksize, double k, BorderTypes borderType = BORDER_DEFAULT)
- //
- /**
- * Harris corner detector.
- *
- * The function runs the Harris corner detector on the image. Similarly to cornerMinEigenVal and
- * cornerEigenValsAndVecs , for each pixel `$$(x, y)$$` it calculates a `$$2\times2$$` gradient covariance
- * matrix `$$M^{(x,y)}$$` over a `$$\texttt{blockSize} \times \texttt{blockSize}$$` neighborhood. Then, it
- * computes the following characteristic:
- *
- * `$$\texttt{dst} (x,y) = \mathrm{det} M^{(x,y)} - k \cdot \left ( \mathrm{tr} M^{(x,y)} \right )^2$$`
- *
- * Corners in the image can be found as the local maxima of this response map.
- *
- * @param src Input single-channel 8-bit or floating-point image.
- * @param dst Image to store the Harris detector responses. It has the type CV_32FC1 and the same
- * size as src .
- * @param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ).
- * @param ksize Aperture parameter for the Sobel operator.
- * @param k Harris detector free parameter. See the formula above.
- * @param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
- */
- + (void)cornerHarris:(Mat*)src dst:(Mat*)dst blockSize:(int)blockSize ksize:(int)ksize k:(double)k borderType:(BorderTypes)borderType NS_SWIFT_NAME(cornerHarris(src:dst:blockSize:ksize:k:borderType:));
- /**
- * Harris corner detector.
- *
- * The function runs the Harris corner detector on the image. Similarly to cornerMinEigenVal and
- * cornerEigenValsAndVecs , for each pixel `$$(x, y)$$` it calculates a `$$2\times2$$` gradient covariance
- * matrix `$$M^{(x,y)}$$` over a `$$\texttt{blockSize} \times \texttt{blockSize}$$` neighborhood. Then, it
- * computes the following characteristic:
- *
- * `$$\texttt{dst} (x,y) = \mathrm{det} M^{(x,y)} - k \cdot \left ( \mathrm{tr} M^{(x,y)} \right )^2$$`
- *
- * Corners in the image can be found as the local maxima of this response map.
- *
- * @param src Input single-channel 8-bit or floating-point image.
- * @param dst Image to store the Harris detector responses. It has the type CV_32FC1 and the same
- * size as src .
- * @param blockSize Neighborhood size (see the details on #cornerEigenValsAndVecs ).
- * @param ksize Aperture parameter for the Sobel operator.
- * @param k Harris detector free parameter. See the formula above.
- */
- + (void)cornerHarris:(Mat*)src dst:(Mat*)dst blockSize:(int)blockSize ksize:(int)ksize k:(double)k NS_SWIFT_NAME(cornerHarris(src:dst:blockSize:ksize:k:));
- //
- // void cv::cornerEigenValsAndVecs(Mat src, Mat& dst, int blockSize, int ksize, BorderTypes borderType = BORDER_DEFAULT)
- //
- /**
- * Calculates eigenvalues and eigenvectors of image blocks for corner detection.
- *
- * For every pixel `$$p$$` , the function cornerEigenValsAndVecs considers a blockSize `$$\times$$` blockSize
- * neighborhood `$$S(p)$$` . It calculates the covariation matrix of derivatives over the neighborhood as:
- *
- * `$$M = \begin{bmatrix} \sum _{S(p)}(dI/dx)^2 & \sum _{S(p)}dI/dx dI/dy \\ \sum _{S(p)}dI/dx dI/dy & \sum _{S(p)}(dI/dy)^2 \end{bmatrix}$$`
- *
- * where the derivatives are computed using the Sobel operator.
- *
- * After that, it finds eigenvectors and eigenvalues of `$$M$$` and stores them in the destination image as
- * `$$(\lambda_1, \lambda_2, x_1, y_1, x_2, y_2)$$` where
- *
- * - `$$\lambda_1, \lambda_2$$` are the non-sorted eigenvalues of `$$M$$`
- * - `$$x_1, y_1$$` are the eigenvectors corresponding to `$$\lambda_1$$`
- * - `$$x_2, y_2$$` are the eigenvectors corresponding to `$$\lambda_2$$`
- *
- * The output of the function can be used for robust edge or corner detection.
- *
- * @param src Input single-channel 8-bit or floating-point image.
- * @param dst Image to store the results. It has the same size as src and the type CV_32FC(6) .
- * @param blockSize Neighborhood size (see details below).
- * @param ksize Aperture parameter for the Sobel operator.
- * @param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
- *
- * @see `+cornerMinEigenVal:dst:blockSize:ksize:borderType:`, `+cornerHarris:dst:blockSize:ksize:k:borderType:`, `+preCornerDetect:dst:ksize:borderType:`
- */
- + (void)cornerEigenValsAndVecs:(Mat*)src dst:(Mat*)dst blockSize:(int)blockSize ksize:(int)ksize borderType:(BorderTypes)borderType NS_SWIFT_NAME(cornerEigenValsAndVecs(src:dst:blockSize:ksize:borderType:));
- /**
- * Calculates eigenvalues and eigenvectors of image blocks for corner detection.
- *
- * For every pixel `$$p$$` , the function cornerEigenValsAndVecs considers a blockSize `$$\times$$` blockSize
- * neighborhood `$$S(p)$$` . It calculates the covariation matrix of derivatives over the neighborhood as:
- *
- * `$$M = \begin{bmatrix} \sum _{S(p)}(dI/dx)^2 & \sum _{S(p)}dI/dx dI/dy \\ \sum _{S(p)}dI/dx dI/dy & \sum _{S(p)}(dI/dy)^2 \end{bmatrix}$$`
- *
- * where the derivatives are computed using the Sobel operator.
- *
- * After that, it finds eigenvectors and eigenvalues of `$$M$$` and stores them in the destination image as
- * `$$(\lambda_1, \lambda_2, x_1, y_1, x_2, y_2)$$` where
- *
- * - `$$\lambda_1, \lambda_2$$` are the non-sorted eigenvalues of `$$M$$`
- * - `$$x_1, y_1$$` are the eigenvectors corresponding to `$$\lambda_1$$`
- * - `$$x_2, y_2$$` are the eigenvectors corresponding to `$$\lambda_2$$`
- *
- * The output of the function can be used for robust edge or corner detection.
- *
- * @param src Input single-channel 8-bit or floating-point image.
- * @param dst Image to store the results. It has the same size as src and the type CV_32FC(6) .
- * @param blockSize Neighborhood size (see details below).
- * @param ksize Aperture parameter for the Sobel operator.
- *
- * @see `+cornerMinEigenVal:dst:blockSize:ksize:borderType:`, `+cornerHarris:dst:blockSize:ksize:k:borderType:`, `+preCornerDetect:dst:ksize:borderType:`
- */
- + (void)cornerEigenValsAndVecs:(Mat*)src dst:(Mat*)dst blockSize:(int)blockSize ksize:(int)ksize NS_SWIFT_NAME(cornerEigenValsAndVecs(src:dst:blockSize:ksize:));
- //
- // void cv::preCornerDetect(Mat src, Mat& dst, int ksize, BorderTypes borderType = BORDER_DEFAULT)
- //
- /**
- * Calculates a feature map for corner detection.
- *
- * The function calculates the complex spatial derivative-based function of the source image
- *
- * `$$\texttt{dst} = (D_x \texttt{src} )^2 \cdot D_{yy} \texttt{src} + (D_y \texttt{src} )^2 \cdot D_{xx} \texttt{src} - 2 D_x \texttt{src} \cdot D_y \texttt{src} \cdot D_{xy} \texttt{src}$$`
- *
- * where `$$D_x$$`,`$$D_y$$` are the first image derivatives, `$$D_{xx}$$`,`$$D_{yy}$$` are the second image
- * derivatives, and `$$D_{xy}$$` is the mixed derivative.
- *
- * The corners can be found as local maximums of the functions, as shown below:
- *
- * Mat corners, dilated_corners;
- * preCornerDetect(image, corners, 3);
- * // dilation with 3x3 rectangular structuring element
- * dilate(corners, dilated_corners, Mat(), 1);
- * Mat corner_mask = corners == dilated_corners;
- *
- *
- * @param src Source single-channel 8-bit of floating-point image.
- * @param dst Output image that has the type CV_32F and the same size as src .
- * @param ksize %Aperture size of the Sobel .
- * @param borderType Pixel extrapolation method. See #BorderTypes. #BORDER_WRAP is not supported.
- */
- + (void)preCornerDetect:(Mat*)src dst:(Mat*)dst ksize:(int)ksize borderType:(BorderTypes)borderType NS_SWIFT_NAME(preCornerDetect(src:dst:ksize:borderType:));
- /**
- * Calculates a feature map for corner detection.
- *
- * The function calculates the complex spatial derivative-based function of the source image
- *
- * `$$\texttt{dst} = (D_x \texttt{src} )^2 \cdot D_{yy} \texttt{src} + (D_y \texttt{src} )^2 \cdot D_{xx} \texttt{src} - 2 D_x \texttt{src} \cdot D_y \texttt{src} \cdot D_{xy} \texttt{src}$$`
- *
- * where `$$D_x$$`,`$$D_y$$` are the first image derivatives, `$$D_{xx}$$`,`$$D_{yy}$$` are the second image
- * derivatives, and `$$D_{xy}$$` is the mixed derivative.
- *
- * The corners can be found as local maximums of the functions, as shown below:
- *
- * Mat corners, dilated_corners;
- * preCornerDetect(image, corners, 3);
- * // dilation with 3x3 rectangular structuring element
- * dilate(corners, dilated_corners, Mat(), 1);
- * Mat corner_mask = corners == dilated_corners;
- *
- *
- * @param src Source single-channel 8-bit of floating-point image.
- * @param dst Output image that has the type CV_32F and the same size as src .
- * @param ksize %Aperture size of the Sobel .
- */
- + (void)preCornerDetect:(Mat*)src dst:(Mat*)dst ksize:(int)ksize NS_SWIFT_NAME(preCornerDetect(src:dst:ksize:));
- //
- // void cv::cornerSubPix(Mat image, Mat& corners, Size winSize, Size zeroZone, TermCriteria criteria)
- //
- /**
- * Refines the corner locations.
- *
- * The function iterates to find the sub-pixel accurate location of corners or radial saddle
- * points as described in CITE: forstner1987fast, and as shown on the figure below.
- *
- * ![image](pics/cornersubpix.png)
- *
- * Sub-pixel accurate corner locator is based on the observation that every vector from the center `$$q$$`
- * to a point `$$p$$` located within a neighborhood of `$$q$$` is orthogonal to the image gradient at `$$p$$`
- * subject to image and measurement noise. Consider the expression:
- *
- * `$$\epsilon _i = {DI_{p_i}}^T \cdot (q - p_i)$$`
- *
- * where `$${DI_{p_i}}$$` is an image gradient at one of the points `$$p_i$$` in a neighborhood of `$$q$$` . The
- * value of `$$q$$` is to be found so that `$$\epsilon_i$$` is minimized. A system of equations may be set up
- * with `$$\epsilon_i$$` set to zero:
- *
- * `$$\sum _i(DI_{p_i} \cdot {DI_{p_i}}^T) \cdot q - \sum _i(DI_{p_i} \cdot {DI_{p_i}}^T \cdot p_i)$$`
- *
- * where the gradients are summed within a neighborhood ("search window") of `$$q$$` . Calling the first
- * gradient term `$$G$$` and the second gradient term `$$b$$` gives:
- *
- * `$$q = G^{-1} \cdot b$$`
- *
- * The algorithm sets the center of the neighborhood window at this new center `$$q$$` and then iterates
- * until the center stays within a set threshold.
- *
- * @param image Input single-channel, 8-bit or float image.
- * @param corners Initial coordinates of the input corners and refined coordinates provided for
- * output.
- * @param winSize Half of the side length of the search window. For example, if winSize=Size(5,5) ,
- * then a `$$(5*2+1) \times (5*2+1) = 11 \times 11$$` search window is used.
- * @param zeroZone Half of the size of the dead region in the middle of the search zone over which
- * the summation in the formula below is not done. It is used sometimes to avoid possible
- * singularities of the autocorrelation matrix. The value of (-1,-1) indicates that there is no such
- * a size.
- * @param criteria Criteria for termination of the iterative process of corner refinement. That is,
- * the process of corner position refinement stops either after criteria.maxCount iterations or when
- * the corner position moves by less than criteria.epsilon on some iteration.
- */
- + (void)cornerSubPix:(Mat*)image corners:(Mat*)corners winSize:(Size2i*)winSize zeroZone:(Size2i*)zeroZone criteria:(TermCriteria*)criteria NS_SWIFT_NAME(cornerSubPix(image:corners:winSize:zeroZone:criteria:));
- //
- // void cv::goodFeaturesToTrack(Mat image, vector_Point& corners, int maxCorners, double qualityLevel, double minDistance, Mat mask = Mat(), int blockSize = 3, bool useHarrisDetector = false, double k = 0.04)
- //
- /**
- * Determines strong corners on an image.
- *
- * The function finds the most prominent corners in the image or in the specified image region, as
- * described in CITE: Shi94
- *
- * - Function calculates the corner quality measure at every source image pixel using the
- * #cornerMinEigenVal or #cornerHarris .
- * - Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are
- * retained).
- * - The corners with the minimal eigenvalue less than
- * `$$\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)$$` are rejected.
- * - The remaining corners are sorted by the quality measure in the descending order.
- * - Function throws away each corner for which there is a stronger corner at a distance less than
- * maxDistance.
- *
- * The function can be used to initialize a point-based tracker of an object.
- *
- * NOTE: If the function is called with different values A and B of the parameter qualityLevel , and
- * A \> B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector
- * with qualityLevel=B .
- *
- * @param image Input 8-bit or floating-point 32-bit, single-channel image.
- * @param corners Output vector of detected corners.
- * @param maxCorners Maximum number of corners to return. If there are more corners than are found,
- * the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
- * and all detected corners are returned.
- * @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
- * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
- * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
- * quality measure less than the product are rejected. For example, if the best corner has the
- * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
- * less than 15 are rejected.
- * @param minDistance Minimum possible Euclidean distance between the returned corners.
- * @param mask Optional region of interest. If the image is not empty (it needs to have the type
- * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
- * @param blockSize Size of an average block for computing a derivative covariation matrix over each
- * pixel neighborhood. See cornerEigenValsAndVecs .
- * @param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris)
- * or #cornerMinEigenVal.
- * @param k Free parameter of the Harris detector.
- *
- * @see `+cornerMinEigenVal:dst:blockSize:ksize:borderType:`, `+cornerHarris:dst:blockSize:ksize:k:borderType:`, `calcOpticalFlowPyrLK`, `estimateRigidTransform`, ``
- */
- + (void)goodFeaturesToTrack:(Mat*)image corners:(NSMutableArray<Point2i*>*)corners maxCorners:(int)maxCorners qualityLevel:(double)qualityLevel minDistance:(double)minDistance mask:(Mat*)mask blockSize:(int)blockSize useHarrisDetector:(BOOL)useHarrisDetector k:(double)k NS_SWIFT_NAME(goodFeaturesToTrack(image:corners:maxCorners:qualityLevel:minDistance:mask:blockSize:useHarrisDetector:k:));
- /**
- * Determines strong corners on an image.
- *
- * The function finds the most prominent corners in the image or in the specified image region, as
- * described in CITE: Shi94
- *
- * - Function calculates the corner quality measure at every source image pixel using the
- * #cornerMinEigenVal or #cornerHarris .
- * - Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are
- * retained).
- * - The corners with the minimal eigenvalue less than
- * `$$\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)$$` are rejected.
- * - The remaining corners are sorted by the quality measure in the descending order.
- * - Function throws away each corner for which there is a stronger corner at a distance less than
- * maxDistance.
- *
- * The function can be used to initialize a point-based tracker of an object.
- *
- * NOTE: If the function is called with different values A and B of the parameter qualityLevel , and
- * A \> B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector
- * with qualityLevel=B .
- *
- * @param image Input 8-bit or floating-point 32-bit, single-channel image.
- * @param corners Output vector of detected corners.
- * @param maxCorners Maximum number of corners to return. If there are more corners than are found,
- * the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
- * and all detected corners are returned.
- * @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
- * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
- * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
- * quality measure less than the product are rejected. For example, if the best corner has the
- * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
- * less than 15 are rejected.
- * @param minDistance Minimum possible Euclidean distance between the returned corners.
- * @param mask Optional region of interest. If the image is not empty (it needs to have the type
- * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
- * @param blockSize Size of an average block for computing a derivative covariation matrix over each
- * pixel neighborhood. See cornerEigenValsAndVecs .
- * @param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris)
- * or #cornerMinEigenVal.
- *
- * @see `+cornerMinEigenVal:dst:blockSize:ksize:borderType:`, `+cornerHarris:dst:blockSize:ksize:k:borderType:`, `calcOpticalFlowPyrLK`, `estimateRigidTransform`, ``
- */
- + (void)goodFeaturesToTrack:(Mat*)image corners:(NSMutableArray<Point2i*>*)corners maxCorners:(int)maxCorners qualityLevel:(double)qualityLevel minDistance:(double)minDistance mask:(Mat*)mask blockSize:(int)blockSize useHarrisDetector:(BOOL)useHarrisDetector NS_SWIFT_NAME(goodFeaturesToTrack(image:corners:maxCorners:qualityLevel:minDistance:mask:blockSize:useHarrisDetector:));
- /**
- * Determines strong corners on an image.
- *
- * The function finds the most prominent corners in the image or in the specified image region, as
- * described in CITE: Shi94
- *
- * - Function calculates the corner quality measure at every source image pixel using the
- * #cornerMinEigenVal or #cornerHarris .
- * - Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are
- * retained).
- * - The corners with the minimal eigenvalue less than
- * `$$\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)$$` are rejected.
- * - The remaining corners are sorted by the quality measure in the descending order.
- * - Function throws away each corner for which there is a stronger corner at a distance less than
- * maxDistance.
- *
- * The function can be used to initialize a point-based tracker of an object.
- *
- * NOTE: If the function is called with different values A and B of the parameter qualityLevel , and
- * A \> B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector
- * with qualityLevel=B .
- *
- * @param image Input 8-bit or floating-point 32-bit, single-channel image.
- * @param corners Output vector of detected corners.
- * @param maxCorners Maximum number of corners to return. If there are more corners than are found,
- * the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
- * and all detected corners are returned.
- * @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
- * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
- * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
- * quality measure less than the product are rejected. For example, if the best corner has the
- * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
- * less than 15 are rejected.
- * @param minDistance Minimum possible Euclidean distance between the returned corners.
- * @param mask Optional region of interest. If the image is not empty (it needs to have the type
- * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
- * @param blockSize Size of an average block for computing a derivative covariation matrix over each
- * pixel neighborhood. See cornerEigenValsAndVecs .
- * or #cornerMinEigenVal.
- *
- * @see `+cornerMinEigenVal:dst:blockSize:ksize:borderType:`, `+cornerHarris:dst:blockSize:ksize:k:borderType:`, `calcOpticalFlowPyrLK`, `estimateRigidTransform`, ``
- */
- + (void)goodFeaturesToTrack:(Mat*)image corners:(NSMutableArray<Point2i*>*)corners maxCorners:(int)maxCorners qualityLevel:(double)qualityLevel minDistance:(double)minDistance mask:(Mat*)mask blockSize:(int)blockSize NS_SWIFT_NAME(goodFeaturesToTrack(image:corners:maxCorners:qualityLevel:minDistance:mask:blockSize:));
- /**
- * Determines strong corners on an image.
- *
- * The function finds the most prominent corners in the image or in the specified image region, as
- * described in CITE: Shi94
- *
- * - Function calculates the corner quality measure at every source image pixel using the
- * #cornerMinEigenVal or #cornerHarris .
- * - Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are
- * retained).
- * - The corners with the minimal eigenvalue less than
- * `$$\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)$$` are rejected.
- * - The remaining corners are sorted by the quality measure in the descending order.
- * - Function throws away each corner for which there is a stronger corner at a distance less than
- * maxDistance.
- *
- * The function can be used to initialize a point-based tracker of an object.
- *
- * NOTE: If the function is called with different values A and B of the parameter qualityLevel , and
- * A \> B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector
- * with qualityLevel=B .
- *
- * @param image Input 8-bit or floating-point 32-bit, single-channel image.
- * @param corners Output vector of detected corners.
- * @param maxCorners Maximum number of corners to return. If there are more corners than are found,
- * the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
- * and all detected corners are returned.
- * @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
- * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
- * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
- * quality measure less than the product are rejected. For example, if the best corner has the
- * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
- * less than 15 are rejected.
- * @param minDistance Minimum possible Euclidean distance between the returned corners.
- * @param mask Optional region of interest. If the image is not empty (it needs to have the type
- * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
- * pixel neighborhood. See cornerEigenValsAndVecs .
- * or #cornerMinEigenVal.
- *
- * @see `+cornerMinEigenVal:dst:blockSize:ksize:borderType:`, `+cornerHarris:dst:blockSize:ksize:k:borderType:`, `calcOpticalFlowPyrLK`, `estimateRigidTransform`, ``
- */
- + (void)goodFeaturesToTrack:(Mat*)image corners:(NSMutableArray<Point2i*>*)corners maxCorners:(int)maxCorners qualityLevel:(double)qualityLevel minDistance:(double)minDistance mask:(Mat*)mask NS_SWIFT_NAME(goodFeaturesToTrack(image:corners:maxCorners:qualityLevel:minDistance:mask:));
- /**
- * Determines strong corners on an image.
- *
- * The function finds the most prominent corners in the image or in the specified image region, as
- * described in CITE: Shi94
- *
- * - Function calculates the corner quality measure at every source image pixel using the
- * #cornerMinEigenVal or #cornerHarris .
- * - Function performs a non-maximum suppression (the local maximums in *3 x 3* neighborhood are
- * retained).
- * - The corners with the minimal eigenvalue less than
- * `$$\texttt{qualityLevel} \cdot \max_{x,y} qualityMeasureMap(x,y)$$` are rejected.
- * - The remaining corners are sorted by the quality measure in the descending order.
- * - Function throws away each corner for which there is a stronger corner at a distance less than
- * maxDistance.
- *
- * The function can be used to initialize a point-based tracker of an object.
- *
- * NOTE: If the function is called with different values A and B of the parameter qualityLevel , and
- * A \> B, the vector of returned corners with qualityLevel=A will be the prefix of the output vector
- * with qualityLevel=B .
- *
- * @param image Input 8-bit or floating-point 32-bit, single-channel image.
- * @param corners Output vector of detected corners.
- * @param maxCorners Maximum number of corners to return. If there are more corners than are found,
- * the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
- * and all detected corners are returned.
- * @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
- * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
- * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
- * quality measure less than the product are rejected. For example, if the best corner has the
- * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
- * less than 15 are rejected.
- * @param minDistance Minimum possible Euclidean distance between the returned corners.
- * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
- * pixel neighborhood. See cornerEigenValsAndVecs .
- * or #cornerMinEigenVal.
- *
- * @see `+cornerMinEigenVal:dst:blockSize:ksize:borderType:`, `+cornerHarris:dst:blockSize:ksize:k:borderType:`, `calcOpticalFlowPyrLK`, `estimateRigidTransform`, ``
- */
- + (void)goodFeaturesToTrack:(Mat*)image corners:(NSMutableArray<Point2i*>*)corners maxCorners:(int)maxCorners qualityLevel:(double)qualityLevel minDistance:(double)minDistance NS_SWIFT_NAME(goodFeaturesToTrack(image:corners:maxCorners:qualityLevel:minDistance:));
- //
- // void cv::goodFeaturesToTrack(Mat image, vector_Point& corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, int blockSize, int gradientSize, bool useHarrisDetector = false, double k = 0.04)
- //
- + (void)goodFeaturesToTrack:(Mat*)image corners:(NSMutableArray<Point2i*>*)corners maxCorners:(int)maxCorners qualityLevel:(double)qualityLevel minDistance:(double)minDistance mask:(Mat*)mask blockSize:(int)blockSize gradientSize:(int)gradientSize useHarrisDetector:(BOOL)useHarrisDetector k:(double)k NS_SWIFT_NAME(goodFeaturesToTrack(image:corners:maxCorners:qualityLevel:minDistance:mask:blockSize:gradientSize:useHarrisDetector:k:));
- + (void)goodFeaturesToTrack:(Mat*)image corners:(NSMutableArray<Point2i*>*)corners maxCorners:(int)maxCorners qualityLevel:(double)qualityLevel minDistance:(double)minDistance mask:(Mat*)mask blockSize:(int)blockSize gradientSize:(int)gradientSize useHarrisDetector:(BOOL)useHarrisDetector NS_SWIFT_NAME(goodFeaturesToTrack(image:corners:maxCorners:qualityLevel:minDistance:mask:blockSize:gradientSize:useHarrisDetector:));
- + (void)goodFeaturesToTrack:(Mat*)image corners:(NSMutableArray<Point2i*>*)corners maxCorners:(int)maxCorners qualityLevel:(double)qualityLevel minDistance:(double)minDistance mask:(Mat*)mask blockSize:(int)blockSize gradientSize:(int)gradientSize NS_SWIFT_NAME(goodFeaturesToTrack(image:corners:maxCorners:qualityLevel:minDistance:mask:blockSize:gradientSize:));
- //
- // void cv::goodFeaturesToTrack(Mat image, Mat& corners, int maxCorners, double qualityLevel, double minDistance, Mat mask, Mat& cornersQuality, int blockSize = 3, int gradientSize = 3, bool useHarrisDetector = false, double k = 0.04)
- //
- /**
- * Same as above, but returns also quality measure of the detected corners.
- *
- * @param image Input 8-bit or floating-point 32-bit, single-channel image.
- * @param corners Output vector of detected corners.
- * @param maxCorners Maximum number of corners to return. If there are more corners than are found,
- * the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
- * and all detected corners are returned.
- * @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
- * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
- * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
- * quality measure less than the product are rejected. For example, if the best corner has the
- * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
- * less than 15 are rejected.
- * @param minDistance Minimum possible Euclidean distance between the returned corners.
- * @param mask Region of interest. If the image is not empty (it needs to have the type
- * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
- * @param cornersQuality Output vector of quality measure of the detected corners.
- * @param blockSize Size of an average block for computing a derivative covariation matrix over each
- * pixel neighborhood. See cornerEigenValsAndVecs .
- * @param gradientSize Aperture parameter for the Sobel operator used for derivatives computation.
- * See cornerEigenValsAndVecs .
- * @param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris)
- * or #cornerMinEigenVal.
- * @param k Free parameter of the Harris detector.
- */
- + (void)goodFeaturesToTrackWithQuality:(Mat*)image corners:(Mat*)corners maxCorners:(int)maxCorners qualityLevel:(double)qualityLevel minDistance:(double)minDistance mask:(Mat*)mask cornersQuality:(Mat*)cornersQuality blockSize:(int)blockSize gradientSize:(int)gradientSize useHarrisDetector:(BOOL)useHarrisDetector k:(double)k NS_SWIFT_NAME(goodFeaturesToTrack(image:corners:maxCorners:qualityLevel:minDistance:mask:cornersQuality:blockSize:gradientSize:useHarrisDetector:k:));
- /**
- * Same as above, but returns also quality measure of the detected corners.
- *
- * @param image Input 8-bit or floating-point 32-bit, single-channel image.
- * @param corners Output vector of detected corners.
- * @param maxCorners Maximum number of corners to return. If there are more corners than are found,
- * the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
- * and all detected corners are returned.
- * @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
- * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
- * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
- * quality measure less than the product are rejected. For example, if the best corner has the
- * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
- * less than 15 are rejected.
- * @param minDistance Minimum possible Euclidean distance between the returned corners.
- * @param mask Region of interest. If the image is not empty (it needs to have the type
- * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
- * @param cornersQuality Output vector of quality measure of the detected corners.
- * @param blockSize Size of an average block for computing a derivative covariation matrix over each
- * pixel neighborhood. See cornerEigenValsAndVecs .
- * @param gradientSize Aperture parameter for the Sobel operator used for derivatives computation.
- * See cornerEigenValsAndVecs .
- * @param useHarrisDetector Parameter indicating whether to use a Harris detector (see #cornerHarris)
- * or #cornerMinEigenVal.
- */
- + (void)goodFeaturesToTrackWithQuality:(Mat*)image corners:(Mat*)corners maxCorners:(int)maxCorners qualityLevel:(double)qualityLevel minDistance:(double)minDistance mask:(Mat*)mask cornersQuality:(Mat*)cornersQuality blockSize:(int)blockSize gradientSize:(int)gradientSize useHarrisDetector:(BOOL)useHarrisDetector NS_SWIFT_NAME(goodFeaturesToTrack(image:corners:maxCorners:qualityLevel:minDistance:mask:cornersQuality:blockSize:gradientSize:useHarrisDetector:));
- /**
- * Same as above, but returns also quality measure of the detected corners.
- *
- * @param image Input 8-bit or floating-point 32-bit, single-channel image.
- * @param corners Output vector of detected corners.
- * @param maxCorners Maximum number of corners to return. If there are more corners than are found,
- * the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
- * and all detected corners are returned.
- * @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
- * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
- * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
- * quality measure less than the product are rejected. For example, if the best corner has the
- * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
- * less than 15 are rejected.
- * @param minDistance Minimum possible Euclidean distance between the returned corners.
- * @param mask Region of interest. If the image is not empty (it needs to have the type
- * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
- * @param cornersQuality Output vector of quality measure of the detected corners.
- * @param blockSize Size of an average block for computing a derivative covariation matrix over each
- * pixel neighborhood. See cornerEigenValsAndVecs .
- * @param gradientSize Aperture parameter for the Sobel operator used for derivatives computation.
- * See cornerEigenValsAndVecs .
- * or #cornerMinEigenVal.
- */
- + (void)goodFeaturesToTrackWithQuality:(Mat*)image corners:(Mat*)corners maxCorners:(int)maxCorners qualityLevel:(double)qualityLevel minDistance:(double)minDistance mask:(Mat*)mask cornersQuality:(Mat*)cornersQuality blockSize:(int)blockSize gradientSize:(int)gradientSize NS_SWIFT_NAME(goodFeaturesToTrack(image:corners:maxCorners:qualityLevel:minDistance:mask:cornersQuality:blockSize:gradientSize:));
- /**
- * Same as above, but returns also quality measure of the detected corners.
- *
- * @param image Input 8-bit or floating-point 32-bit, single-channel image.
- * @param corners Output vector of detected corners.
- * @param maxCorners Maximum number of corners to return. If there are more corners than are found,
- * the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
- * and all detected corners are returned.
- * @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
- * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
- * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
- * quality measure less than the product are rejected. For example, if the best corner has the
- * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
- * less than 15 are rejected.
- * @param minDistance Minimum possible Euclidean distance between the returned corners.
- * @param mask Region of interest. If the image is not empty (it needs to have the type
- * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
- * @param cornersQuality Output vector of quality measure of the detected corners.
- * @param blockSize Size of an average block for computing a derivative covariation matrix over each
- * pixel neighborhood. See cornerEigenValsAndVecs .
- * See cornerEigenValsAndVecs .
- * or #cornerMinEigenVal.
- */
- + (void)goodFeaturesToTrackWithQuality:(Mat*)image corners:(Mat*)corners maxCorners:(int)maxCorners qualityLevel:(double)qualityLevel minDistance:(double)minDistance mask:(Mat*)mask cornersQuality:(Mat*)cornersQuality blockSize:(int)blockSize NS_SWIFT_NAME(goodFeaturesToTrack(image:corners:maxCorners:qualityLevel:minDistance:mask:cornersQuality:blockSize:));
- /**
- * Same as above, but returns also quality measure of the detected corners.
- *
- * @param image Input 8-bit or floating-point 32-bit, single-channel image.
- * @param corners Output vector of detected corners.
- * @param maxCorners Maximum number of corners to return. If there are more corners than are found,
- * the strongest of them is returned. `maxCorners <= 0` implies that no limit on the maximum is set
- * and all detected corners are returned.
- * @param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The
- * parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue
- * (see #cornerMinEigenVal ) or the Harris function response (see #cornerHarris ). The corners with the
- * quality measure less than the product are rejected. For example, if the best corner has the
- * quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure
- * less than 15 are rejected.
- * @param minDistance Minimum possible Euclidean distance between the returned corners.
- * @param mask Region of interest. If the image is not empty (it needs to have the type
- * CV_8UC1 and the same size as image ), it specifies the region in which the corners are detected.
- * @param cornersQuality Output vector of quality measure of the detected corners.
- * pixel neighborhood. See cornerEigenValsAndVecs .
- * See cornerEigenValsAndVecs .
- * or #cornerMinEigenVal.
- */
- + (void)goodFeaturesToTrackWithQuality:(Mat*)image corners:(Mat*)corners maxCorners:(int)maxCorners qualityLevel:(double)qualityLevel minDistance:(double)minDistance mask:(Mat*)mask cornersQuality:(Mat*)cornersQuality NS_SWIFT_NAME(goodFeaturesToTrack(image:corners:maxCorners:qualityLevel:minDistance:mask:cornersQuality:));
- //
- // void cv::HoughLines(Mat image, Mat& lines, double rho, double theta, int threshold, double srn = 0, double stn = 0, double min_theta = 0, double max_theta = CV_PI)
- //
- /**
- * Finds lines in a binary image using the standard Hough transform.
- *
- * The function implements the standard or standard multi-scale Hough transform algorithm for line
- * detection. See <http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm> for a good explanation of Hough
- * transform.
- *
- * @param image 8-bit, single-channel binary source image. The image may be modified by the function.
- * @param lines Output vector of lines. Each line is represented by a 2 or 3 element vector
- * `$$(\rho, \theta)$$` or `$$(\rho, \theta, \textrm{votes})$$` . `$$\rho$$` is the distance from the coordinate origin `$$(0,0)$$` (top-left corner of
- * the image). `$$\theta$$` is the line rotation angle in radians (
- * `$$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}$$` ).
- * `$$\textrm{votes}$$` is the value of accumulator.
- * @param rho Distance resolution of the accumulator in pixels.
- * @param theta Angle resolution of the accumulator in radians.
- * @param threshold Accumulator threshold parameter. Only those lines are returned that get enough
- * votes ( `$$>\texttt{threshold}$$` ).
- * @param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho .
- * The coarse accumulator distance resolution is rho and the accurate accumulator resolution is
- * rho/srn . If both srn=0 and stn=0 , the classical Hough transform is used. Otherwise, both these
- * parameters should be positive.
- * @param stn For the multi-scale Hough transform, it is a divisor for the distance resolution theta.
- * @param min_theta For standard and multi-scale Hough transform, minimum angle to check for lines.
- * Must fall between 0 and max_theta.
- * @param max_theta For standard and multi-scale Hough transform, maximum angle to check for lines.
- * Must fall between min_theta and CV_PI.
- */
- + (void)HoughLines:(Mat*)image lines:(Mat*)lines rho:(double)rho theta:(double)theta threshold:(int)threshold srn:(double)srn stn:(double)stn min_theta:(double)min_theta max_theta:(double)max_theta NS_SWIFT_NAME(HoughLines(image:lines:rho:theta:threshold:srn:stn:min_theta:max_theta:));
- /**
- * Finds lines in a binary image using the standard Hough transform.
- *
- * The function implements the standard or standard multi-scale Hough transform algorithm for line
- * detection. See <http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm> for a good explanation of Hough
- * transform.
- *
- * @param image 8-bit, single-channel binary source image. The image may be modified by the function.
- * @param lines Output vector of lines. Each line is represented by a 2 or 3 element vector
- * `$$(\rho, \theta)$$` or `$$(\rho, \theta, \textrm{votes})$$` . `$$\rho$$` is the distance from the coordinate origin `$$(0,0)$$` (top-left corner of
- * the image). `$$\theta$$` is the line rotation angle in radians (
- * `$$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}$$` ).
- * `$$\textrm{votes}$$` is the value of accumulator.
- * @param rho Distance resolution of the accumulator in pixels.
- * @param theta Angle resolution of the accumulator in radians.
- * @param threshold Accumulator threshold parameter. Only those lines are returned that get enough
- * votes ( `$$>\texttt{threshold}$$` ).
- * @param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho .
- * The coarse accumulator distance resolution is rho and the accurate accumulator resolution is
- * rho/srn . If both srn=0 and stn=0 , the classical Hough transform is used. Otherwise, both these
- * parameters should be positive.
- * @param stn For the multi-scale Hough transform, it is a divisor for the distance resolution theta.
- * @param min_theta For standard and multi-scale Hough transform, minimum angle to check for lines.
- * Must fall between 0 and max_theta.
- * Must fall between min_theta and CV_PI.
- */
- + (void)HoughLines:(Mat*)image lines:(Mat*)lines rho:(double)rho theta:(double)theta threshold:(int)threshold srn:(double)srn stn:(double)stn min_theta:(double)min_theta NS_SWIFT_NAME(HoughLines(image:lines:rho:theta:threshold:srn:stn:min_theta:));
- /**
- * Finds lines in a binary image using the standard Hough transform.
- *
- * The function implements the standard or standard multi-scale Hough transform algorithm for line
- * detection. See <http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm> for a good explanation of Hough
- * transform.
- *
- * @param image 8-bit, single-channel binary source image. The image may be modified by the function.
- * @param lines Output vector of lines. Each line is represented by a 2 or 3 element vector
- * `$$(\rho, \theta)$$` or `$$(\rho, \theta, \textrm{votes})$$` . `$$\rho$$` is the distance from the coordinate origin `$$(0,0)$$` (top-left corner of
- * the image). `$$\theta$$` is the line rotation angle in radians (
- * `$$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}$$` ).
- * `$$\textrm{votes}$$` is the value of accumulator.
- * @param rho Distance resolution of the accumulator in pixels.
- * @param theta Angle resolution of the accumulator in radians.
- * @param threshold Accumulator threshold parameter. Only those lines are returned that get enough
- * votes ( `$$>\texttt{threshold}$$` ).
- * @param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho .
- * The coarse accumulator distance resolution is rho and the accurate accumulator resolution is
- * rho/srn . If both srn=0 and stn=0 , the classical Hough transform is used. Otherwise, both these
- * parameters should be positive.
- * @param stn For the multi-scale Hough transform, it is a divisor for the distance resolution theta.
- * Must fall between 0 and max_theta.
- * Must fall between min_theta and CV_PI.
- */
- + (void)HoughLines:(Mat*)image lines:(Mat*)lines rho:(double)rho theta:(double)theta threshold:(int)threshold srn:(double)srn stn:(double)stn NS_SWIFT_NAME(HoughLines(image:lines:rho:theta:threshold:srn:stn:));
- /**
- * Finds lines in a binary image using the standard Hough transform.
- *
- * The function implements the standard or standard multi-scale Hough transform algorithm for line
- * detection. See <http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm> for a good explanation of Hough
- * transform.
- *
- * @param image 8-bit, single-channel binary source image. The image may be modified by the function.
- * @param lines Output vector of lines. Each line is represented by a 2 or 3 element vector
- * `$$(\rho, \theta)$$` or `$$(\rho, \theta, \textrm{votes})$$` . `$$\rho$$` is the distance from the coordinate origin `$$(0,0)$$` (top-left corner of
- * the image). `$$\theta$$` is the line rotation angle in radians (
- * `$$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}$$` ).
- * `$$\textrm{votes}$$` is the value of accumulator.
- * @param rho Distance resolution of the accumulator in pixels.
- * @param theta Angle resolution of the accumulator in radians.
- * @param threshold Accumulator threshold parameter. Only those lines are returned that get enough
- * votes ( `$$>\texttt{threshold}$$` ).
- * @param srn For the multi-scale Hough transform, it is a divisor for the distance resolution rho .
- * The coarse accumulator distance resolution is rho and the accurate accumulator resolution is
- * rho/srn . If both srn=0 and stn=0 , the classical Hough transform is used. Otherwise, both these
- * parameters should be positive.
- * Must fall between 0 and max_theta.
- * Must fall between min_theta and CV_PI.
- */
- + (void)HoughLines:(Mat*)image lines:(Mat*)lines rho:(double)rho theta:(double)theta threshold:(int)threshold srn:(double)srn NS_SWIFT_NAME(HoughLines(image:lines:rho:theta:threshold:srn:));
- /**
- * Finds lines in a binary image using the standard Hough transform.
- *
- * The function implements the standard or standard multi-scale Hough transform algorithm for line
- * detection. See <http://homepages.inf.ed.ac.uk/rbf/HIPR2/hough.htm> for a good explanation of Hough
- * transform.
- *
- * @param image 8-bit, single-channel binary source image. The image may be modified by the function.
- * @param lines Output vector of lines. Each line is represented by a 2 or 3 element vector
- * `$$(\rho, \theta)$$` or `$$(\rho, \theta, \textrm{votes})$$` . `$$\rho$$` is the distance from the coordinate origin `$$(0,0)$$` (top-left corner of
- * the image). `$$\theta$$` is the line rotation angle in radians (
- * `$$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}$$` ).
- * `$$\textrm{votes}$$` is the value of accumulator.
- * @param rho Distance resolution of the accumulator in pixels.
- * @param theta Angle resolution of the accumulator in radians.
- * @param threshold Accumulator threshold parameter. Only those lines are returned that get enough
- * votes ( `$$>\texttt{threshold}$$` ).
- * The coarse accumulator distance resolution is rho and the accurate accumulator resolution is
- * rho/srn . If both srn=0 and stn=0 , the classical Hough transform is used. Otherwise, both these
- * parameters should be positive.
- * Must fall between 0 and max_theta.
- * Must fall between min_theta and CV_PI.
- */
- + (void)HoughLines:(Mat*)image lines:(Mat*)lines rho:(double)rho theta:(double)theta threshold:(int)threshold NS_SWIFT_NAME(HoughLines(image:lines:rho:theta:threshold:));
- //
- // void cv::HoughLinesP(Mat image, Mat& lines, double rho, double theta, int threshold, double minLineLength = 0, double maxLineGap = 0)
- //
- /**
- * Finds line segments in a binary image using the probabilistic Hough transform.
- *
- * The function implements the probabilistic Hough transform algorithm for line detection, described
- * in CITE: Matas00
- *
- * See the line detection example below:
- * INCLUDE: snippets/imgproc_HoughLinesP.cpp
- * This is a sample picture the function parameters have been tuned for:
- *
- * ![image](pics/building.jpg)
- *
- * And this is the output of the above program in case of the probabilistic Hough transform:
- *
- * ![image](pics/houghp.png)
- *
- * @param image 8-bit, single-channel binary source image. The image may be modified by the function.
- * @param lines Output vector of lines. Each line is represented by a 4-element vector
- * `$$(x_1, y_1, x_2, y_2)$$` , where `$$(x_1,y_1)$$` and `$$(x_2, y_2)$$` are the ending points of each detected
- * line segment.
- * @param rho Distance resolution of the accumulator in pixels.
- * @param theta Angle resolution of the accumulator in radians.
- * @param threshold Accumulator threshold parameter. Only those lines are returned that get enough
- * votes ( `$$>\texttt{threshold}$$` ).
- * @param minLineLength Minimum line length. Line segments shorter than that are rejected.
- * @param maxLineGap Maximum allowed gap between points on the same line to link them.
- *
- * @see `LineSegmentDetector`
- */
- + (void)HoughLinesP:(Mat*)image lines:(Mat*)lines rho:(double)rho theta:(double)theta threshold:(int)threshold minLineLength:(double)minLineLength maxLineGap:(double)maxLineGap NS_SWIFT_NAME(HoughLinesP(image:lines:rho:theta:threshold:minLineLength:maxLineGap:));
- /**
- * Finds line segments in a binary image using the probabilistic Hough transform.
- *
- * The function implements the probabilistic Hough transform algorithm for line detection, described
- * in CITE: Matas00
- *
- * See the line detection example below:
- * INCLUDE: snippets/imgproc_HoughLinesP.cpp
- * This is a sample picture the function parameters have been tuned for:
- *
- * ![image](pics/building.jpg)
- *
- * And this is the output of the above program in case of the probabilistic Hough transform:
- *
- * ![image](pics/houghp.png)
- *
- * @param image 8-bit, single-channel binary source image. The image may be modified by the function.
- * @param lines Output vector of lines. Each line is represented by a 4-element vector
- * `$$(x_1, y_1, x_2, y_2)$$` , where `$$(x_1,y_1)$$` and `$$(x_2, y_2)$$` are the ending points of each detected
- * line segment.
- * @param rho Distance resolution of the accumulator in pixels.
- * @param theta Angle resolution of the accumulator in radians.
- * @param threshold Accumulator threshold parameter. Only those lines are returned that get enough
- * votes ( `$$>\texttt{threshold}$$` ).
- * @param minLineLength Minimum line length. Line segments shorter than that are rejected.
- *
- * @see `LineSegmentDetector`
- */
- + (void)HoughLinesP:(Mat*)image lines:(Mat*)lines rho:(double)rho theta:(double)theta threshold:(int)threshold minLineLength:(double)minLineLength NS_SWIFT_NAME(HoughLinesP(image:lines:rho:theta:threshold:minLineLength:));
- /**
- * Finds line segments in a binary image using the probabilistic Hough transform.
- *
- * The function implements the probabilistic Hough transform algorithm for line detection, described
- * in CITE: Matas00
- *
- * See the line detection example below:
- * INCLUDE: snippets/imgproc_HoughLinesP.cpp
- * This is a sample picture the function parameters have been tuned for:
- *
- * ![image](pics/building.jpg)
- *
- * And this is the output of the above program in case of the probabilistic Hough transform:
- *
- * ![image](pics/houghp.png)
- *
- * @param image 8-bit, single-channel binary source image. The image may be modified by the function.
- * @param lines Output vector of lines. Each line is represented by a 4-element vector
- * `$$(x_1, y_1, x_2, y_2)$$` , where `$$(x_1,y_1)$$` and `$$(x_2, y_2)$$` are the ending points of each detected
- * line segment.
- * @param rho Distance resolution of the accumulator in pixels.
- * @param theta Angle resolution of the accumulator in radians.
- * @param threshold Accumulator threshold parameter. Only those lines are returned that get enough
- * votes ( `$$>\texttt{threshold}$$` ).
- *
- * @see `LineSegmentDetector`
- */
- + (void)HoughLinesP:(Mat*)image lines:(Mat*)lines rho:(double)rho theta:(double)theta threshold:(int)threshold NS_SWIFT_NAME(HoughLinesP(image:lines:rho:theta:threshold:));
- //
- // void cv::HoughLinesPointSet(Mat point, Mat& lines, int lines_max, int threshold, double min_rho, double max_rho, double rho_step, double min_theta, double max_theta, double theta_step)
- //
- /**
- * Finds lines in a set of points using the standard Hough transform.
- *
- * The function finds lines in a set of points using a modification of the Hough transform.
- * INCLUDE: snippets/imgproc_HoughLinesPointSet.cpp
- * @param point Input vector of points. Each vector must be encoded as a Point vector `$$(x,y)$$`. Type must be CV_32FC2 or CV_32SC2.
- * @param lines Output vector of found lines. Each vector is encoded as a vector<Vec3d> `$$(votes, rho, theta)$$`.
- * The larger the value of 'votes', the higher the reliability of the Hough line.
- * @param lines_max Max count of Hough lines.
- * @param threshold Accumulator threshold parameter. Only those lines are returned that get enough
- * votes ( `$$>\texttt{threshold}$$` ).
- * @param min_rho Minimum value for `$$\rho$$` for the accumulator (Note: `$$\rho$$` can be negative. The absolute value `$$|\rho|$$` is the distance of a line to the origin.).
- * @param max_rho Maximum value for `$$\rho$$` for the accumulator.
- * @param rho_step Distance resolution of the accumulator.
- * @param min_theta Minimum angle value of the accumulator in radians.
- * @param max_theta Maximum angle value of the accumulator in radians.
- * @param theta_step Angle resolution of the accumulator in radians.
- */
- + (void)HoughLinesPointSet:(Mat*)point lines:(Mat*)lines lines_max:(int)lines_max threshold:(int)threshold min_rho:(double)min_rho max_rho:(double)max_rho rho_step:(double)rho_step min_theta:(double)min_theta max_theta:(double)max_theta theta_step:(double)theta_step NS_SWIFT_NAME(HoughLinesPointSet(point:lines:lines_max:threshold:min_rho:max_rho:rho_step:min_theta:max_theta:theta_step:));
- //
- // void cv::HoughCircles(Mat image, Mat& circles, HoughModes method, double dp, double minDist, double param1 = 100, double param2 = 100, int minRadius = 0, int maxRadius = 0)
- //
- /**
- * Finds circles in a grayscale image using the Hough transform.
- *
- * The function finds circles in a grayscale image using a modification of the Hough transform.
- *
- * Example: :
- * INCLUDE: snippets/imgproc_HoughLinesCircles.cpp
- *
- * NOTE: Usually the function detects the centers of circles well. However, it may fail to find correct
- * radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if
- * you know it. Or, in the case of #HOUGH_GRADIENT method you may set maxRadius to a negative number
- * to return centers only without radius search, and find the correct radius using an additional procedure.
- *
- * It also helps to smooth image a bit unless it's already soft. For example,
- * GaussianBlur() with 7x7 kernel and 1.5x1.5 sigma or similar blurring may help.
- *
- * @param image 8-bit, single-channel, grayscale input image.
- * @param circles Output vector of found circles. Each vector is encoded as 3 or 4 element
- * floating-point vector `$$(x, y, radius)$$` or `$$(x, y, radius, votes)$$` .
- * @param method Detection method, see #HoughModes. The available methods are #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT.
- * @param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if
- * dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
- * half as big width and height. For #HOUGH_GRADIENT_ALT the recommended value is dp=1.5,
- * unless some small very circles need to be detected.
- * @param minDist Minimum distance between the centers of the detected circles. If the parameter is
- * too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
- * too large, some circles may be missed.
- * @param param1 First method-specific parameter. In case of #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT,
- * it is the higher threshold of the two passed to the Canny edge detector (the lower one is twice smaller).
- * Note that #HOUGH_GRADIENT_ALT uses #Scharr algorithm to compute image derivatives, so the threshold value
- * shough normally be higher, such as 300 or normally exposed and contrasty images.
- * @param param2 Second method-specific parameter. In case of #HOUGH_GRADIENT, it is the
- * accumulator threshold for the circle centers at the detection stage. The smaller it is, the more
- * false circles may be detected. Circles, corresponding to the larger accumulator values, will be
- * returned first. In the case of #HOUGH_GRADIENT_ALT algorithm, this is the circle "perfectness" measure.
- * The closer it to 1, the better shaped circles algorithm selects. In most cases 0.9 should be fine.
- * If you want get better detection of small circles, you may decrease it to 0.85, 0.8 or even less.
- * But then also try to limit the search range [minRadius, maxRadius] to avoid many false circles.
- * @param minRadius Minimum circle radius.
- * @param maxRadius Maximum circle radius. If <= 0, uses the maximum image dimension. If < 0, #HOUGH_GRADIENT returns
- * centers without finding the radius. #HOUGH_GRADIENT_ALT always computes circle radiuses.
- *
- * @see `+fitEllipse:`, `+minEnclosingCircle:center:radius:`
- */
- + (void)HoughCircles:(Mat*)image circles:(Mat*)circles method:(HoughModes)method dp:(double)dp minDist:(double)minDist param1:(double)param1 param2:(double)param2 minRadius:(int)minRadius maxRadius:(int)maxRadius NS_SWIFT_NAME(HoughCircles(image:circles:method:dp:minDist:param1:param2:minRadius:maxRadius:));
- /**
- * Finds circles in a grayscale image using the Hough transform.
- *
- * The function finds circles in a grayscale image using a modification of the Hough transform.
- *
- * Example: :
- * INCLUDE: snippets/imgproc_HoughLinesCircles.cpp
- *
- * NOTE: Usually the function detects the centers of circles well. However, it may fail to find correct
- * radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if
- * you know it. Or, in the case of #HOUGH_GRADIENT method you may set maxRadius to a negative number
- * to return centers only without radius search, and find the correct radius using an additional procedure.
- *
- * It also helps to smooth image a bit unless it's already soft. For example,
- * GaussianBlur() with 7x7 kernel and 1.5x1.5 sigma or similar blurring may help.
- *
- * @param image 8-bit, single-channel, grayscale input image.
- * @param circles Output vector of found circles. Each vector is encoded as 3 or 4 element
- * floating-point vector `$$(x, y, radius)$$` or `$$(x, y, radius, votes)$$` .
- * @param method Detection method, see #HoughModes. The available methods are #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT.
- * @param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if
- * dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
- * half as big width and height. For #HOUGH_GRADIENT_ALT the recommended value is dp=1.5,
- * unless some small very circles need to be detected.
- * @param minDist Minimum distance between the centers of the detected circles. If the parameter is
- * too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
- * too large, some circles may be missed.
- * @param param1 First method-specific parameter. In case of #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT,
- * it is the higher threshold of the two passed to the Canny edge detector (the lower one is twice smaller).
- * Note that #HOUGH_GRADIENT_ALT uses #Scharr algorithm to compute image derivatives, so the threshold value
- * shough normally be higher, such as 300 or normally exposed and contrasty images.
- * @param param2 Second method-specific parameter. In case of #HOUGH_GRADIENT, it is the
- * accumulator threshold for the circle centers at the detection stage. The smaller it is, the more
- * false circles may be detected. Circles, corresponding to the larger accumulator values, will be
- * returned first. In the case of #HOUGH_GRADIENT_ALT algorithm, this is the circle "perfectness" measure.
- * The closer it to 1, the better shaped circles algorithm selects. In most cases 0.9 should be fine.
- * If you want get better detection of small circles, you may decrease it to 0.85, 0.8 or even less.
- * But then also try to limit the search range [minRadius, maxRadius] to avoid many false circles.
- * @param minRadius Minimum circle radius.
- * centers without finding the radius. #HOUGH_GRADIENT_ALT always computes circle radiuses.
- *
- * @see `+fitEllipse:`, `+minEnclosingCircle:center:radius:`
- */
- + (void)HoughCircles:(Mat*)image circles:(Mat*)circles method:(HoughModes)method dp:(double)dp minDist:(double)minDist param1:(double)param1 param2:(double)param2 minRadius:(int)minRadius NS_SWIFT_NAME(HoughCircles(image:circles:method:dp:minDist:param1:param2:minRadius:));
- /**
- * Finds circles in a grayscale image using the Hough transform.
- *
- * The function finds circles in a grayscale image using a modification of the Hough transform.
- *
- * Example: :
- * INCLUDE: snippets/imgproc_HoughLinesCircles.cpp
- *
- * NOTE: Usually the function detects the centers of circles well. However, it may fail to find correct
- * radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if
- * you know it. Or, in the case of #HOUGH_GRADIENT method you may set maxRadius to a negative number
- * to return centers only without radius search, and find the correct radius using an additional procedure.
- *
- * It also helps to smooth image a bit unless it's already soft. For example,
- * GaussianBlur() with 7x7 kernel and 1.5x1.5 sigma or similar blurring may help.
- *
- * @param image 8-bit, single-channel, grayscale input image.
- * @param circles Output vector of found circles. Each vector is encoded as 3 or 4 element
- * floating-point vector `$$(x, y, radius)$$` or `$$(x, y, radius, votes)$$` .
- * @param method Detection method, see #HoughModes. The available methods are #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT.
- * @param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if
- * dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
- * half as big width and height. For #HOUGH_GRADIENT_ALT the recommended value is dp=1.5,
- * unless some small very circles need to be detected.
- * @param minDist Minimum distance between the centers of the detected circles. If the parameter is
- * too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
- * too large, some circles may be missed.
- * @param param1 First method-specific parameter. In case of #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT,
- * it is the higher threshold of the two passed to the Canny edge detector (the lower one is twice smaller).
- * Note that #HOUGH_GRADIENT_ALT uses #Scharr algorithm to compute image derivatives, so the threshold value
- * shough normally be higher, such as 300 or normally exposed and contrasty images.
- * @param param2 Second method-specific parameter. In case of #HOUGH_GRADIENT, it is the
- * accumulator threshold for the circle centers at the detection stage. The smaller it is, the more
- * false circles may be detected. Circles, corresponding to the larger accumulator values, will be
- * returned first. In the case of #HOUGH_GRADIENT_ALT algorithm, this is the circle "perfectness" measure.
- * The closer it to 1, the better shaped circles algorithm selects. In most cases 0.9 should be fine.
- * If you want get better detection of small circles, you may decrease it to 0.85, 0.8 or even less.
- * But then also try to limit the search range [minRadius, maxRadius] to avoid many false circles.
- * centers without finding the radius. #HOUGH_GRADIENT_ALT always computes circle radiuses.
- *
- * @see `+fitEllipse:`, `+minEnclosingCircle:center:radius:`
- */
- + (void)HoughCircles:(Mat*)image circles:(Mat*)circles method:(HoughModes)method dp:(double)dp minDist:(double)minDist param1:(double)param1 param2:(double)param2 NS_SWIFT_NAME(HoughCircles(image:circles:method:dp:minDist:param1:param2:));
- /**
- * Finds circles in a grayscale image using the Hough transform.
- *
- * The function finds circles in a grayscale image using a modification of the Hough transform.
- *
- * Example: :
- * INCLUDE: snippets/imgproc_HoughLinesCircles.cpp
- *
- * NOTE: Usually the function detects the centers of circles well. However, it may fail to find correct
- * radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if
- * you know it. Or, in the case of #HOUGH_GRADIENT method you may set maxRadius to a negative number
- * to return centers only without radius search, and find the correct radius using an additional procedure.
- *
- * It also helps to smooth image a bit unless it's already soft. For example,
- * GaussianBlur() with 7x7 kernel and 1.5x1.5 sigma or similar blurring may help.
- *
- * @param image 8-bit, single-channel, grayscale input image.
- * @param circles Output vector of found circles. Each vector is encoded as 3 or 4 element
- * floating-point vector `$$(x, y, radius)$$` or `$$(x, y, radius, votes)$$` .
- * @param method Detection method, see #HoughModes. The available methods are #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT.
- * @param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if
- * dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
- * half as big width and height. For #HOUGH_GRADIENT_ALT the recommended value is dp=1.5,
- * unless some small very circles need to be detected.
- * @param minDist Minimum distance between the centers of the detected circles. If the parameter is
- * too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
- * too large, some circles may be missed.
- * @param param1 First method-specific parameter. In case of #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT,
- * it is the higher threshold of the two passed to the Canny edge detector (the lower one is twice smaller).
- * Note that #HOUGH_GRADIENT_ALT uses #Scharr algorithm to compute image derivatives, so the threshold value
- * shough normally be higher, such as 300 or normally exposed and contrasty images.
- * accumulator threshold for the circle centers at the detection stage. The smaller it is, the more
- * false circles may be detected. Circles, corresponding to the larger accumulator values, will be
- * returned first. In the case of #HOUGH_GRADIENT_ALT algorithm, this is the circle "perfectness" measure.
- * The closer it to 1, the better shaped circles algorithm selects. In most cases 0.9 should be fine.
- * If you want get better detection of small circles, you may decrease it to 0.85, 0.8 or even less.
- * But then also try to limit the search range [minRadius, maxRadius] to avoid many false circles.
- * centers without finding the radius. #HOUGH_GRADIENT_ALT always computes circle radiuses.
- *
- * @see `+fitEllipse:`, `+minEnclosingCircle:center:radius:`
- */
- + (void)HoughCircles:(Mat*)image circles:(Mat*)circles method:(HoughModes)method dp:(double)dp minDist:(double)minDist param1:(double)param1 NS_SWIFT_NAME(HoughCircles(image:circles:method:dp:minDist:param1:));
- /**
- * Finds circles in a grayscale image using the Hough transform.
- *
- * The function finds circles in a grayscale image using a modification of the Hough transform.
- *
- * Example: :
- * INCLUDE: snippets/imgproc_HoughLinesCircles.cpp
- *
- * NOTE: Usually the function detects the centers of circles well. However, it may fail to find correct
- * radii. You can assist to the function by specifying the radius range ( minRadius and maxRadius ) if
- * you know it. Or, in the case of #HOUGH_GRADIENT method you may set maxRadius to a negative number
- * to return centers only without radius search, and find the correct radius using an additional procedure.
- *
- * It also helps to smooth image a bit unless it's already soft. For example,
- * GaussianBlur() with 7x7 kernel and 1.5x1.5 sigma or similar blurring may help.
- *
- * @param image 8-bit, single-channel, grayscale input image.
- * @param circles Output vector of found circles. Each vector is encoded as 3 or 4 element
- * floating-point vector `$$(x, y, radius)$$` or `$$(x, y, radius, votes)$$` .
- * @param method Detection method, see #HoughModes. The available methods are #HOUGH_GRADIENT and #HOUGH_GRADIENT_ALT.
- * @param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if
- * dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has
- * half as big width and height. For #HOUGH_GRADIENT_ALT the recommended value is dp=1.5,
- * unless some small very circles need to be detected.
- * @param minDist Minimum distance between the centers of the detected circles. If the parameter is
- * too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is
- * too large, some circles may be missed.
- * it is the higher threshold of the two passed to the Canny edge detector (the lower one is twice smaller).
- * Note that #HOUGH_GRADIENT_ALT uses #Scharr algorithm to compute image derivatives, so the threshold value
- * shough normally be higher, such as 300 or normally exposed and contrasty images.
- * accumulator threshold for the circle centers at the detection stage. The smaller it is, the more
- * false circles may be detected. Circles, corresponding to the larger accumulator values, will be
- * returned first. In the case of #HOUGH_GRADIENT_ALT algorithm, this is the circle "perfectness" measure.
- * The closer it to 1, the better shaped circles algorithm selects. In most cases 0.9 should be fine.
- * If you want get better detection of small circles, you may decrease it to 0.85, 0.8 or even less.
- * But then also try to limit the search range [minRadius, maxRadius] to avoid many false circles.
- * centers without finding the radius. #HOUGH_GRADIENT_ALT always computes circle radiuses.
- *
- * @see `+fitEllipse:`, `+minEnclosingCircle:center:radius:`
- */
- + (void)HoughCircles:(Mat*)image circles:(Mat*)circles method:(HoughModes)method dp:(double)dp minDist:(double)minDist NS_SWIFT_NAME(HoughCircles(image:circles:method:dp:minDist:));
- //
- // void cv::erode(Mat src, Mat& dst, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, BorderTypes borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue())
- //
- /**
- * Erodes an image by using a specific structuring element.
- *
- * The function erodes the source image using the specified structuring element that determines the
- * shape of a pixel neighborhood over which the minimum is taken:
- *
- * `$$\texttt{dst} (x,y) = \min _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')$$`
- *
- * The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In
- * case of multi-channel images, each channel is processed independently.
- *
- * @param src input image; the number of channels can be arbitrary, but the depth should be one of
- * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- * @param dst output image of the same size and type as src.
- * @param kernel structuring element used for erosion; if `element=Mat()`, a `3 x 3` rectangular
- * structuring element is used. Kernel can be created using #getStructuringElement.
- * @param anchor position of the anchor within the element; default value (-1, -1) means that the
- * anchor is at the element center.
- * @param iterations number of times erosion is applied.
- * @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
- * @param borderValue border value in case of a constant border
- * @see `+dilate:dst:kernel:anchor:iterations:borderType:borderValue:`, `+morphologyEx:dst:op:kernel:anchor:iterations:borderType:borderValue:`, `+getStructuringElement:ksize:anchor:`
- */
- + (void)erode:(Mat*)src dst:(Mat*)dst kernel:(Mat*)kernel anchor:(Point2i*)anchor iterations:(int)iterations borderType:(BorderTypes)borderType borderValue:(Scalar*)borderValue NS_SWIFT_NAME(erode(src:dst:kernel:anchor:iterations:borderType:borderValue:));
- /**
- * Erodes an image by using a specific structuring element.
- *
- * The function erodes the source image using the specified structuring element that determines the
- * shape of a pixel neighborhood over which the minimum is taken:
- *
- * `$$\texttt{dst} (x,y) = \min _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')$$`
- *
- * The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In
- * case of multi-channel images, each channel is processed independently.
- *
- * @param src input image; the number of channels can be arbitrary, but the depth should be one of
- * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- * @param dst output image of the same size and type as src.
- * @param kernel structuring element used for erosion; if `element=Mat()`, a `3 x 3` rectangular
- * structuring element is used. Kernel can be created using #getStructuringElement.
- * @param anchor position of the anchor within the element; default value (-1, -1) means that the
- * anchor is at the element center.
- * @param iterations number of times erosion is applied.
- * @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
- * @see `+dilate:dst:kernel:anchor:iterations:borderType:borderValue:`, `+morphologyEx:dst:op:kernel:anchor:iterations:borderType:borderValue:`, `+getStructuringElement:ksize:anchor:`
- */
- + (void)erode:(Mat*)src dst:(Mat*)dst kernel:(Mat*)kernel anchor:(Point2i*)anchor iterations:(int)iterations borderType:(BorderTypes)borderType NS_SWIFT_NAME(erode(src:dst:kernel:anchor:iterations:borderType:));
- /**
- * Erodes an image by using a specific structuring element.
- *
- * The function erodes the source image using the specified structuring element that determines the
- * shape of a pixel neighborhood over which the minimum is taken:
- *
- * `$$\texttt{dst} (x,y) = \min _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')$$`
- *
- * The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In
- * case of multi-channel images, each channel is processed independently.
- *
- * @param src input image; the number of channels can be arbitrary, but the depth should be one of
- * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- * @param dst output image of the same size and type as src.
- * @param kernel structuring element used for erosion; if `element=Mat()`, a `3 x 3` rectangular
- * structuring element is used. Kernel can be created using #getStructuringElement.
- * @param anchor position of the anchor within the element; default value (-1, -1) means that the
- * anchor is at the element center.
- * @param iterations number of times erosion is applied.
- * @see `+dilate:dst:kernel:anchor:iterations:borderType:borderValue:`, `+morphologyEx:dst:op:kernel:anchor:iterations:borderType:borderValue:`, `+getStructuringElement:ksize:anchor:`
- */
- + (void)erode:(Mat*)src dst:(Mat*)dst kernel:(Mat*)kernel anchor:(Point2i*)anchor iterations:(int)iterations NS_SWIFT_NAME(erode(src:dst:kernel:anchor:iterations:));
- /**
- * Erodes an image by using a specific structuring element.
- *
- * The function erodes the source image using the specified structuring element that determines the
- * shape of a pixel neighborhood over which the minimum is taken:
- *
- * `$$\texttt{dst} (x,y) = \min _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')$$`
- *
- * The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In
- * case of multi-channel images, each channel is processed independently.
- *
- * @param src input image; the number of channels can be arbitrary, but the depth should be one of
- * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- * @param dst output image of the same size and type as src.
- * @param kernel structuring element used for erosion; if `element=Mat()`, a `3 x 3` rectangular
- * structuring element is used. Kernel can be created using #getStructuringElement.
- * @param anchor position of the anchor within the element; default value (-1, -1) means that the
- * anchor is at the element center.
- * @see `+dilate:dst:kernel:anchor:iterations:borderType:borderValue:`, `+morphologyEx:dst:op:kernel:anchor:iterations:borderType:borderValue:`, `+getStructuringElement:ksize:anchor:`
- */
- + (void)erode:(Mat*)src dst:(Mat*)dst kernel:(Mat*)kernel anchor:(Point2i*)anchor NS_SWIFT_NAME(erode(src:dst:kernel:anchor:));
- /**
- * Erodes an image by using a specific structuring element.
- *
- * The function erodes the source image using the specified structuring element that determines the
- * shape of a pixel neighborhood over which the minimum is taken:
- *
- * `$$\texttt{dst} (x,y) = \min _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')$$`
- *
- * The function supports the in-place mode. Erosion can be applied several ( iterations ) times. In
- * case of multi-channel images, each channel is processed independently.
- *
- * @param src input image; the number of channels can be arbitrary, but the depth should be one of
- * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- * @param dst output image of the same size and type as src.
- * @param kernel structuring element used for erosion; if `element=Mat()`, a `3 x 3` rectangular
- * structuring element is used. Kernel can be created using #getStructuringElement.
- * anchor is at the element center.
- * @see `+dilate:dst:kernel:anchor:iterations:borderType:borderValue:`, `+morphologyEx:dst:op:kernel:anchor:iterations:borderType:borderValue:`, `+getStructuringElement:ksize:anchor:`
- */
- + (void)erode:(Mat*)src dst:(Mat*)dst kernel:(Mat*)kernel NS_SWIFT_NAME(erode(src:dst:kernel:));
- //
- // void cv::dilate(Mat src, Mat& dst, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, BorderTypes borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue())
- //
- /**
- * Dilates an image by using a specific structuring element.
- *
- * The function dilates the source image using the specified structuring element that determines the
- * shape of a pixel neighborhood over which the maximum is taken:
- * `$$\texttt{dst} (x,y) = \max _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')$$`
- *
- * The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In
- * case of multi-channel images, each channel is processed independently.
- *
- * @param src input image; the number of channels can be arbitrary, but the depth should be one of
- * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- * @param dst output image of the same size and type as src.
- * @param kernel structuring element used for dilation; if elemenat=Mat(), a 3 x 3 rectangular
- * structuring element is used. Kernel can be created using #getStructuringElement
- * @param anchor position of the anchor within the element; default value (-1, -1) means that the
- * anchor is at the element center.
- * @param iterations number of times dilation is applied.
- * @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not suported.
- * @param borderValue border value in case of a constant border
- * @see `+erode:dst:kernel:anchor:iterations:borderType:borderValue:`, `+morphologyEx:dst:op:kernel:anchor:iterations:borderType:borderValue:`, `+getStructuringElement:ksize:anchor:`
- */
- + (void)dilate:(Mat*)src dst:(Mat*)dst kernel:(Mat*)kernel anchor:(Point2i*)anchor iterations:(int)iterations borderType:(BorderTypes)borderType borderValue:(Scalar*)borderValue NS_SWIFT_NAME(dilate(src:dst:kernel:anchor:iterations:borderType:borderValue:));
- /**
- * Dilates an image by using a specific structuring element.
- *
- * The function dilates the source image using the specified structuring element that determines the
- * shape of a pixel neighborhood over which the maximum is taken:
- * `$$\texttt{dst} (x,y) = \max _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')$$`
- *
- * The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In
- * case of multi-channel images, each channel is processed independently.
- *
- * @param src input image; the number of channels can be arbitrary, but the depth should be one of
- * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- * @param dst output image of the same size and type as src.
- * @param kernel structuring element used for dilation; if elemenat=Mat(), a 3 x 3 rectangular
- * structuring element is used. Kernel can be created using #getStructuringElement
- * @param anchor position of the anchor within the element; default value (-1, -1) means that the
- * anchor is at the element center.
- * @param iterations number of times dilation is applied.
- * @param borderType pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not suported.
- * @see `+erode:dst:kernel:anchor:iterations:borderType:borderValue:`, `+morphologyEx:dst:op:kernel:anchor:iterations:borderType:borderValue:`, `+getStructuringElement:ksize:anchor:`
- */
- + (void)dilate:(Mat*)src dst:(Mat*)dst kernel:(Mat*)kernel anchor:(Point2i*)anchor iterations:(int)iterations borderType:(BorderTypes)borderType NS_SWIFT_NAME(dilate(src:dst:kernel:anchor:iterations:borderType:));
- /**
- * Dilates an image by using a specific structuring element.
- *
- * The function dilates the source image using the specified structuring element that determines the
- * shape of a pixel neighborhood over which the maximum is taken:
- * `$$\texttt{dst} (x,y) = \max _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')$$`
- *
- * The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In
- * case of multi-channel images, each channel is processed independently.
- *
- * @param src input image; the number of channels can be arbitrary, but the depth should be one of
- * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- * @param dst output image of the same size and type as src.
- * @param kernel structuring element used for dilation; if elemenat=Mat(), a 3 x 3 rectangular
- * structuring element is used. Kernel can be created using #getStructuringElement
- * @param anchor position of the anchor within the element; default value (-1, -1) means that the
- * anchor is at the element center.
- * @param iterations number of times dilation is applied.
- * @see `+erode:dst:kernel:anchor:iterations:borderType:borderValue:`, `+morphologyEx:dst:op:kernel:anchor:iterations:borderType:borderValue:`, `+getStructuringElement:ksize:anchor:`
- */
- + (void)dilate:(Mat*)src dst:(Mat*)dst kernel:(Mat*)kernel anchor:(Point2i*)anchor iterations:(int)iterations NS_SWIFT_NAME(dilate(src:dst:kernel:anchor:iterations:));
- /**
- * Dilates an image by using a specific structuring element.
- *
- * The function dilates the source image using the specified structuring element that determines the
- * shape of a pixel neighborhood over which the maximum is taken:
- * `$$\texttt{dst} (x,y) = \max _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')$$`
- *
- * The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In
- * case of multi-channel images, each channel is processed independently.
- *
- * @param src input image; the number of channels can be arbitrary, but the depth should be one of
- * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- * @param dst output image of the same size and type as src.
- * @param kernel structuring element used for dilation; if elemenat=Mat(), a 3 x 3 rectangular
- * structuring element is used. Kernel can be created using #getStructuringElement
- * @param anchor position of the anchor within the element; default value (-1, -1) means that the
- * anchor is at the element center.
- * @see `+erode:dst:kernel:anchor:iterations:borderType:borderValue:`, `+morphologyEx:dst:op:kernel:anchor:iterations:borderType:borderValue:`, `+getStructuringElement:ksize:anchor:`
- */
- + (void)dilate:(Mat*)src dst:(Mat*)dst kernel:(Mat*)kernel anchor:(Point2i*)anchor NS_SWIFT_NAME(dilate(src:dst:kernel:anchor:));
- /**
- * Dilates an image by using a specific structuring element.
- *
- * The function dilates the source image using the specified structuring element that determines the
- * shape of a pixel neighborhood over which the maximum is taken:
- * `$$\texttt{dst} (x,y) = \max _{(x',y'): \, \texttt{element} (x',y') \ne0 } \texttt{src} (x+x',y+y')$$`
- *
- * The function supports the in-place mode. Dilation can be applied several ( iterations ) times. In
- * case of multi-channel images, each channel is processed independently.
- *
- * @param src input image; the number of channels can be arbitrary, but the depth should be one of
- * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- * @param dst output image of the same size and type as src.
- * @param kernel structuring element used for dilation; if elemenat=Mat(), a 3 x 3 rectangular
- * structuring element is used. Kernel can be created using #getStructuringElement
- * anchor is at the element center.
- * @see `+erode:dst:kernel:anchor:iterations:borderType:borderValue:`, `+morphologyEx:dst:op:kernel:anchor:iterations:borderType:borderValue:`, `+getStructuringElement:ksize:anchor:`
- */
- + (void)dilate:(Mat*)src dst:(Mat*)dst kernel:(Mat*)kernel NS_SWIFT_NAME(dilate(src:dst:kernel:));
- //
- // void cv::morphologyEx(Mat src, Mat& dst, MorphTypes op, Mat kernel, Point anchor = Point(-1,-1), int iterations = 1, BorderTypes borderType = BORDER_CONSTANT, Scalar borderValue = morphologyDefaultBorderValue())
- //
- /**
- * Performs advanced morphological transformations.
- *
- * The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as
- * basic operations.
- *
- * Any of the operations can be done in-place. In case of multi-channel images, each channel is
- * processed independently.
- *
- * @param src Source image. The number of channels can be arbitrary. The depth should be one of
- * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- * @param dst Destination image of the same size and type as source image.
- * @param op Type of a morphological operation, see #MorphTypes
- * @param kernel Structuring element. It can be created using #getStructuringElement.
- * @param anchor Anchor position with the kernel. Negative values mean that the anchor is at the
- * kernel center.
- * @param iterations Number of times erosion and dilation are applied.
- * @param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
- * @param borderValue Border value in case of a constant border. The default value has a special
- * meaning.
- * @see `+dilate:dst:kernel:anchor:iterations:borderType:borderValue:`, `+erode:dst:kernel:anchor:iterations:borderType:borderValue:`, `+getStructuringElement:ksize:anchor:`
- * NOTE: The number of iterations is the number of times erosion or dilatation operation will be applied.
- * For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply
- * successively: erode -> erode -> dilate -> dilate (and not erode -> dilate -> erode -> dilate).
- */
- + (void)morphologyEx:(Mat*)src dst:(Mat*)dst op:(MorphTypes)op kernel:(Mat*)kernel anchor:(Point2i*)anchor iterations:(int)iterations borderType:(BorderTypes)borderType borderValue:(Scalar*)borderValue NS_SWIFT_NAME(morphologyEx(src:dst:op:kernel:anchor:iterations:borderType:borderValue:));
- /**
- * Performs advanced morphological transformations.
- *
- * The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as
- * basic operations.
- *
- * Any of the operations can be done in-place. In case of multi-channel images, each channel is
- * processed independently.
- *
- * @param src Source image. The number of channels can be arbitrary. The depth should be one of
- * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- * @param dst Destination image of the same size and type as source image.
- * @param op Type of a morphological operation, see #MorphTypes
- * @param kernel Structuring element. It can be created using #getStructuringElement.
- * @param anchor Anchor position with the kernel. Negative values mean that the anchor is at the
- * kernel center.
- * @param iterations Number of times erosion and dilation are applied.
- * @param borderType Pixel extrapolation method, see #BorderTypes. #BORDER_WRAP is not supported.
- * meaning.
- * @see `+dilate:dst:kernel:anchor:iterations:borderType:borderValue:`, `+erode:dst:kernel:anchor:iterations:borderType:borderValue:`, `+getStructuringElement:ksize:anchor:`
- * NOTE: The number of iterations is the number of times erosion or dilatation operation will be applied.
- * For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply
- * successively: erode -> erode -> dilate -> dilate (and not erode -> dilate -> erode -> dilate).
- */
- + (void)morphologyEx:(Mat*)src dst:(Mat*)dst op:(MorphTypes)op kernel:(Mat*)kernel anchor:(Point2i*)anchor iterations:(int)iterations borderType:(BorderTypes)borderType NS_SWIFT_NAME(morphologyEx(src:dst:op:kernel:anchor:iterations:borderType:));
- /**
- * Performs advanced morphological transformations.
- *
- * The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as
- * basic operations.
- *
- * Any of the operations can be done in-place. In case of multi-channel images, each channel is
- * processed independently.
- *
- * @param src Source image. The number of channels can be arbitrary. The depth should be one of
- * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- * @param dst Destination image of the same size and type as source image.
- * @param op Type of a morphological operation, see #MorphTypes
- * @param kernel Structuring element. It can be created using #getStructuringElement.
- * @param anchor Anchor position with the kernel. Negative values mean that the anchor is at the
- * kernel center.
- * @param iterations Number of times erosion and dilation are applied.
- * meaning.
- * @see `+dilate:dst:kernel:anchor:iterations:borderType:borderValue:`, `+erode:dst:kernel:anchor:iterations:borderType:borderValue:`, `+getStructuringElement:ksize:anchor:`
- * NOTE: The number of iterations is the number of times erosion or dilatation operation will be applied.
- * For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply
- * successively: erode -> erode -> dilate -> dilate (and not erode -> dilate -> erode -> dilate).
- */
- + (void)morphologyEx:(Mat*)src dst:(Mat*)dst op:(MorphTypes)op kernel:(Mat*)kernel anchor:(Point2i*)anchor iterations:(int)iterations NS_SWIFT_NAME(morphologyEx(src:dst:op:kernel:anchor:iterations:));
- /**
- * Performs advanced morphological transformations.
- *
- * The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as
- * basic operations.
- *
- * Any of the operations can be done in-place. In case of multi-channel images, each channel is
- * processed independently.
- *
- * @param src Source image. The number of channels can be arbitrary. The depth should be one of
- * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- * @param dst Destination image of the same size and type as source image.
- * @param op Type of a morphological operation, see #MorphTypes
- * @param kernel Structuring element. It can be created using #getStructuringElement.
- * @param anchor Anchor position with the kernel. Negative values mean that the anchor is at the
- * kernel center.
- * meaning.
- * @see `+dilate:dst:kernel:anchor:iterations:borderType:borderValue:`, `+erode:dst:kernel:anchor:iterations:borderType:borderValue:`, `+getStructuringElement:ksize:anchor:`
- * NOTE: The number of iterations is the number of times erosion or dilatation operation will be applied.
- * For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply
- * successively: erode -> erode -> dilate -> dilate (and not erode -> dilate -> erode -> dilate).
- */
- + (void)morphologyEx:(Mat*)src dst:(Mat*)dst op:(MorphTypes)op kernel:(Mat*)kernel anchor:(Point2i*)anchor NS_SWIFT_NAME(morphologyEx(src:dst:op:kernel:anchor:));
- /**
- * Performs advanced morphological transformations.
- *
- * The function cv::morphologyEx can perform advanced morphological transformations using an erosion and dilation as
- * basic operations.
- *
- * Any of the operations can be done in-place. In case of multi-channel images, each channel is
- * processed independently.
- *
- * @param src Source image. The number of channels can be arbitrary. The depth should be one of
- * CV_8U, CV_16U, CV_16S, CV_32F or CV_64F.
- * @param dst Destination image of the same size and type as source image.
- * @param op Type of a morphological operation, see #MorphTypes
- * @param kernel Structuring element. It can be created using #getStructuringElement.
- * kernel center.
- * meaning.
- * @see `+dilate:dst:kernel:anchor:iterations:borderType:borderValue:`, `+erode:dst:kernel:anchor:iterations:borderType:borderValue:`, `+getStructuringElement:ksize:anchor:`
- * NOTE: The number of iterations is the number of times erosion or dilatation operation will be applied.
- * For instance, an opening operation (#MORPH_OPEN) with two iterations is equivalent to apply
- * successively: erode -> erode -> dilate -> dilate (and not erode -> dilate -> erode -> dilate).
- */
- + (void)morphologyEx:(Mat*)src dst:(Mat*)dst op:(MorphTypes)op kernel:(Mat*)kernel NS_SWIFT_NAME(morphologyEx(src:dst:op:kernel:));
- //
- // void cv::resize(Mat src, Mat& dst, Size dsize, double fx = 0, double fy = 0, int interpolation = INTER_LINEAR)
- //
- /**
- * Resizes an image.
- *
- * The function resize resizes the image src down to or up to the specified size. Note that the
- * initial dst type or size are not taken into account. Instead, the size and type are derived from
- * the `src`,`dsize`,`fx`, and `fy`. If you want to resize src so that it fits the pre-created dst,
- * you may call the function as follows:
- *
- * // explicitly specify dsize=dst.size(); fx and fy will be computed from that.
- * resize(src, dst, dst.size(), 0, 0, interpolation);
- *
- * If you want to decimate the image by factor of 2 in each direction, you can call the function this
- * way:
- *
- * // specify fx and fy and let the function compute the destination image size.
- * resize(src, dst, Size(), 0.5, 0.5, interpolation);
- *
- * To shrink an image, it will generally look best with #INTER_AREA interpolation, whereas to
- * enlarge an image, it will generally look best with #INTER_CUBIC (slow) or #INTER_LINEAR
- * (faster but still looks OK).
- *
- * @param src input image.
- * @param dst output image; it has the size dsize (when it is non-zero) or the size computed from
- * src.size(), fx, and fy; the type of dst is the same as of src.
- * @param dsize output image size; if it equals zero (`None` in Python), it is computed as:
- * `$$\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}$$`
- * Either dsize or both fx and fy must be non-zero.
- * @param fx scale factor along the horizontal axis; when it equals 0, it is computed as
- * `$$\texttt{(double)dsize.width/src.cols}$$`
- * @param fy scale factor along the vertical axis; when it equals 0, it is computed as
- * `$$\texttt{(double)dsize.height/src.rows}$$`
- * @param interpolation interpolation method, see #InterpolationFlags
- *
- * @see `+warpAffine:dst:M:dsize:flags:borderMode:borderValue:`, `+warpPerspective:dst:M:dsize:flags:borderMode:borderValue:`, `+remap:dst:map1:map2:interpolation:borderMode:borderValue:`
- */
- + (void)resize:(Mat*)src dst:(Mat*)dst dsize:(Size2i*)dsize fx:(double)fx fy:(double)fy interpolation:(int)interpolation NS_SWIFT_NAME(resize(src:dst:dsize:fx:fy:interpolation:));
- /**
- * Resizes an image.
- *
- * The function resize resizes the image src down to or up to the specified size. Note that the
- * initial dst type or size are not taken into account. Instead, the size and type are derived from
- * the `src`,`dsize`,`fx`, and `fy`. If you want to resize src so that it fits the pre-created dst,
- * you may call the function as follows:
- *
- * // explicitly specify dsize=dst.size(); fx and fy will be computed from that.
- * resize(src, dst, dst.size(), 0, 0, interpolation);
- *
- * If you want to decimate the image by factor of 2 in each direction, you can call the function this
- * way:
- *
- * // specify fx and fy and let the function compute the destination image size.
- * resize(src, dst, Size(), 0.5, 0.5, interpolation);
- *
- * To shrink an image, it will generally look best with #INTER_AREA interpolation, whereas to
- * enlarge an image, it will generally look best with #INTER_CUBIC (slow) or #INTER_LINEAR
- * (faster but still looks OK).
- *
- * @param src input image.
- * @param dst output image; it has the size dsize (when it is non-zero) or the size computed from
- * src.size(), fx, and fy; the type of dst is the same as of src.
- * @param dsize output image size; if it equals zero (`None` in Python), it is computed as:
- * `$$\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}$$`
- * Either dsize or both fx and fy must be non-zero.
- * @param fx scale factor along the horizontal axis; when it equals 0, it is computed as
- * `$$\texttt{(double)dsize.width/src.cols}$$`
- * @param fy scale factor along the vertical axis; when it equals 0, it is computed as
- * `$$\texttt{(double)dsize.height/src.rows}$$`
- *
- * @see `+warpAffine:dst:M:dsize:flags:borderMode:borderValue:`, `+warpPerspective:dst:M:dsize:flags:borderMode:borderValue:`, `+remap:dst:map1:map2:interpolation:borderMode:borderValue:`
- */
- + (void)resize:(Mat*)src dst:(Mat*)dst dsize:(Size2i*)dsize fx:(double)fx fy:(double)fy NS_SWIFT_NAME(resize(src:dst:dsize:fx:fy:));
- /**
- * Resizes an image.
- *
- * The function resize resizes the image src down to or up to the specified size. Note that the
- * initial dst type or size are not taken into account. Instead, the size and type are derived from
- * the `src`,`dsize`,`fx`, and `fy`. If you want to resize src so that it fits the pre-created dst,
- * you may call the function as follows:
- *
- * // explicitly specify dsize=dst.size(); fx and fy will be computed from that.
- * resize(src, dst, dst.size(), 0, 0, interpolation);
- *
- * If you want to decimate the image by factor of 2 in each direction, you can call the function this
- * way:
- *
- * // specify fx and fy and let the function compute the destination image size.
- * resize(src, dst, Size(), 0.5, 0.5, interpolation);
- *
- * To shrink an image, it will generally look best with #INTER_AREA interpolation, whereas to
- * enlarge an image, it will generally look best with #INTER_CUBIC (slow) or #INTER_LINEAR
- * (faster but still looks OK).
- *
- * @param src input image.
- * @param dst output image; it has the size dsize (when it is non-zero) or the size computed from
- * src.size(), fx, and fy; the type of dst is the same as of src.
- * @param dsize output image size; if it equals zero (`None` in Python), it is computed as:
- * `$$\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}$$`
- * Either dsize or both fx and fy must be non-zero.
- * @param fx scale factor along the horizontal axis; when it equals 0, it is computed as
- * `$$\texttt{(double)dsize.width/src.cols}$$`
- * `$$\texttt{(double)dsize.height/src.rows}$$`
- *
- * @see `+warpAffine:dst:M:dsize:flags:borderMode:borderValue:`, `+warpPerspective:dst:M:dsize:flags:borderMode:borderValue:`, `+remap:dst:map1:map2:interpolation:borderMode:borderValue:`
- */
- + (void)resize:(Mat*)src dst:(Mat*)dst dsize:(Size2i*)dsize fx:(double)fx NS_SWIFT_NAME(resize(src:dst:dsize:fx:));
- /**
- * Resizes an image.
- *
- * The function resize resizes the image src down to or up to the specified size. Note that the
- * initial dst type or size are not taken into account. Instead, the size and type are derived from
- * the `src`,`dsize`,`fx`, and `fy`. If you want to resize src so that it fits the pre-created dst,
- * you may call the function as follows:
- *
- * // explicitly specify dsize=dst.size(); fx and fy will be computed from that.
- * resize(src, dst, dst.size(), 0, 0, interpolation);
- *
- * If you want to decimate the image by factor of 2 in each direction, you can call the function this
- * way:
- *
- * // specify fx and fy and let the function compute the destination image size.
- * resize(src, dst, Size(), 0.5, 0.5, interpolation);
- *
- * To shrink an image, it will generally look best with #INTER_AREA interpolation, whereas to
- * enlarge an image, it will generally look best with #INTER_CUBIC (slow) or #INTER_LINEAR
- * (faster but still looks OK).
- *
- * @param src input image.
- * @param dst output image; it has the size dsize (when it is non-zero) or the size computed from
- * src.size(), fx, and fy; the type of dst is the same as of src.
- * @param dsize output image size; if it equals zero (`None` in Python), it is computed as:
- * `$$\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}$$`
- * Either dsize or both fx and fy must be non-zero.
- * `$$\texttt{(double)dsize.width/src.cols}$$`
- * `$$\texttt{(double)dsize.height/src.rows}$$`
- *
- * @see `+warpAffine:dst:M:dsize:flags:borderMode:borderValue:`, `+warpPerspective:dst:M:dsize:flags:borderMode:borderValue:`, `+remap:dst:map1:map2:interpolation:borderMode:borderValue:`
- */
- + (void)resize:(Mat*)src dst:(Mat*)dst dsize:(Size2i*)dsize NS_SWIFT_NAME(resize(src:dst:dsize:));
- //
- // void cv::warpAffine(Mat src, Mat& dst, Mat M, Size dsize, int flags = INTER_LINEAR, BorderTypes borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar())
- //
- /**
- * Applies an affine transformation to an image.
- *
- * The function warpAffine transforms the source image using the specified matrix:
- *
- * `$$\texttt{dst} (x,y) = \texttt{src} ( \texttt{M} _{11} x + \texttt{M} _{12} y + \texttt{M} _{13}, \texttt{M} _{21} x + \texttt{M} _{22} y + \texttt{M} _{23})$$`
- *
- * when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted
- * with #invertAffineTransform and then put in the formula above instead of M. The function cannot
- * operate in-place.
- *
- * @param src input image.
- * @param dst output image that has the size dsize and the same type as src .
- * @param M `$$2\times 3$$` transformation matrix.
- * @param dsize size of the output image.
- * @param flags combination of interpolation methods (see #InterpolationFlags) and the optional
- * flag #WARP_INVERSE_MAP that means that M is the inverse transformation (
- * `$$\texttt{dst}\rightarrow\texttt{src}$$` ).
- * @param borderMode pixel extrapolation method (see #BorderTypes); when
- * borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to
- * the "outliers" in the source image are not modified by the function.
- * @param borderValue value used in case of a constant border; by default, it is 0.
- *
- * @see `+warpPerspective:dst:M:dsize:flags:borderMode:borderValue:`, `+resize:dst:dsize:fx:fy:interpolation:`, `+remap:dst:map1:map2:interpolation:borderMode:borderValue:`, `+getRectSubPix:patchSize:center:patch:patchType:`, `transform`
- */
- + (void)warpAffine:(Mat*)src dst:(Mat*)dst M:(Mat*)M dsize:(Size2i*)dsize flags:(int)flags borderMode:(BorderTypes)borderMode borderValue:(Scalar*)borderValue NS_SWIFT_NAME(warpAffine(src:dst:M:dsize:flags:borderMode:borderValue:));
- /**
- * Applies an affine transformation to an image.
- *
- * The function warpAffine transforms the source image using the specified matrix:
- *
- * `$$\texttt{dst} (x,y) = \texttt{src} ( \texttt{M} _{11} x + \texttt{M} _{12} y + \texttt{M} _{13}, \texttt{M} _{21} x + \texttt{M} _{22} y + \texttt{M} _{23})$$`
- *
- * when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted
- * with #invertAffineTransform and then put in the formula above instead of M. The function cannot
- * operate in-place.
- *
- * @param src input image.
- * @param dst output image that has the size dsize and the same type as src .
- * @param M `$$2\times 3$$` transformation matrix.
- * @param dsize size of the output image.
- * @param flags combination of interpolation methods (see #InterpolationFlags) and the optional
- * flag #WARP_INVERSE_MAP that means that M is the inverse transformation (
- * `$$\texttt{dst}\rightarrow\texttt{src}$$` ).
- * @param borderMode pixel extrapolation method (see #BorderTypes); when
- * borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to
- * the "outliers" in the source image are not modified by the function.
- *
- * @see `+warpPerspective:dst:M:dsize:flags:borderMode:borderValue:`, `+resize:dst:dsize:fx:fy:interpolation:`, `+remap:dst:map1:map2:interpolation:borderMode:borderValue:`, `+getRectSubPix:patchSize:center:patch:patchType:`, `transform`
- */
- + (void)warpAffine:(Mat*)src dst:(Mat*)dst M:(Mat*)M dsize:(Size2i*)dsize flags:(int)flags borderMode:(BorderTypes)borderMode NS_SWIFT_NAME(warpAffine(src:dst:M:dsize:flags:borderMode:));
- /**
- * Applies an affine transformation to an image.
- *
- * The function warpAffine transforms the source image using the specified matrix:
- *
- * `$$\texttt{dst} (x,y) = \texttt{src} ( \texttt{M} _{11} x + \texttt{M} _{12} y + \texttt{M} _{13}, \texttt{M} _{21} x + \texttt{M} _{22} y + \texttt{M} _{23})$$`
- *
- * when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted
- * with #invertAffineTransform and then put in the formula above instead of M. The function cannot
- * operate in-place.
- *
- * @param src input image.
- * @param dst output image that has the size dsize and the same type as src .
- * @param M `$$2\times 3$$` transformation matrix.
- * @param dsize size of the output image.
- * @param flags combination of interpolation methods (see #InterpolationFlags) and the optional
- * flag #WARP_INVERSE_MAP that means that M is the inverse transformation (
- * `$$\texttt{dst}\rightarrow\texttt{src}$$` ).
- * borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to
- * the "outliers" in the source image are not modified by the function.
- *
- * @see `+warpPerspective:dst:M:dsize:flags:borderMode:borderValue:`, `+resize:dst:dsize:fx:fy:interpolation:`, `+remap:dst:map1:map2:interpolation:borderMode:borderValue:`, `+getRectSubPix:patchSize:center:patch:patchType:`, `transform`
- */
- + (void)warpAffine:(Mat*)src dst:(Mat*)dst M:(Mat*)M dsize:(Size2i*)dsize flags:(int)flags NS_SWIFT_NAME(warpAffine(src:dst:M:dsize:flags:));
- /**
- * Applies an affine transformation to an image.
- *
- * The function warpAffine transforms the source image using the specified matrix:
- *
- * `$$\texttt{dst} (x,y) = \texttt{src} ( \texttt{M} _{11} x + \texttt{M} _{12} y + \texttt{M} _{13}, \texttt{M} _{21} x + \texttt{M} _{22} y + \texttt{M} _{23})$$`
- *
- * when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted
- * with #invertAffineTransform and then put in the formula above instead of M. The function cannot
- * operate in-place.
- *
- * @param src input image.
- * @param dst output image that has the size dsize and the same type as src .
- * @param M `$$2\times 3$$` transformation matrix.
- * @param dsize size of the output image.
- * flag #WARP_INVERSE_MAP that means that M is the inverse transformation (
- * `$$\texttt{dst}\rightarrow\texttt{src}$$` ).
- * borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image corresponding to
- * the "outliers" in the source image are not modified by the function.
- *
- * @see `+warpPerspective:dst:M:dsize:flags:borderMode:borderValue:`, `+resize:dst:dsize:fx:fy:interpolation:`, `+remap:dst:map1:map2:interpolation:borderMode:borderValue:`, `+getRectSubPix:patchSize:center:patch:patchType:`, `transform`
- */
- + (void)warpAffine:(Mat*)src dst:(Mat*)dst M:(Mat*)M dsize:(Size2i*)dsize NS_SWIFT_NAME(warpAffine(src:dst:M:dsize:));
- //
- // void cv::warpPerspective(Mat src, Mat& dst, Mat M, Size dsize, int flags = INTER_LINEAR, BorderTypes borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar())
- //
- /**
- * Applies a perspective transformation to an image.
- *
- * The function warpPerspective transforms the source image using the specified matrix:
- *
- * `$$\texttt{dst} (x,y) = \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} ,
- * \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )$$`
- *
- * when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert
- * and then put in the formula above instead of M. The function cannot operate in-place.
- *
- * @param src input image.
- * @param dst output image that has the size dsize and the same type as src .
- * @param M `$$3\times 3$$` transformation matrix.
- * @param dsize size of the output image.
- * @param flags combination of interpolation methods (#INTER_LINEAR or #INTER_NEAREST) and the
- * optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation (
- * `$$\texttt{dst}\rightarrow\texttt{src}$$` ).
- * @param borderMode pixel extrapolation method (#BORDER_CONSTANT or #BORDER_REPLICATE).
- * @param borderValue value used in case of a constant border; by default, it equals 0.
- *
- * @see `+warpAffine:dst:M:dsize:flags:borderMode:borderValue:`, `+resize:dst:dsize:fx:fy:interpolation:`, `+remap:dst:map1:map2:interpolation:borderMode:borderValue:`, `+getRectSubPix:patchSize:center:patch:patchType:`, `perspectiveTransform`
- */
- + (void)warpPerspective:(Mat*)src dst:(Mat*)dst M:(Mat*)M dsize:(Size2i*)dsize flags:(int)flags borderMode:(BorderTypes)borderMode borderValue:(Scalar*)borderValue NS_SWIFT_NAME(warpPerspective(src:dst:M:dsize:flags:borderMode:borderValue:));
- /**
- * Applies a perspective transformation to an image.
- *
- * The function warpPerspective transforms the source image using the specified matrix:
- *
- * `$$\texttt{dst} (x,y) = \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} ,
- * \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )$$`
- *
- * when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert
- * and then put in the formula above instead of M. The function cannot operate in-place.
- *
- * @param src input image.
- * @param dst output image that has the size dsize and the same type as src .
- * @param M `$$3\times 3$$` transformation matrix.
- * @param dsize size of the output image.
- * @param flags combination of interpolation methods (#INTER_LINEAR or #INTER_NEAREST) and the
- * optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation (
- * `$$\texttt{dst}\rightarrow\texttt{src}$$` ).
- * @param borderMode pixel extrapolation method (#BORDER_CONSTANT or #BORDER_REPLICATE).
- *
- * @see `+warpAffine:dst:M:dsize:flags:borderMode:borderValue:`, `+resize:dst:dsize:fx:fy:interpolation:`, `+remap:dst:map1:map2:interpolation:borderMode:borderValue:`, `+getRectSubPix:patchSize:center:patch:patchType:`, `perspectiveTransform`
- */
- + (void)warpPerspective:(Mat*)src dst:(Mat*)dst M:(Mat*)M dsize:(Size2i*)dsize flags:(int)flags borderMode:(BorderTypes)borderMode NS_SWIFT_NAME(warpPerspective(src:dst:M:dsize:flags:borderMode:));
- /**
- * Applies a perspective transformation to an image.
- *
- * The function warpPerspective transforms the source image using the specified matrix:
- *
- * `$$\texttt{dst} (x,y) = \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} ,
- * \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )$$`
- *
- * when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert
- * and then put in the formula above instead of M. The function cannot operate in-place.
- *
- * @param src input image.
- * @param dst output image that has the size dsize and the same type as src .
- * @param M `$$3\times 3$$` transformation matrix.
- * @param dsize size of the output image.
- * @param flags combination of interpolation methods (#INTER_LINEAR or #INTER_NEAREST) and the
- * optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation (
- * `$$\texttt{dst}\rightarrow\texttt{src}$$` ).
- *
- * @see `+warpAffine:dst:M:dsize:flags:borderMode:borderValue:`, `+resize:dst:dsize:fx:fy:interpolation:`, `+remap:dst:map1:map2:interpolation:borderMode:borderValue:`, `+getRectSubPix:patchSize:center:patch:patchType:`, `perspectiveTransform`
- */
- + (void)warpPerspective:(Mat*)src dst:(Mat*)dst M:(Mat*)M dsize:(Size2i*)dsize flags:(int)flags NS_SWIFT_NAME(warpPerspective(src:dst:M:dsize:flags:));
- /**
- * Applies a perspective transformation to an image.
- *
- * The function warpPerspective transforms the source image using the specified matrix:
- *
- * `$$\texttt{dst} (x,y) = \texttt{src} \left ( \frac{M_{11} x + M_{12} y + M_{13}}{M_{31} x + M_{32} y + M_{33}} ,
- * \frac{M_{21} x + M_{22} y + M_{23}}{M_{31} x + M_{32} y + M_{33}} \right )$$`
- *
- * when the flag #WARP_INVERSE_MAP is set. Otherwise, the transformation is first inverted with invert
- * and then put in the formula above instead of M. The function cannot operate in-place.
- *
- * @param src input image.
- * @param dst output image that has the size dsize and the same type as src .
- * @param M `$$3\times 3$$` transformation matrix.
- * @param dsize size of the output image.
- * optional flag #WARP_INVERSE_MAP, that sets M as the inverse transformation (
- * `$$\texttt{dst}\rightarrow\texttt{src}$$` ).
- *
- * @see `+warpAffine:dst:M:dsize:flags:borderMode:borderValue:`, `+resize:dst:dsize:fx:fy:interpolation:`, `+remap:dst:map1:map2:interpolation:borderMode:borderValue:`, `+getRectSubPix:patchSize:center:patch:patchType:`, `perspectiveTransform`
- */
- + (void)warpPerspective:(Mat*)src dst:(Mat*)dst M:(Mat*)M dsize:(Size2i*)dsize NS_SWIFT_NAME(warpPerspective(src:dst:M:dsize:));
- //
- // void cv::remap(Mat src, Mat& dst, Mat map1, Mat map2, int interpolation, BorderTypes borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar())
- //
- /**
- * Applies a generic geometrical transformation to an image.
- *
- * The function remap transforms the source image using the specified map:
- *
- * `$$\texttt{dst} (x,y) = \texttt{src} (map_x(x,y),map_y(x,y))$$`
- *
- * where values of pixels with non-integer coordinates are computed using one of available
- * interpolation methods. `$$map_x$$` and `$$map_y$$` can be encoded as separate floating-point maps
- * in `$$map_1$$` and `$$map_2$$` respectively, or interleaved floating-point maps of `$$(x,y)$$` in
- * `$$map_1$$`, or fixed-point maps created by using #convertMaps. The reason you might want to
- * convert from floating to fixed-point representations of a map is that they can yield much faster
- * (\~2x) remapping operations. In the converted case, `$$map_1$$` contains pairs (cvFloor(x),
- * cvFloor(y)) and `$$map_2$$` contains indices in a table of interpolation coefficients.
- *
- * This function cannot operate in-place.
- *
- * @param src Source image.
- * @param dst Destination image. It has the same size as map1 and the same type as src .
- * @param map1 The first map of either (x,y) points or just x values having the type CV_16SC2 ,
- * CV_32FC1, or CV_32FC2. See #convertMaps for details on converting a floating point
- * representation to fixed-point for speed.
- * @param map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map
- * if map1 is (x,y) points), respectively.
- * @param interpolation Interpolation method (see #InterpolationFlags). The methods #INTER_AREA
- * and #INTER_LINEAR_EXACT are not supported by this function.
- * @param borderMode Pixel extrapolation method (see #BorderTypes). When
- * borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image that
- * corresponds to the "outliers" in the source image are not modified by the function.
- * @param borderValue Value used in case of a constant border. By default, it is 0.
- * NOTE:
- * Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
- */
- + (void)remap:(Mat*)src dst:(Mat*)dst map1:(Mat*)map1 map2:(Mat*)map2 interpolation:(int)interpolation borderMode:(BorderTypes)borderMode borderValue:(Scalar*)borderValue NS_SWIFT_NAME(remap(src:dst:map1:map2:interpolation:borderMode:borderValue:));
- /**
- * Applies a generic geometrical transformation to an image.
- *
- * The function remap transforms the source image using the specified map:
- *
- * `$$\texttt{dst} (x,y) = \texttt{src} (map_x(x,y),map_y(x,y))$$`
- *
- * where values of pixels with non-integer coordinates are computed using one of available
- * interpolation methods. `$$map_x$$` and `$$map_y$$` can be encoded as separate floating-point maps
- * in `$$map_1$$` and `$$map_2$$` respectively, or interleaved floating-point maps of `$$(x,y)$$` in
- * `$$map_1$$`, or fixed-point maps created by using #convertMaps. The reason you might want to
- * convert from floating to fixed-point representations of a map is that they can yield much faster
- * (\~2x) remapping operations. In the converted case, `$$map_1$$` contains pairs (cvFloor(x),
- * cvFloor(y)) and `$$map_2$$` contains indices in a table of interpolation coefficients.
- *
- * This function cannot operate in-place.
- *
- * @param src Source image.
- * @param dst Destination image. It has the same size as map1 and the same type as src .
- * @param map1 The first map of either (x,y) points or just x values having the type CV_16SC2 ,
- * CV_32FC1, or CV_32FC2. See #convertMaps for details on converting a floating point
- * representation to fixed-point for speed.
- * @param map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map
- * if map1 is (x,y) points), respectively.
- * @param interpolation Interpolation method (see #InterpolationFlags). The methods #INTER_AREA
- * and #INTER_LINEAR_EXACT are not supported by this function.
- * @param borderMode Pixel extrapolation method (see #BorderTypes). When
- * borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image that
- * corresponds to the "outliers" in the source image are not modified by the function.
- * NOTE:
- * Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
- */
- + (void)remap:(Mat*)src dst:(Mat*)dst map1:(Mat*)map1 map2:(Mat*)map2 interpolation:(int)interpolation borderMode:(BorderTypes)borderMode NS_SWIFT_NAME(remap(src:dst:map1:map2:interpolation:borderMode:));
- /**
- * Applies a generic geometrical transformation to an image.
- *
- * The function remap transforms the source image using the specified map:
- *
- * `$$\texttt{dst} (x,y) = \texttt{src} (map_x(x,y),map_y(x,y))$$`
- *
- * where values of pixels with non-integer coordinates are computed using one of available
- * interpolation methods. `$$map_x$$` and `$$map_y$$` can be encoded as separate floating-point maps
- * in `$$map_1$$` and `$$map_2$$` respectively, or interleaved floating-point maps of `$$(x,y)$$` in
- * `$$map_1$$`, or fixed-point maps created by using #convertMaps. The reason you might want to
- * convert from floating to fixed-point representations of a map is that they can yield much faster
- * (\~2x) remapping operations. In the converted case, `$$map_1$$` contains pairs (cvFloor(x),
- * cvFloor(y)) and `$$map_2$$` contains indices in a table of interpolation coefficients.
- *
- * This function cannot operate in-place.
- *
- * @param src Source image.
- * @param dst Destination image. It has the same size as map1 and the same type as src .
- * @param map1 The first map of either (x,y) points or just x values having the type CV_16SC2 ,
- * CV_32FC1, or CV_32FC2. See #convertMaps for details on converting a floating point
- * representation to fixed-point for speed.
- * @param map2 The second map of y values having the type CV_16UC1, CV_32FC1, or none (empty map
- * if map1 is (x,y) points), respectively.
- * @param interpolation Interpolation method (see #InterpolationFlags). The methods #INTER_AREA
- * and #INTER_LINEAR_EXACT are not supported by this function.
- * borderMode=#BORDER_TRANSPARENT, it means that the pixels in the destination image that
- * corresponds to the "outliers" in the source image are not modified by the function.
- * NOTE:
- * Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
- */
- + (void)remap:(Mat*)src dst:(Mat*)dst map1:(Mat*)map1 map2:(Mat*)map2 interpolation:(int)interpolation NS_SWIFT_NAME(remap(src:dst:map1:map2:interpolation:));
- //
- // void cv::convertMaps(Mat map1, Mat map2, Mat& dstmap1, Mat& dstmap2, int dstmap1type, bool nninterpolation = false)
- //
- /**
- * Converts image transformation maps from one representation to another.
- *
- * The function converts a pair of maps for remap from one representation to another. The following
- * options ( (map1.type(), map2.type()) `$$\rightarrow$$` (dstmap1.type(), dstmap2.type()) ) are
- * supported:
- *
- * - `$$\texttt{(CV\_32FC1, CV\_32FC1)} \rightarrow \texttt{(CV\_16SC2, CV\_16UC1)}$$`. This is the
- * most frequently used conversion operation, in which the original floating-point maps (see #remap)
- * are converted to a more compact and much faster fixed-point representation. The first output array
- * contains the rounded coordinates and the second array (created only when nninterpolation=false )
- * contains indices in the interpolation tables.
- *
- * - `$$\texttt{(CV\_32FC2)} \rightarrow \texttt{(CV\_16SC2, CV\_16UC1)}$$`. The same as above but
- * the original maps are stored in one 2-channel matrix.
- *
- * - Reverse conversion. Obviously, the reconstructed floating-point maps will not be exactly the same
- * as the originals.
- *
- * @param map1 The first input map of type CV_16SC2, CV_32FC1, or CV_32FC2 .
- * @param map2 The second input map of type CV_16UC1, CV_32FC1, or none (empty matrix),
- * respectively.
- * @param dstmap1 The first output map that has the type dstmap1type and the same size as src .
- * @param dstmap2 The second output map.
- * @param dstmap1type Type of the first output map that should be CV_16SC2, CV_32FC1, or
- * CV_32FC2 .
- * @param nninterpolation Flag indicating whether the fixed-point maps are used for the
- * nearest-neighbor or for a more complex interpolation.
- *
- * @see `+remap:dst:map1:map2:interpolation:borderMode:borderValue:`, `undistort`, `initUndistortRectifyMap`
- */
- + (void)convertMaps:(Mat*)map1 map2:(Mat*)map2 dstmap1:(Mat*)dstmap1 dstmap2:(Mat*)dstmap2 dstmap1type:(int)dstmap1type nninterpolation:(BOOL)nninterpolation NS_SWIFT_NAME(convertMaps(map1:map2:dstmap1:dstmap2:dstmap1type:nninterpolation:));
- /**
- * Converts image transformation maps from one representation to another.
- *
- * The function converts a pair of maps for remap from one representation to another. The following
- * options ( (map1.type(), map2.type()) `$$\rightarrow$$` (dstmap1.type(), dstmap2.type()) ) are
- * supported:
- *
- * - `$$\texttt{(CV\_32FC1, CV\_32FC1)} \rightarrow \texttt{(CV\_16SC2, CV\_16UC1)}$$`. This is the
- * most frequently used conversion operation, in which the original floating-point maps (see #remap)
- * are converted to a more compact and much faster fixed-point representation. The first output array
- * contains the rounded coordinates and the second array (created only when nninterpolation=false )
- * contains indices in the interpolation tables.
- *
- * - `$$\texttt{(CV\_32FC2)} \rightarrow \texttt{(CV\_16SC2, CV\_16UC1)}$$`. The same as above but
- * the original maps are stored in one 2-channel matrix.
- *
- * - Reverse conversion. Obviously, the reconstructed floating-point maps will not be exactly the same
- * as the originals.
- *
- * @param map1 The first input map of type CV_16SC2, CV_32FC1, or CV_32FC2 .
- * @param map2 The second input map of type CV_16UC1, CV_32FC1, or none (empty matrix),
- * respectively.
- * @param dstmap1 The first output map that has the type dstmap1type and the same size as src .
- * @param dstmap2 The second output map.
- * @param dstmap1type Type of the first output map that should be CV_16SC2, CV_32FC1, or
- * CV_32FC2 .
- * nearest-neighbor or for a more complex interpolation.
- *
- * @see `+remap:dst:map1:map2:interpolation:borderMode:borderValue:`, `undistort`, `initUndistortRectifyMap`
- */
- + (void)convertMaps:(Mat*)map1 map2:(Mat*)map2 dstmap1:(Mat*)dstmap1 dstmap2:(Mat*)dstmap2 dstmap1type:(int)dstmap1type NS_SWIFT_NAME(convertMaps(map1:map2:dstmap1:dstmap2:dstmap1type:));
- //
- // Mat cv::getRotationMatrix2D(Point2f center, double angle, double scale)
- //
- /**
- * Calculates an affine matrix of 2D rotation.
- *
- * The function calculates the following matrix:
- *
- * `$$\begin{bmatrix} \alpha & \beta & (1- \alpha ) \cdot \texttt{center.x} - \beta \cdot \texttt{center.y} \\ - \beta & \alpha & \beta \cdot \texttt{center.x} + (1- \alpha ) \cdot \texttt{center.y} \end{bmatrix}$$`
- *
- * where
- *
- * `$$\begin{array}{l} \alpha = \texttt{scale} \cdot \cos \texttt{angle} , \\ \beta = \texttt{scale} \cdot \sin \texttt{angle} \end{array}$$`
- *
- * The transformation maps the rotation center to itself. If this is not the target, adjust the shift.
- *
- * @param center Center of the rotation in the source image.
- * @param angle Rotation angle in degrees. Positive values mean counter-clockwise rotation (the
- * coordinate origin is assumed to be the top-left corner).
- * @param scale Isotropic scale factor.
- *
- * @see `+getAffineTransform:dst:`, `+warpAffine:dst:M:dsize:flags:borderMode:borderValue:`, `transform`
- */
- + (Mat*)getRotationMatrix2D:(Point2f*)center angle:(double)angle scale:(double)scale NS_SWIFT_NAME(getRotationMatrix2D(center:angle:scale:));
- //
- // void cv::invertAffineTransform(Mat M, Mat& iM)
- //
- /**
- * Inverts an affine transformation.
- *
- * The function computes an inverse affine transformation represented by `$$2 \times 3$$` matrix M:
- *
- * `$$\begin{bmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \end{bmatrix}$$`
- *
- * The result is also a `$$2 \times 3$$` matrix of the same type as M.
- *
- * @param M Original affine transformation.
- * @param iM Output reverse affine transformation.
- */
- + (void)invertAffineTransform:(Mat*)M iM:(Mat*)iM NS_SWIFT_NAME(invertAffineTransform(M:iM:));
- //
- // Mat cv::getPerspectiveTransform(Mat src, Mat dst, int solveMethod = DECOMP_LU)
- //
- /**
- * Calculates a perspective transform from four pairs of the corresponding points.
- *
- * The function calculates the `$$3 \times 3$$` matrix of a perspective transform so that:
- *
- * `$$\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map\_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$`
- *
- * where
- *
- * `$$dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2,3$$`
- *
- * @param src Coordinates of quadrangle vertices in the source image.
- * @param dst Coordinates of the corresponding quadrangle vertices in the destination image.
- * @param solveMethod method passed to cv::solve (#DecompTypes)
- *
- * @see `findHomography`, `+warpPerspective:dst:M:dsize:flags:borderMode:borderValue:`, `perspectiveTransform`
- */
- + (Mat*)getPerspectiveTransform:(Mat*)src dst:(Mat*)dst solveMethod:(int)solveMethod NS_SWIFT_NAME(getPerspectiveTransform(src:dst:solveMethod:));
- /**
- * Calculates a perspective transform from four pairs of the corresponding points.
- *
- * The function calculates the `$$3 \times 3$$` matrix of a perspective transform so that:
- *
- * `$$\begin{bmatrix} t_i x'_i \\ t_i y'_i \\ t_i \end{bmatrix} = \texttt{map\_matrix} \cdot \begin{bmatrix} x_i \\ y_i \\ 1 \end{bmatrix}$$`
- *
- * where
- *
- * `$$dst(i)=(x'_i,y'_i), src(i)=(x_i, y_i), i=0,1,2,3$$`
- *
- * @param src Coordinates of quadrangle vertices in the source image.
- * @param dst Coordinates of the corresponding quadrangle vertices in the destination image.
- *
- * @see `findHomography`, `+warpPerspective:dst:M:dsize:flags:borderMode:borderValue:`, `perspectiveTransform`
- */
- + (Mat*)getPerspectiveTransform:(Mat*)src dst:(Mat*)dst NS_SWIFT_NAME(getPerspectiveTransform(src:dst:));
- //
- // Mat cv::getAffineTransform(vector_Point2f src, vector_Point2f dst)
- //
- + (Mat*)getAffineTransform:(NSArray<Point2f*>*)src dst:(NSArray<Point2f*>*)dst NS_SWIFT_NAME(getAffineTransform(src:dst:));
- //
- // void cv::getRectSubPix(Mat image, Size patchSize, Point2f center, Mat& patch, int patchType = -1)
- //
- /**
- * Retrieves a pixel rectangle from an image with sub-pixel accuracy.
- *
- * The function getRectSubPix extracts pixels from src:
- *
- * `$$patch(x, y) = src(x + \texttt{center.x} - ( \texttt{dst.cols} -1)*0.5, y + \texttt{center.y} - ( \texttt{dst.rows} -1)*0.5)$$`
- *
- * where the values of the pixels at non-integer coordinates are retrieved using bilinear
- * interpolation. Every channel of multi-channel images is processed independently. Also
- * the image should be a single channel or three channel image. While the center of the
- * rectangle must be inside the image, parts of the rectangle may be outside.
- *
- * @param image Source image.
- * @param patchSize Size of the extracted patch.
- * @param center Floating point coordinates of the center of the extracted rectangle within the
- * source image. The center must be inside the image.
- * @param patch Extracted patch that has the size patchSize and the same number of channels as src .
- * @param patchType Depth of the extracted pixels. By default, they have the same depth as src .
- *
- * @see `+warpAffine:dst:M:dsize:flags:borderMode:borderValue:`, `+warpPerspective:dst:M:dsize:flags:borderMode:borderValue:`
- */
- + (void)getRectSubPix:(Mat*)image patchSize:(Size2i*)patchSize center:(Point2f*)center patch:(Mat*)patch patchType:(int)patchType NS_SWIFT_NAME(getRectSubPix(image:patchSize:center:patch:patchType:));
- /**
- * Retrieves a pixel rectangle from an image with sub-pixel accuracy.
- *
- * The function getRectSubPix extracts pixels from src:
- *
- * `$$patch(x, y) = src(x + \texttt{center.x} - ( \texttt{dst.cols} -1)*0.5, y + \texttt{center.y} - ( \texttt{dst.rows} -1)*0.5)$$`
- *
- * where the values of the pixels at non-integer coordinates are retrieved using bilinear
- * interpolation. Every channel of multi-channel images is processed independently. Also
- * the image should be a single channel or three channel image. While the center of the
- * rectangle must be inside the image, parts of the rectangle may be outside.
- *
- * @param image Source image.
- * @param patchSize Size of the extracted patch.
- * @param center Floating point coordinates of the center of the extracted rectangle within the
- * source image. The center must be inside the image.
- * @param patch Extracted patch that has the size patchSize and the same number of channels as src .
- *
- * @see `+warpAffine:dst:M:dsize:flags:borderMode:borderValue:`, `+warpPerspective:dst:M:dsize:flags:borderMode:borderValue:`
- */
- + (void)getRectSubPix:(Mat*)image patchSize:(Size2i*)patchSize center:(Point2f*)center patch:(Mat*)patch NS_SWIFT_NAME(getRectSubPix(image:patchSize:center:patch:));
- //
- // void cv::logPolar(Mat src, Mat& dst, Point2f center, double M, int flags)
- //
- /**
- * Remaps an image to semilog-polar coordinates space.
- *
- * @deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags+WARP_POLAR_LOG);
- *
- *
- * Transform the source image using the following transformation (See REF: polar_remaps_reference_image "Polar remaps reference image d)"):
- * `$$\begin{array}{l}
- * dst( \rho , \phi ) = src(x,y) \\
- * dst.size() \leftarrow src.size()
- * \end{array}$$`
- *
- * where
- * `$$\begin{array}{l}
- * I = (dx,dy) = (x - center.x,y - center.y) \\
- * \rho = M \cdot log_e(\texttt{magnitude} (I)) ,\\
- * \phi = Kangle \cdot \texttt{angle} (I) \\
- * \end{array}$$`
- *
- * and
- * `$$\begin{array}{l}
- * M = src.cols / log_e(maxRadius) \\
- * Kangle = src.rows / 2\Pi \\
- * \end{array}$$`
- *
- * The function emulates the human "foveal" vision and can be used for fast scale and
- * rotation-invariant template matching, for object tracking and so forth.
- * @param src Source image
- * @param dst Destination image. It will have same size and type as src.
- * @param center The transformation center; where the output precision is maximal
- * @param M Magnitude scale parameter. It determines the radius of the bounding circle to transform too.
- * @param flags A combination of interpolation methods, see #InterpolationFlags
- *
- * NOTE:
- * - The function can not operate in-place.
- * - To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
- *
- * @see `cv::linearPolar`
- */
- + (void)logPolar:(Mat*)src dst:(Mat*)dst center:(Point2f*)center M:(double)M flags:(int)flags NS_SWIFT_NAME(logPolar(src:dst:center:M:flags:)) DEPRECATED_ATTRIBUTE;
- //
- // void cv::linearPolar(Mat src, Mat& dst, Point2f center, double maxRadius, int flags)
- //
- /**
- * Remaps an image to polar coordinates space.
- *
- * @deprecated This function produces same result as cv::warpPolar(src, dst, src.size(), center, maxRadius, flags)
- *
- *
- * Transform the source image using the following transformation (See REF: polar_remaps_reference_image "Polar remaps reference image c)"):
- * `$$\begin{array}{l}
- * dst( \rho , \phi ) = src(x,y) \\
- * dst.size() \leftarrow src.size()
- * \end{array}$$`
- *
- * where
- * `$$\begin{array}{l}
- * I = (dx,dy) = (x - center.x,y - center.y) \\
- * \rho = Kmag \cdot \texttt{magnitude} (I) ,\\
- * \phi = angle \cdot \texttt{angle} (I)
- * \end{array}$$`
- *
- * and
- * `$$\begin{array}{l}
- * Kx = src.cols / maxRadius \\
- * Ky = src.rows / 2\Pi
- * \end{array}$$`
- *
- *
- * @param src Source image
- * @param dst Destination image. It will have same size and type as src.
- * @param center The transformation center;
- * @param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too.
- * @param flags A combination of interpolation methods, see #InterpolationFlags
- *
- * NOTE:
- * - The function can not operate in-place.
- * - To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
- *
- * @see `cv::logPolar`
- */
- + (void)linearPolar:(Mat*)src dst:(Mat*)dst center:(Point2f*)center maxRadius:(double)maxRadius flags:(int)flags NS_SWIFT_NAME(linearPolar(src:dst:center:maxRadius:flags:)) DEPRECATED_ATTRIBUTE;
- //
- // void cv::warpPolar(Mat src, Mat& dst, Size dsize, Point2f center, double maxRadius, int flags)
- //
- /**
- * Remaps an image to polar or semilog-polar coordinates space
- *
- * polar_remaps_reference_image
- * ![Polar remaps reference](pics/polar_remap_doc.png)
- *
- * Transform the source image using the following transformation:
- * `$$
- * dst(\rho , \phi ) = src(x,y)
- * $$`
- *
- * where
- * `$$
- * \begin{array}{l}
- * \vec{I} = (x - center.x, \;y - center.y) \\
- * \phi = Kangle \cdot \texttt{angle} (\vec{I}) \\
- * \rho = \left\{\begin{matrix}
- * Klin \cdot \texttt{magnitude} (\vec{I}) & default \\
- * Klog \cdot log_e(\texttt{magnitude} (\vec{I})) & if \; semilog \\
- * \end{matrix}\right.
- * \end{array}
- * $$`
- *
- * and
- * `$$
- * \begin{array}{l}
- * Kangle = dsize.height / 2\Pi \\
- * Klin = dsize.width / maxRadius \\
- * Klog = dsize.width / log_e(maxRadius) \\
- * \end{array}
- * $$`
- *
- *
- * \par Linear vs semilog mapping
- *
- * Polar mapping can be linear or semi-log. Add one of #WarpPolarMode to `flags` to specify the polar mapping mode.
- *
- * Linear is the default mode.
- *
- * The semilog mapping emulates the human "foveal" vision that permit very high acuity on the line of sight (central vision)
- * in contrast to peripheral vision where acuity is minor.
- *
- * \par Option on `dsize`:
- *
- * - if both values in `dsize <=0 ` (default),
- * the destination image will have (almost) same area of source bounding circle:
- * `$$\begin{array}{l}
- * dsize.area \leftarrow (maxRadius^2 \cdot \Pi) \\
- * dsize.width = \texttt{cvRound}(maxRadius) \\
- * dsize.height = \texttt{cvRound}(maxRadius \cdot \Pi) \\
- * \end{array}$$`
- *
- *
- * - if only `dsize.height <= 0`,
- * the destination image area will be proportional to the bounding circle area but scaled by `Kx * Kx`:
- * `$$\begin{array}{l}
- * dsize.height = \texttt{cvRound}(dsize.width \cdot \Pi) \\
- * \end{array}
- * $$`
- *
- * - if both values in `dsize > 0 `,
- * the destination image will have the given size therefore the area of the bounding circle will be scaled to `dsize`.
- *
- *
- * \par Reverse mapping
- *
- * You can get reverse mapping adding #WARP_INVERSE_MAP to `flags`
- * \snippet polar_transforms.cpp InverseMap
- *
- * In addiction, to calculate the original coordinate from a polar mapped coordinate `$$(rho, phi)->(x, y)$$`:
- * \snippet polar_transforms.cpp InverseCoordinate
- *
- * @param src Source image.
- * @param dst Destination image. It will have same type as src.
- * @param dsize The destination image size (see description for valid options).
- * @param center The transformation center.
- * @param maxRadius The radius of the bounding circle to transform. It determines the inverse magnitude scale parameter too.
- * @param flags A combination of interpolation methods, #InterpolationFlags + #WarpPolarMode.
- * - Add #WARP_POLAR_LINEAR to select linear polar mapping (default)
- * - Add #WARP_POLAR_LOG to select semilog polar mapping
- * - Add #WARP_INVERSE_MAP for reverse mapping.
- * NOTE:
- * - The function can not operate in-place.
- * - To calculate magnitude and angle in degrees #cartToPolar is used internally thus angles are measured from 0 to 360 with accuracy about 0.3 degrees.
- * - This function uses #remap. Due to current implementation limitations the size of an input and output images should be less than 32767x32767.
- *
- * @see `cv::remap`
- */
- + (void)warpPolar:(Mat*)src dst:(Mat*)dst dsize:(Size2i*)dsize center:(Point2f*)center maxRadius:(double)maxRadius flags:(int)flags NS_SWIFT_NAME(warpPolar(src:dst:dsize:center:maxRadius:flags:));
- //
- // void cv::integral(Mat src, Mat& sum, Mat& sqsum, Mat& tilted, int sdepth = -1, int sqdepth = -1)
- //
- /**
- * Calculates the integral of an image.
- *
- * The function calculates one or more integral images for the source image as follows:
- *
- * `$$\texttt{sum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)$$`
- *
- * `$$\texttt{sqsum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)^2$$`
- *
- * `$$\texttt{tilted} (X,Y) = \sum _{y<Y,abs(x-X+1) \leq Y-y-1} \texttt{image} (x,y)$$`
- *
- * Using these integral images, you can calculate sum, mean, and standard deviation over a specific
- * up-right or rotated rectangular region of the image in a constant time, for example:
- *
- * `$$\sum _{x_1 \leq x < x_2, \, y_1 \leq y < y_2} \texttt{image} (x,y) = \texttt{sum} (x_2,y_2)- \texttt{sum} (x_1,y_2)- \texttt{sum} (x_2,y_1)+ \texttt{sum} (x_1,y_1)$$`
- *
- * It makes possible to do a fast blurring or fast block correlation with a variable window size, for
- * example. In case of multi-channel images, sums for each channel are accumulated independently.
- *
- * As a practical example, the next figure shows the calculation of the integral of a straight
- * rectangle Rect(3,3,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the
- * original image are shown, as well as the relative pixels in the integral images sum and tilted .
- *
- * ![integral calculation example](pics/integral.png)
- *
- * @param src input image as `$$W \times H$$`, 8-bit or floating-point (32f or 64f).
- * @param sum integral image as `$$(W+1)\times (H+1)$$` , 32-bit integer or floating-point (32f or 64f).
- * @param sqsum integral image for squared pixel values; it is `$$(W+1)\times (H+1)$$`, double-precision
- * floating-point (64f) array.
- * @param tilted integral for the image rotated by 45 degrees; it is `$$(W+1)\times (H+1)$$` array with
- * the same data type as sum.
- * @param sdepth desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or
- * CV_64F.
- * @param sqdepth desired depth of the integral image of squared pixel values, CV_32F or CV_64F.
- */
- + (void)integral3:(Mat*)src sum:(Mat*)sum sqsum:(Mat*)sqsum tilted:(Mat*)tilted sdepth:(int)sdepth sqdepth:(int)sqdepth NS_SWIFT_NAME(integral(src:sum:sqsum:tilted:sdepth:sqdepth:));
- /**
- * Calculates the integral of an image.
- *
- * The function calculates one or more integral images for the source image as follows:
- *
- * `$$\texttt{sum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)$$`
- *
- * `$$\texttt{sqsum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)^2$$`
- *
- * `$$\texttt{tilted} (X,Y) = \sum _{y<Y,abs(x-X+1) \leq Y-y-1} \texttt{image} (x,y)$$`
- *
- * Using these integral images, you can calculate sum, mean, and standard deviation over a specific
- * up-right or rotated rectangular region of the image in a constant time, for example:
- *
- * `$$\sum _{x_1 \leq x < x_2, \, y_1 \leq y < y_2} \texttt{image} (x,y) = \texttt{sum} (x_2,y_2)- \texttt{sum} (x_1,y_2)- \texttt{sum} (x_2,y_1)+ \texttt{sum} (x_1,y_1)$$`
- *
- * It makes possible to do a fast blurring or fast block correlation with a variable window size, for
- * example. In case of multi-channel images, sums for each channel are accumulated independently.
- *
- * As a practical example, the next figure shows the calculation of the integral of a straight
- * rectangle Rect(3,3,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the
- * original image are shown, as well as the relative pixels in the integral images sum and tilted .
- *
- * ![integral calculation example](pics/integral.png)
- *
- * @param src input image as `$$W \times H$$`, 8-bit or floating-point (32f or 64f).
- * @param sum integral image as `$$(W+1)\times (H+1)$$` , 32-bit integer or floating-point (32f or 64f).
- * @param sqsum integral image for squared pixel values; it is `$$(W+1)\times (H+1)$$`, double-precision
- * floating-point (64f) array.
- * @param tilted integral for the image rotated by 45 degrees; it is `$$(W+1)\times (H+1)$$` array with
- * the same data type as sum.
- * @param sdepth desired depth of the integral and the tilted integral images, CV_32S, CV_32F, or
- * CV_64F.
- */
- + (void)integral3:(Mat*)src sum:(Mat*)sum sqsum:(Mat*)sqsum tilted:(Mat*)tilted sdepth:(int)sdepth NS_SWIFT_NAME(integral(src:sum:sqsum:tilted:sdepth:));
- /**
- * Calculates the integral of an image.
- *
- * The function calculates one or more integral images for the source image as follows:
- *
- * `$$\texttt{sum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)$$`
- *
- * `$$\texttt{sqsum} (X,Y) = \sum _{x<X,y<Y} \texttt{image} (x,y)^2$$`
- *
- * `$$\texttt{tilted} (X,Y) = \sum _{y<Y,abs(x-X+1) \leq Y-y-1} \texttt{image} (x,y)$$`
- *
- * Using these integral images, you can calculate sum, mean, and standard deviation over a specific
- * up-right or rotated rectangular region of the image in a constant time, for example:
- *
- * `$$\sum _{x_1 \leq x < x_2, \, y_1 \leq y < y_2} \texttt{image} (x,y) = \texttt{sum} (x_2,y_2)- \texttt{sum} (x_1,y_2)- \texttt{sum} (x_2,y_1)+ \texttt{sum} (x_1,y_1)$$`
- *
- * It makes possible to do a fast blurring or fast block correlation with a variable window size, for
- * example. In case of multi-channel images, sums for each channel are accumulated independently.
- *
- * As a practical example, the next figure shows the calculation of the integral of a straight
- * rectangle Rect(3,3,3,2) and of a tilted rectangle Rect(5,1,2,3) . The selected pixels in the
- * original image are shown, as well as the relative pixels in the integral images sum and tilted .
- *
- * ![integral calculation example](pics/integral.png)
- *
- * @param src input image as `$$W \times H$$`, 8-bit or floating-point (32f or 64f).
- * @param sum integral image as `$$(W+1)\times (H+1)$$` , 32-bit integer or floating-point (32f or 64f).
- * @param sqsum integral image for squared pixel values; it is `$$(W+1)\times (H+1)$$`, double-precision
- * floating-point (64f) array.
- * @param tilted integral for the image rotated by 45 degrees; it is `$$(W+1)\times (H+1)$$` array with
- * the same data type as sum.
- * CV_64F.
- */
- + (void)integral3:(Mat*)src sum:(Mat*)sum sqsum:(Mat*)sqsum tilted:(Mat*)tilted NS_SWIFT_NAME(integral(src:sum:sqsum:tilted:));
- //
- // void cv::integral(Mat src, Mat& sum, int sdepth = -1)
- //
- + (void)integral:(Mat*)src sum:(Mat*)sum sdepth:(int)sdepth NS_SWIFT_NAME(integral(src:sum:sdepth:));
- + (void)integral:(Mat*)src sum:(Mat*)sum NS_SWIFT_NAME(integral(src:sum:));
- //
- // void cv::integral(Mat src, Mat& sum, Mat& sqsum, int sdepth = -1, int sqdepth = -1)
- //
- + (void)integral2:(Mat*)src sum:(Mat*)sum sqsum:(Mat*)sqsum sdepth:(int)sdepth sqdepth:(int)sqdepth NS_SWIFT_NAME(integral(src:sum:sqsum:sdepth:sqdepth:));
- + (void)integral2:(Mat*)src sum:(Mat*)sum sqsum:(Mat*)sqsum sdepth:(int)sdepth NS_SWIFT_NAME(integral(src:sum:sqsum:sdepth:));
- + (void)integral2:(Mat*)src sum:(Mat*)sum sqsum:(Mat*)sqsum NS_SWIFT_NAME(integral(src:sum:sqsum:));
- //
- // void cv::accumulate(Mat src, Mat& dst, Mat mask = Mat())
- //
- /**
- * Adds an image to the accumulator image.
- *
- * The function adds src or some of its elements to dst :
- *
- * `$$\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0$$`
- *
- * The function supports multi-channel images. Each channel is processed independently.
- *
- * The function cv::accumulate can be used, for example, to collect statistics of a scene background
- * viewed by a still camera and for the further foreground-background segmentation.
- *
- * @param src Input image of type CV_8UC(n), CV_16UC(n), CV_32FC(n) or CV_64FC(n), where n is a positive integer.
- * @param dst %Accumulator image with the same number of channels as input image, and a depth of CV_32F or CV_64F.
- * @param mask Optional operation mask.
- *
- * @see `+accumulateSquare:dst:mask:`, `+accumulateProduct:src2:dst:mask:`, `+accumulateWeighted:dst:alpha:mask:`
- */
- + (void)accumulate:(Mat*)src dst:(Mat*)dst mask:(Mat*)mask NS_SWIFT_NAME(accumulate(src:dst:mask:));
- /**
- * Adds an image to the accumulator image.
- *
- * The function adds src or some of its elements to dst :
- *
- * `$$\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0$$`
- *
- * The function supports multi-channel images. Each channel is processed independently.
- *
- * The function cv::accumulate can be used, for example, to collect statistics of a scene background
- * viewed by a still camera and for the further foreground-background segmentation.
- *
- * @param src Input image of type CV_8UC(n), CV_16UC(n), CV_32FC(n) or CV_64FC(n), where n is a positive integer.
- * @param dst %Accumulator image with the same number of channels as input image, and a depth of CV_32F or CV_64F.
- *
- * @see `+accumulateSquare:dst:mask:`, `+accumulateProduct:src2:dst:mask:`, `+accumulateWeighted:dst:alpha:mask:`
- */
- + (void)accumulate:(Mat*)src dst:(Mat*)dst NS_SWIFT_NAME(accumulate(src:dst:));
- //
- // void cv::accumulateSquare(Mat src, Mat& dst, Mat mask = Mat())
- //
- /**
- * Adds the square of a source image to the accumulator image.
- *
- * The function adds the input image src or its selected region, raised to a power of 2, to the
- * accumulator dst :
- *
- * `$$\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y)^2 \quad \text{if} \quad \texttt{mask} (x,y) \ne 0$$`
- *
- * The function supports multi-channel images. Each channel is processed independently.
- *
- * @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
- * @param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
- * floating-point.
- * @param mask Optional operation mask.
- *
- * @see `+accumulateSquare:dst:mask:`, `+accumulateProduct:src2:dst:mask:`, `+accumulateWeighted:dst:alpha:mask:`
- */
- + (void)accumulateSquare:(Mat*)src dst:(Mat*)dst mask:(Mat*)mask NS_SWIFT_NAME(accumulateSquare(src:dst:mask:));
- /**
- * Adds the square of a source image to the accumulator image.
- *
- * The function adds the input image src or its selected region, raised to a power of 2, to the
- * accumulator dst :
- *
- * `$$\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src} (x,y)^2 \quad \text{if} \quad \texttt{mask} (x,y) \ne 0$$`
- *
- * The function supports multi-channel images. Each channel is processed independently.
- *
- * @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
- * @param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
- * floating-point.
- *
- * @see `+accumulateSquare:dst:mask:`, `+accumulateProduct:src2:dst:mask:`, `+accumulateWeighted:dst:alpha:mask:`
- */
- + (void)accumulateSquare:(Mat*)src dst:(Mat*)dst NS_SWIFT_NAME(accumulateSquare(src:dst:));
- //
- // void cv::accumulateProduct(Mat src1, Mat src2, Mat& dst, Mat mask = Mat())
- //
- /**
- * Adds the per-element product of two input images to the accumulator image.
- *
- * The function adds the product of two images or their selected regions to the accumulator dst :
- *
- * `$$\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src1} (x,y) \cdot \texttt{src2} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0$$`
- *
- * The function supports multi-channel images. Each channel is processed independently.
- *
- * @param src1 First input image, 1- or 3-channel, 8-bit or 32-bit floating point.
- * @param src2 Second input image of the same type and the same size as src1 .
- * @param dst %Accumulator image with the same number of channels as input images, 32-bit or 64-bit
- * floating-point.
- * @param mask Optional operation mask.
- *
- * @see `+accumulate:dst:mask:`, `+accumulateSquare:dst:mask:`, `+accumulateWeighted:dst:alpha:mask:`
- */
- + (void)accumulateProduct:(Mat*)src1 src2:(Mat*)src2 dst:(Mat*)dst mask:(Mat*)mask NS_SWIFT_NAME(accumulateProduct(src1:src2:dst:mask:));
- /**
- * Adds the per-element product of two input images to the accumulator image.
- *
- * The function adds the product of two images or their selected regions to the accumulator dst :
- *
- * `$$\texttt{dst} (x,y) \leftarrow \texttt{dst} (x,y) + \texttt{src1} (x,y) \cdot \texttt{src2} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0$$`
- *
- * The function supports multi-channel images. Each channel is processed independently.
- *
- * @param src1 First input image, 1- or 3-channel, 8-bit or 32-bit floating point.
- * @param src2 Second input image of the same type and the same size as src1 .
- * @param dst %Accumulator image with the same number of channels as input images, 32-bit or 64-bit
- * floating-point.
- *
- * @see `+accumulate:dst:mask:`, `+accumulateSquare:dst:mask:`, `+accumulateWeighted:dst:alpha:mask:`
- */
- + (void)accumulateProduct:(Mat*)src1 src2:(Mat*)src2 dst:(Mat*)dst NS_SWIFT_NAME(accumulateProduct(src1:src2:dst:));
- //
- // void cv::accumulateWeighted(Mat src, Mat& dst, double alpha, Mat mask = Mat())
- //
- /**
- * Updates a running average.
- *
- * The function calculates the weighted sum of the input image src and the accumulator dst so that dst
- * becomes a running average of a frame sequence:
- *
- * `$$\texttt{dst} (x,y) \leftarrow (1- \texttt{alpha} ) \cdot \texttt{dst} (x,y) + \texttt{alpha} \cdot \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0$$`
- *
- * That is, alpha regulates the update speed (how fast the accumulator "forgets" about earlier images).
- * The function supports multi-channel images. Each channel is processed independently.
- *
- * @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
- * @param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
- * floating-point.
- * @param alpha Weight of the input image.
- * @param mask Optional operation mask.
- *
- * @see `+accumulate:dst:mask:`, `+accumulateSquare:dst:mask:`, `+accumulateProduct:src2:dst:mask:`
- */
- + (void)accumulateWeighted:(Mat*)src dst:(Mat*)dst alpha:(double)alpha mask:(Mat*)mask NS_SWIFT_NAME(accumulateWeighted(src:dst:alpha:mask:));
- /**
- * Updates a running average.
- *
- * The function calculates the weighted sum of the input image src and the accumulator dst so that dst
- * becomes a running average of a frame sequence:
- *
- * `$$\texttt{dst} (x,y) \leftarrow (1- \texttt{alpha} ) \cdot \texttt{dst} (x,y) + \texttt{alpha} \cdot \texttt{src} (x,y) \quad \text{if} \quad \texttt{mask} (x,y) \ne 0$$`
- *
- * That is, alpha regulates the update speed (how fast the accumulator "forgets" about earlier images).
- * The function supports multi-channel images. Each channel is processed independently.
- *
- * @param src Input image as 1- or 3-channel, 8-bit or 32-bit floating point.
- * @param dst %Accumulator image with the same number of channels as input image, 32-bit or 64-bit
- * floating-point.
- * @param alpha Weight of the input image.
- *
- * @see `+accumulate:dst:mask:`, `+accumulateSquare:dst:mask:`, `+accumulateProduct:src2:dst:mask:`
- */
- + (void)accumulateWeighted:(Mat*)src dst:(Mat*)dst alpha:(double)alpha NS_SWIFT_NAME(accumulateWeighted(src:dst:alpha:));
- //
- // Point2d cv::phaseCorrelate(Mat src1, Mat src2, Mat window = Mat(), double* response = 0)
- //
- /**
- * The function is used to detect translational shifts that occur between two images.
- *
- * The operation takes advantage of the Fourier shift theorem for detecting the translational shift in
- * the frequency domain. It can be used for fast image registration as well as motion estimation. For
- * more information please see <http://en.wikipedia.org/wiki/Phase_correlation>
- *
- * Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed
- * with getOptimalDFTSize.
- *
- * The function performs the following equations:
- * - First it applies a Hanning window (see <http://en.wikipedia.org/wiki/Hann_function>) to each
- * image to remove possible edge effects. This window is cached until the array size changes to speed
- * up processing time.
- * - Next it computes the forward DFTs of each source array:
- * `$$\mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}$$`
- * where `$$\mathcal{F}$$` is the forward DFT.
- * - It then computes the cross-power spectrum of each frequency domain array:
- * `$$R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}$$`
- * - Next the cross-correlation is converted back into the time domain via the inverse DFT:
- * `$$r = \mathcal{F}^{-1}\{R\}$$`
- * - Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to
- * achieve sub-pixel accuracy.
- * `$$(\Delta x, \Delta y) = \texttt{weightedCentroid} \{\arg \max_{(x, y)}\{r\}\}$$`
- * - If non-zero, the response parameter is computed as the sum of the elements of r within the 5x5
- * centroid around the peak location. It is normalized to a maximum of 1 (meaning there is a single
- * peak) and will be smaller when there are multiple peaks.
- *
- * @param src1 Source floating point array (CV_32FC1 or CV_64FC1)
- * @param src2 Source floating point array (CV_32FC1 or CV_64FC1)
- * @param window Floating point array with windowing coefficients to reduce edge effects (optional).
- * @param response Signal power within the 5x5 centroid around the peak, between 0 and 1 (optional).
- * @return detected phase shift (sub-pixel) between the two arrays.
- *
- * @see `dft`, `getOptimalDFTSize`, `idft`, `mulSpectrums createHanningWindow`
- */
- + (Point2d*)phaseCorrelate:(Mat*)src1 src2:(Mat*)src2 window:(Mat*)window response:(double*)response NS_SWIFT_NAME(phaseCorrelate(src1:src2:window:response:));
- /**
- * The function is used to detect translational shifts that occur between two images.
- *
- * The operation takes advantage of the Fourier shift theorem for detecting the translational shift in
- * the frequency domain. It can be used for fast image registration as well as motion estimation. For
- * more information please see <http://en.wikipedia.org/wiki/Phase_correlation>
- *
- * Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed
- * with getOptimalDFTSize.
- *
- * The function performs the following equations:
- * - First it applies a Hanning window (see <http://en.wikipedia.org/wiki/Hann_function>) to each
- * image to remove possible edge effects. This window is cached until the array size changes to speed
- * up processing time.
- * - Next it computes the forward DFTs of each source array:
- * `$$\mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}$$`
- * where `$$\mathcal{F}$$` is the forward DFT.
- * - It then computes the cross-power spectrum of each frequency domain array:
- * `$$R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}$$`
- * - Next the cross-correlation is converted back into the time domain via the inverse DFT:
- * `$$r = \mathcal{F}^{-1}\{R\}$$`
- * - Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to
- * achieve sub-pixel accuracy.
- * `$$(\Delta x, \Delta y) = \texttt{weightedCentroid} \{\arg \max_{(x, y)}\{r\}\}$$`
- * - If non-zero, the response parameter is computed as the sum of the elements of r within the 5x5
- * centroid around the peak location. It is normalized to a maximum of 1 (meaning there is a single
- * peak) and will be smaller when there are multiple peaks.
- *
- * @param src1 Source floating point array (CV_32FC1 or CV_64FC1)
- * @param src2 Source floating point array (CV_32FC1 or CV_64FC1)
- * @param window Floating point array with windowing coefficients to reduce edge effects (optional).
- * @return detected phase shift (sub-pixel) between the two arrays.
- *
- * @see `dft`, `getOptimalDFTSize`, `idft`, `mulSpectrums createHanningWindow`
- */
- + (Point2d*)phaseCorrelate:(Mat*)src1 src2:(Mat*)src2 window:(Mat*)window NS_SWIFT_NAME(phaseCorrelate(src1:src2:window:));
- /**
- * The function is used to detect translational shifts that occur between two images.
- *
- * The operation takes advantage of the Fourier shift theorem for detecting the translational shift in
- * the frequency domain. It can be used for fast image registration as well as motion estimation. For
- * more information please see <http://en.wikipedia.org/wiki/Phase_correlation>
- *
- * Calculates the cross-power spectrum of two supplied source arrays. The arrays are padded if needed
- * with getOptimalDFTSize.
- *
- * The function performs the following equations:
- * - First it applies a Hanning window (see <http://en.wikipedia.org/wiki/Hann_function>) to each
- * image to remove possible edge effects. This window is cached until the array size changes to speed
- * up processing time.
- * - Next it computes the forward DFTs of each source array:
- * `$$\mathbf{G}_a = \mathcal{F}\{src_1\}, \; \mathbf{G}_b = \mathcal{F}\{src_2\}$$`
- * where `$$\mathcal{F}$$` is the forward DFT.
- * - It then computes the cross-power spectrum of each frequency domain array:
- * `$$R = \frac{ \mathbf{G}_a \mathbf{G}_b^*}{|\mathbf{G}_a \mathbf{G}_b^*|}$$`
- * - Next the cross-correlation is converted back into the time domain via the inverse DFT:
- * `$$r = \mathcal{F}^{-1}\{R\}$$`
- * - Finally, it computes the peak location and computes a 5x5 weighted centroid around the peak to
- * achieve sub-pixel accuracy.
- * `$$(\Delta x, \Delta y) = \texttt{weightedCentroid} \{\arg \max_{(x, y)}\{r\}\}$$`
- * - If non-zero, the response parameter is computed as the sum of the elements of r within the 5x5
- * centroid around the peak location. It is normalized to a maximum of 1 (meaning there is a single
- * peak) and will be smaller when there are multiple peaks.
- *
- * @param src1 Source floating point array (CV_32FC1 or CV_64FC1)
- * @param src2 Source floating point array (CV_32FC1 or CV_64FC1)
- * @return detected phase shift (sub-pixel) between the two arrays.
- *
- * @see `dft`, `getOptimalDFTSize`, `idft`, `mulSpectrums createHanningWindow`
- */
- + (Point2d*)phaseCorrelate:(Mat*)src1 src2:(Mat*)src2 NS_SWIFT_NAME(phaseCorrelate(src1:src2:));
- //
- // void cv::createHanningWindow(Mat& dst, Size winSize, int type)
- //
- /**
- * This function computes a Hanning window coefficients in two dimensions.
- *
- * See (http://en.wikipedia.org/wiki/Hann_function) and (http://en.wikipedia.org/wiki/Window_function)
- * for more information.
- *
- * An example is shown below:
- *
- * // create hanning window of size 100x100 and type CV_32F
- * Mat hann;
- * createHanningWindow(hann, Size(100, 100), CV_32F);
- *
- * @param dst Destination array to place Hann coefficients in
- * @param winSize The window size specifications (both width and height must be > 1)
- * @param type Created array type
- */
- + (void)createHanningWindow:(Mat*)dst winSize:(Size2i*)winSize type:(int)type NS_SWIFT_NAME(createHanningWindow(dst:winSize:type:));
- //
- // void cv::divSpectrums(Mat a, Mat b, Mat& c, int flags, bool conjB = false)
- //
- /**
- * Performs the per-element division of the first Fourier spectrum by the second Fourier spectrum.
- *
- * The function cv::divSpectrums performs the per-element division of the first array by the second array.
- * The arrays are CCS-packed or complex matrices that are results of a real or complex Fourier transform.
- *
- * @param a first input array.
- * @param b second input array of the same size and type as src1 .
- * @param c output array of the same size and type as src1 .
- * @param flags operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that
- * each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a `0` as value.
- * @param conjB optional flag that conjugates the second input array before the multiplication (true)
- * or not (false).
- */
- + (void)divSpectrums:(Mat*)a b:(Mat*)b c:(Mat*)c flags:(int)flags conjB:(BOOL)conjB NS_SWIFT_NAME(divSpectrums(a:b:c:flags:conjB:));
- /**
- * Performs the per-element division of the first Fourier spectrum by the second Fourier spectrum.
- *
- * The function cv::divSpectrums performs the per-element division of the first array by the second array.
- * The arrays are CCS-packed or complex matrices that are results of a real or complex Fourier transform.
- *
- * @param a first input array.
- * @param b second input array of the same size and type as src1 .
- * @param c output array of the same size and type as src1 .
- * @param flags operation flags; currently, the only supported flag is cv::DFT_ROWS, which indicates that
- * each row of src1 and src2 is an independent 1D Fourier spectrum. If you do not want to use this flag, then simply add a `0` as value.
- * or not (false).
- */
- + (void)divSpectrums:(Mat*)a b:(Mat*)b c:(Mat*)c flags:(int)flags NS_SWIFT_NAME(divSpectrums(a:b:c:flags:));
- //
- // double cv::threshold(Mat src, Mat& dst, double thresh, double maxval, ThresholdTypes type)
- //
- /**
- * Applies a fixed-level threshold to each array element.
- *
- * The function applies fixed-level thresholding to a multiple-channel array. The function is typically
- * used to get a bi-level (binary) image out of a grayscale image ( #compare could be also used for
- * this purpose) or for removing a noise, that is, filtering out pixels with too small or too large
- * values. There are several types of thresholding supported by the function. They are determined by
- * type parameter.
- *
- * Also, the special values #THRESH_OTSU or #THRESH_TRIANGLE may be combined with one of the
- * above values. In these cases, the function determines the optimal threshold value using the Otsu's
- * or Triangle algorithm and uses it instead of the specified thresh.
- *
- * NOTE: Currently, the Otsu's and Triangle methods are implemented only for 8-bit single-channel images.
- *
- * @param src input array (multiple-channel, 8-bit or 32-bit floating point).
- * @param dst output array of the same size and type and the same number of channels as src.
- * @param thresh threshold value.
- * @param maxval maximum value to use with the #THRESH_BINARY and #THRESH_BINARY_INV thresholding
- * types.
- * @param type thresholding type (see #ThresholdTypes).
- * @return the computed threshold value if Otsu's or Triangle methods used.
- *
- * @see `+adaptiveThreshold:dst:maxValue:adaptiveMethod:thresholdType:blockSize:C:`, `+findContours:contours:hierarchy:mode:method:offset:`, `compare`, `min`, `max`
- */
- + (double)threshold:(Mat*)src dst:(Mat*)dst thresh:(double)thresh maxval:(double)maxval type:(ThresholdTypes)type NS_SWIFT_NAME(threshold(src:dst:thresh:maxval:type:));
- //
- // void cv::adaptiveThreshold(Mat src, Mat& dst, double maxValue, AdaptiveThresholdTypes adaptiveMethod, ThresholdTypes thresholdType, int blockSize, double C)
- //
- /**
- * Applies an adaptive threshold to an array.
- *
- * The function transforms a grayscale image to a binary image according to the formulae:
- * - **THRESH_BINARY**
- * `$$\newcommand{\fork}[4]{ \left\{ \begin{array}{l l} #1 & \text{#2}\\\\ #3 & \text{#4}\\\\ \end{array} \right.} dst(x,y) = \fork{\texttt{maxValue}}{if \(src(x,y) > T(x,y)\)}{0}{otherwise}$$`
- * - **THRESH_BINARY_INV**
- * `$$\newcommand{\fork}[4]{ \left\{ \begin{array}{l l} #1 & \text{#2}\\\\ #3 & \text{#4}\\\\ \end{array} \right.} dst(x,y) = \fork{0}{if \(src(x,y) > T(x,y)\)}{\texttt{maxValue}}{otherwise}$$`
- * where `$$T(x,y)$$` is a threshold calculated individually for each pixel (see adaptiveMethod parameter).
- *
- * The function can process the image in-place.
- *
- * @param src Source 8-bit single-channel image.
- * @param dst Destination image of the same size and the same type as src.
- * @param maxValue Non-zero value assigned to the pixels for which the condition is satisfied
- * @param adaptiveMethod Adaptive thresholding algorithm to use, see #AdaptiveThresholdTypes.
- * The #BORDER_REPLICATE | #BORDER_ISOLATED is used to process boundaries.
- * @param thresholdType Thresholding type that must be either #THRESH_BINARY or #THRESH_BINARY_INV,
- * see #ThresholdTypes.
- * @param blockSize Size of a pixel neighborhood that is used to calculate a threshold value for the
- * pixel: 3, 5, 7, and so on.
- * @param C Constant subtracted from the mean or weighted mean (see the details below). Normally, it
- * is positive but may be zero or negative as well.
- *
- * @see `+threshold:dst:thresh:maxval:type:`, `+blur:dst:ksize:anchor:borderType:`, `+GaussianBlur:dst:ksize:sigmaX:sigmaY:borderType:`
- */
- + (void)adaptiveThreshold:(Mat*)src dst:(Mat*)dst maxValue:(double)maxValue adaptiveMethod:(AdaptiveThresholdTypes)adaptiveMethod thresholdType:(ThresholdTypes)thresholdType blockSize:(int)blockSize C:(double)C NS_SWIFT_NAME(adaptiveThreshold(src:dst:maxValue:adaptiveMethod:thresholdType:blockSize:C:));
- //
- // void cv::pyrDown(Mat src, Mat& dst, Size dstsize = Size(), BorderTypes borderType = BORDER_DEFAULT)
- //
- /**
- * Blurs an image and downsamples it.
- *
- * By default, size of the output image is computed as `Size((src.cols+1)/2, (src.rows+1)/2)`, but in
- * any case, the following conditions should be satisfied:
- *
- * `$$\begin{array}{l} | \texttt{dstsize.width} *2-src.cols| \leq 2 \\ | \texttt{dstsize.height} *2-src.rows| \leq 2 \end{array}$$`
- *
- * The function performs the downsampling step of the Gaussian pyramid construction. First, it
- * convolves the source image with the kernel:
- *
- * `$$\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}$$`
- *
- * Then, it downsamples the image by rejecting even rows and columns.
- *
- * @param src input image.
- * @param dst output image; it has the specified size and the same type as src.
- * @param dstsize size of the output image.
- * @param borderType Pixel extrapolation method, see #BorderTypes (#BORDER_CONSTANT isn't supported)
- */
- + (void)pyrDown:(Mat*)src dst:(Mat*)dst dstsize:(Size2i*)dstsize borderType:(BorderTypes)borderType NS_SWIFT_NAME(pyrDown(src:dst:dstsize:borderType:));
- /**
- * Blurs an image and downsamples it.
- *
- * By default, size of the output image is computed as `Size((src.cols+1)/2, (src.rows+1)/2)`, but in
- * any case, the following conditions should be satisfied:
- *
- * `$$\begin{array}{l} | \texttt{dstsize.width} *2-src.cols| \leq 2 \\ | \texttt{dstsize.height} *2-src.rows| \leq 2 \end{array}$$`
- *
- * The function performs the downsampling step of the Gaussian pyramid construction. First, it
- * convolves the source image with the kernel:
- *
- * `$$\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}$$`
- *
- * Then, it downsamples the image by rejecting even rows and columns.
- *
- * @param src input image.
- * @param dst output image; it has the specified size and the same type as src.
- * @param dstsize size of the output image.
- */
- + (void)pyrDown:(Mat*)src dst:(Mat*)dst dstsize:(Size2i*)dstsize NS_SWIFT_NAME(pyrDown(src:dst:dstsize:));
- /**
- * Blurs an image and downsamples it.
- *
- * By default, size of the output image is computed as `Size((src.cols+1)/2, (src.rows+1)/2)`, but in
- * any case, the following conditions should be satisfied:
- *
- * `$$\begin{array}{l} | \texttt{dstsize.width} *2-src.cols| \leq 2 \\ | \texttt{dstsize.height} *2-src.rows| \leq 2 \end{array}$$`
- *
- * The function performs the downsampling step of the Gaussian pyramid construction. First, it
- * convolves the source image with the kernel:
- *
- * `$$\frac{1}{256} \begin{bmatrix} 1 & 4 & 6 & 4 & 1 \\ 4 & 16 & 24 & 16 & 4 \\ 6 & 24 & 36 & 24 & 6 \\ 4 & 16 & 24 & 16 & 4 \\ 1 & 4 & 6 & 4 & 1 \end{bmatrix}$$`
- *
- * Then, it downsamples the image by rejecting even rows and columns.
- *
- * @param src input image.
- * @param dst output image; it has the specified size and the same type as src.
- */
- + (void)pyrDown:(Mat*)src dst:(Mat*)dst NS_SWIFT_NAME(pyrDown(src:dst:));
- //
- // void cv::pyrUp(Mat src, Mat& dst, Size dstsize = Size(), BorderTypes borderType = BORDER_DEFAULT)
- //
- /**
- * Upsamples an image and then blurs it.
- *
- * By default, size of the output image is computed as `Size(src.cols\*2, (src.rows\*2)`, but in any
- * case, the following conditions should be satisfied:
- *
- * `$$\begin{array}{l} | \texttt{dstsize.width} -src.cols*2| \leq ( \texttt{dstsize.width} \mod 2) \\ | \texttt{dstsize.height} -src.rows*2| \leq ( \texttt{dstsize.height} \mod 2) \end{array}$$`
- *
- * The function performs the upsampling step of the Gaussian pyramid construction, though it can
- * actually be used to construct the Laplacian pyramid. First, it upsamples the source image by
- * injecting even zero rows and columns and then convolves the result with the same kernel as in
- * pyrDown multiplied by 4.
- *
- * @param src input image.
- * @param dst output image. It has the specified size and the same type as src .
- * @param dstsize size of the output image.
- * @param borderType Pixel extrapolation method, see #BorderTypes (only #BORDER_DEFAULT is supported)
- */
- + (void)pyrUp:(Mat*)src dst:(Mat*)dst dstsize:(Size2i*)dstsize borderType:(BorderTypes)borderType NS_SWIFT_NAME(pyrUp(src:dst:dstsize:borderType:));
- /**
- * Upsamples an image and then blurs it.
- *
- * By default, size of the output image is computed as `Size(src.cols\*2, (src.rows\*2)`, but in any
- * case, the following conditions should be satisfied:
- *
- * `$$\begin{array}{l} | \texttt{dstsize.width} -src.cols*2| \leq ( \texttt{dstsize.width} \mod 2) \\ | \texttt{dstsize.height} -src.rows*2| \leq ( \texttt{dstsize.height} \mod 2) \end{array}$$`
- *
- * The function performs the upsampling step of the Gaussian pyramid construction, though it can
- * actually be used to construct the Laplacian pyramid. First, it upsamples the source image by
- * injecting even zero rows and columns and then convolves the result with the same kernel as in
- * pyrDown multiplied by 4.
- *
- * @param src input image.
- * @param dst output image. It has the specified size and the same type as src .
- * @param dstsize size of the output image.
- */
- + (void)pyrUp:(Mat*)src dst:(Mat*)dst dstsize:(Size2i*)dstsize NS_SWIFT_NAME(pyrUp(src:dst:dstsize:));
- /**
- * Upsamples an image and then blurs it.
- *
- * By default, size of the output image is computed as `Size(src.cols\*2, (src.rows\*2)`, but in any
- * case, the following conditions should be satisfied:
- *
- * `$$\begin{array}{l} | \texttt{dstsize.width} -src.cols*2| \leq ( \texttt{dstsize.width} \mod 2) \\ | \texttt{dstsize.height} -src.rows*2| \leq ( \texttt{dstsize.height} \mod 2) \end{array}$$`
- *
- * The function performs the upsampling step of the Gaussian pyramid construction, though it can
- * actually be used to construct the Laplacian pyramid. First, it upsamples the source image by
- * injecting even zero rows and columns and then convolves the result with the same kernel as in
- * pyrDown multiplied by 4.
- *
- * @param src input image.
- * @param dst output image. It has the specified size and the same type as src .
- */
- + (void)pyrUp:(Mat*)src dst:(Mat*)dst NS_SWIFT_NAME(pyrUp(src:dst:));
- //
- // void cv::calcHist(vector_Mat images, vector_int channels, Mat mask, Mat& hist, vector_int histSize, vector_float ranges, bool accumulate = false)
- //
- + (void)calcHist:(NSArray<Mat*>*)images channels:(IntVector*)channels mask:(Mat*)mask hist:(Mat*)hist histSize:(IntVector*)histSize ranges:(FloatVector*)ranges accumulate:(BOOL)accumulate NS_SWIFT_NAME(calcHist(images:channels:mask:hist:histSize:ranges:accumulate:));
- + (void)calcHist:(NSArray<Mat*>*)images channels:(IntVector*)channels mask:(Mat*)mask hist:(Mat*)hist histSize:(IntVector*)histSize ranges:(FloatVector*)ranges NS_SWIFT_NAME(calcHist(images:channels:mask:hist:histSize:ranges:));
- //
- // void cv::calcBackProject(vector_Mat images, vector_int channels, Mat hist, Mat& dst, vector_float ranges, double scale)
- //
- + (void)calcBackProject:(NSArray<Mat*>*)images channels:(IntVector*)channels hist:(Mat*)hist dst:(Mat*)dst ranges:(FloatVector*)ranges scale:(double)scale NS_SWIFT_NAME(calcBackProject(images:channels:hist:dst:ranges:scale:));
- //
- // double cv::compareHist(Mat H1, Mat H2, HistCompMethods method)
- //
- /**
- * Compares two histograms.
- *
- * The function cv::compareHist compares two dense or two sparse histograms using the specified method.
- *
- * The function returns `$$d(H_1, H_2)$$` .
- *
- * While the function works well with 1-, 2-, 3-dimensional dense histograms, it may not be suitable
- * for high-dimensional sparse histograms. In such histograms, because of aliasing and sampling
- * problems, the coordinates of non-zero histogram bins can slightly shift. To compare such histograms
- * or more general sparse configurations of weighted points, consider using the #EMD function.
- *
- * @param H1 First compared histogram.
- * @param H2 Second compared histogram of the same size as H1 .
- * @param method Comparison method, see #HistCompMethods
- */
- + (double)compareHist:(Mat*)H1 H2:(Mat*)H2 method:(HistCompMethods)method NS_SWIFT_NAME(compareHist(H1:H2:method:));
- //
- // void cv::equalizeHist(Mat src, Mat& dst)
- //
- /**
- * Equalizes the histogram of a grayscale image.
- *
- * The function equalizes the histogram of the input image using the following algorithm:
- *
- * - Calculate the histogram `$$H$$` for src .
- * - Normalize the histogram so that the sum of histogram bins is 255.
- * - Compute the integral of the histogram:
- * `$$H'_i = \sum _{0 \le j < i} H(j)$$`
- * - Transform the image using `$$H'$$` as a look-up table: `$$\texttt{dst}(x,y) = H'(\texttt{src}(x,y))$$`
- *
- * The algorithm normalizes the brightness and increases the contrast of the image.
- *
- * @param src Source 8-bit single channel image.
- * @param dst Destination image of the same size and type as src .
- */
- + (void)equalizeHist:(Mat*)src dst:(Mat*)dst NS_SWIFT_NAME(equalizeHist(src:dst:));
- //
- // Ptr_CLAHE cv::createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8))
- //
- /**
- * Creates a smart pointer to a cv::CLAHE class and initializes it.
- *
- * @param clipLimit Threshold for contrast limiting.
- * @param tileGridSize Size of grid for histogram equalization. Input image will be divided into
- * equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column.
- */
- + (CLAHE*)createCLAHE:(double)clipLimit tileGridSize:(Size2i*)tileGridSize NS_SWIFT_NAME(createCLAHE(clipLimit:tileGridSize:));
- /**
- * Creates a smart pointer to a cv::CLAHE class and initializes it.
- *
- * @param clipLimit Threshold for contrast limiting.
- * equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column.
- */
- + (CLAHE*)createCLAHE:(double)clipLimit NS_SWIFT_NAME(createCLAHE(clipLimit:));
- /**
- * Creates a smart pointer to a cv::CLAHE class and initializes it.
- *
- * equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column.
- */
- + (CLAHE*)createCLAHE NS_SWIFT_NAME(createCLAHE());
- //
- // float cv::wrapperEMD(Mat signature1, Mat signature2, DistanceTypes distType, Mat cost = Mat(), _hidden_ & lowerBound = cv::Ptr<float>(), Mat& flow = Mat())
- //
- /**
- * Computes the "minimal work" distance between two weighted point configurations.
- *
- * The function computes the earth mover distance and/or a lower boundary of the distance between the
- * two weighted point configurations. One of the applications described in CITE: RubnerSept98,
- * CITE: Rubner2000 is multi-dimensional histogram comparison for image retrieval. EMD is a transportation
- * problem that is solved using some modification of a simplex algorithm, thus the complexity is
- * exponential in the worst case, though, on average it is much faster. In the case of a real metric
- * the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used
- * to determine roughly whether the two signatures are far enough so that they cannot relate to the
- * same object.
- *
- * @param signature1 First signature, a `$$\texttt{size1}\times \texttt{dims}+1$$` floating-point matrix.
- * Each row stores the point weight followed by the point coordinates. The matrix is allowed to have
- * a single column (weights only) if the user-defined cost matrix is used. The weights must be
- * non-negative and have at least one non-zero value.
- * @param signature2 Second signature of the same format as signature1 , though the number of rows
- * may be different. The total weights may be different. In this case an extra "dummy" point is added
- * to either signature1 or signature2. The weights must be non-negative and have at least one non-zero
- * value.
- * @param distType Used metric. See #DistanceTypes.
- * @param cost User-defined `$$\texttt{size1}\times \texttt{size2}$$` cost matrix. Also, if a cost matrix
- * is used, lower boundary lowerBound cannot be calculated because it needs a metric function.
- * @param lowerBound Optional input/output parameter: lower boundary of a distance between the two
- * signatures that is a distance between mass centers. The lower boundary may not be calculated if
- * the user-defined cost matrix is used, the total weights of point configurations are not equal, or
- * if the signatures consist of weights only (the signature matrices have a single column). You
- * *must** initialize \*lowerBound . If the calculated distance between mass centers is greater or
- * equal to \*lowerBound (it means that the signatures are far enough), the function does not
- * calculate EMD. In any case \*lowerBound is set to the calculated distance between mass centers on
- * return. Thus, if you want to calculate both distance between mass centers and EMD, \*lowerBound
- * should be set to 0.
- * @param flow Resultant `$$\texttt{size1} \times \texttt{size2}$$` flow matrix: `$$\texttt{flow}_{i,j}$$` is
- * a flow from `$$i$$` -th point of signature1 to `$$j$$` -th point of signature2 .
- */
- + (float)EMD:(Mat*)signature1 signature2:(Mat*)signature2 distType:(DistanceTypes)distType cost:(Mat*)cost flow:(Mat*)flow NS_SWIFT_NAME(wrapperEMD(signature1:signature2:distType:cost:flow:));
- /**
- * Computes the "minimal work" distance between two weighted point configurations.
- *
- * The function computes the earth mover distance and/or a lower boundary of the distance between the
- * two weighted point configurations. One of the applications described in CITE: RubnerSept98,
- * CITE: Rubner2000 is multi-dimensional histogram comparison for image retrieval. EMD is a transportation
- * problem that is solved using some modification of a simplex algorithm, thus the complexity is
- * exponential in the worst case, though, on average it is much faster. In the case of a real metric
- * the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used
- * to determine roughly whether the two signatures are far enough so that they cannot relate to the
- * same object.
- *
- * @param signature1 First signature, a `$$\texttt{size1}\times \texttt{dims}+1$$` floating-point matrix.
- * Each row stores the point weight followed by the point coordinates. The matrix is allowed to have
- * a single column (weights only) if the user-defined cost matrix is used. The weights must be
- * non-negative and have at least one non-zero value.
- * @param signature2 Second signature of the same format as signature1 , though the number of rows
- * may be different. The total weights may be different. In this case an extra "dummy" point is added
- * to either signature1 or signature2. The weights must be non-negative and have at least one non-zero
- * value.
- * @param distType Used metric. See #DistanceTypes.
- * @param cost User-defined `$$\texttt{size1}\times \texttt{size2}$$` cost matrix. Also, if a cost matrix
- * is used, lower boundary lowerBound cannot be calculated because it needs a metric function.
- * @param lowerBound Optional input/output parameter: lower boundary of a distance between the two
- * signatures that is a distance between mass centers. The lower boundary may not be calculated if
- * the user-defined cost matrix is used, the total weights of point configurations are not equal, or
- * if the signatures consist of weights only (the signature matrices have a single column). You
- * *must** initialize \*lowerBound . If the calculated distance between mass centers is greater or
- * equal to \*lowerBound (it means that the signatures are far enough), the function does not
- * calculate EMD. In any case \*lowerBound is set to the calculated distance between mass centers on
- * return. Thus, if you want to calculate both distance between mass centers and EMD, \*lowerBound
- * should be set to 0.
- * a flow from `$$i$$` -th point of signature1 to `$$j$$` -th point of signature2 .
- */
- + (float)EMD:(Mat*)signature1 signature2:(Mat*)signature2 distType:(DistanceTypes)distType cost:(Mat*)cost NS_SWIFT_NAME(wrapperEMD(signature1:signature2:distType:cost:));
- /**
- * Computes the "minimal work" distance between two weighted point configurations.
- *
- * The function computes the earth mover distance and/or a lower boundary of the distance between the
- * two weighted point configurations. One of the applications described in CITE: RubnerSept98,
- * CITE: Rubner2000 is multi-dimensional histogram comparison for image retrieval. EMD is a transportation
- * problem that is solved using some modification of a simplex algorithm, thus the complexity is
- * exponential in the worst case, though, on average it is much faster. In the case of a real metric
- * the lower boundary can be calculated even faster (using linear-time algorithm) and it can be used
- * to determine roughly whether the two signatures are far enough so that they cannot relate to the
- * same object.
- *
- * @param signature1 First signature, a `$$\texttt{size1}\times \texttt{dims}+1$$` floating-point matrix.
- * Each row stores the point weight followed by the point coordinates. The matrix is allowed to have
- * a single column (weights only) if the user-defined cost matrix is used. The weights must be
- * non-negative and have at least one non-zero value.
- * @param signature2 Second signature of the same format as signature1 , though the number of rows
- * may be different. The total weights may be different. In this case an extra "dummy" point is added
- * to either signature1 or signature2. The weights must be non-negative and have at least one non-zero
- * value.
- * @param distType Used metric. See #DistanceTypes.
- * is used, lower boundary lowerBound cannot be calculated because it needs a metric function.
- * signatures that is a distance between mass centers. The lower boundary may not be calculated if
- * the user-defined cost matrix is used, the total weights of point configurations are not equal, or
- * if the signatures consist of weights only (the signature matrices have a single column). You
- * *must** initialize \*lowerBound . If the calculated distance between mass centers is greater or
- * equal to \*lowerBound (it means that the signatures are far enough), the function does not
- * calculate EMD. In any case \*lowerBound is set to the calculated distance between mass centers on
- * return. Thus, if you want to calculate both distance between mass centers and EMD, \*lowerBound
- * should be set to 0.
- * a flow from `$$i$$` -th point of signature1 to `$$j$$` -th point of signature2 .
- */
- + (float)EMD:(Mat*)signature1 signature2:(Mat*)signature2 distType:(DistanceTypes)distType NS_SWIFT_NAME(wrapperEMD(signature1:signature2:distType:));
- //
- // void cv::watershed(Mat image, Mat& markers)
- //
- /**
- * Performs a marker-based image segmentation using the watershed algorithm.
- *
- * The function implements one of the variants of watershed, non-parametric marker-based segmentation
- * algorithm, described in CITE: Meyer92 .
- *
- * Before passing the image to the function, you have to roughly outline the desired regions in the
- * image markers with positive (\>0) indices. So, every region is represented as one or more connected
- * components with the pixel values 1, 2, 3, and so on. Such markers can be retrieved from a binary
- * mask using #findContours and #drawContours (see the watershed.cpp demo). The markers are "seeds" of
- * the future image regions. All the other pixels in markers , whose relation to the outlined regions
- * is not known and should be defined by the algorithm, should be set to 0's. In the function output,
- * each pixel in markers is set to a value of the "seed" components or to -1 at boundaries between the
- * regions.
- *
- * NOTE: Any two neighbor connected components are not necessarily separated by a watershed boundary
- * (-1's pixels); for example, they can touch each other in the initial marker image passed to the
- * function.
- *
- * @param image Input 8-bit 3-channel image.
- * @param markers Input/output 32-bit single-channel image (map) of markers. It should have the same
- * size as image .
- *
- * @see `+findContours:contours:hierarchy:mode:method:offset:`
- */
- + (void)watershed:(Mat*)image markers:(Mat*)markers NS_SWIFT_NAME(watershed(image:markers:));
- //
- // void cv::pyrMeanShiftFiltering(Mat src, Mat& dst, double sp, double sr, int maxLevel = 1, TermCriteria termcrit = TermCriteria(TermCriteria::MAX_ITER+TermCriteria::EPS,5,1))
- //
- /**
- * Performs initial step of meanshift segmentation of an image.
- *
- * The function implements the filtering stage of meanshift segmentation, that is, the output of the
- * function is the filtered "posterized" image with color gradients and fine-grain texture flattened.
- * At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes
- * meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is
- * considered:
- *
- * `$$(x,y): X- \texttt{sp} \le x \le X+ \texttt{sp} , Y- \texttt{sp} \le y \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)|| \le \texttt{sr}$$`
- *
- * where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively
- * (though, the algorithm does not depend on the color space used, so any 3-component color space can
- * be used instead). Over the neighborhood the average spatial value (X',Y') and average color vector
- * (R',G',B') are found and they act as the neighborhood center on the next iteration:
- *
- * `$$(X,Y)~(X',Y'), (R,G,B)~(R',G',B').$$`
- *
- * After the iterations over, the color components of the initial pixel (that is, the pixel from where
- * the iterations started) are set to the final value (average color at the last iteration):
- *
- * `$$I(X,Y) <- (R*,G*,B*)$$`
- *
- * When maxLevel \> 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is
- * run on the smallest layer first. After that, the results are propagated to the larger layer and the
- * iterations are run again only on those pixels where the layer colors differ by more than sr from the
- * lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the
- * results will be actually different from the ones obtained by running the meanshift procedure on the
- * whole original image (i.e. when maxLevel==0).
- *
- * @param src The source 8-bit, 3-channel image.
- * @param dst The destination image of the same format and the same size as the source.
- * @param sp The spatial window radius.
- * @param sr The color window radius.
- * @param maxLevel Maximum level of the pyramid for the segmentation.
- * @param termcrit Termination criteria: when to stop meanshift iterations.
- */
- + (void)pyrMeanShiftFiltering:(Mat*)src dst:(Mat*)dst sp:(double)sp sr:(double)sr maxLevel:(int)maxLevel termcrit:(TermCriteria*)termcrit NS_SWIFT_NAME(pyrMeanShiftFiltering(src:dst:sp:sr:maxLevel:termcrit:));
- /**
- * Performs initial step of meanshift segmentation of an image.
- *
- * The function implements the filtering stage of meanshift segmentation, that is, the output of the
- * function is the filtered "posterized" image with color gradients and fine-grain texture flattened.
- * At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes
- * meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is
- * considered:
- *
- * `$$(x,y): X- \texttt{sp} \le x \le X+ \texttt{sp} , Y- \texttt{sp} \le y \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)|| \le \texttt{sr}$$`
- *
- * where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively
- * (though, the algorithm does not depend on the color space used, so any 3-component color space can
- * be used instead). Over the neighborhood the average spatial value (X',Y') and average color vector
- * (R',G',B') are found and they act as the neighborhood center on the next iteration:
- *
- * `$$(X,Y)~(X',Y'), (R,G,B)~(R',G',B').$$`
- *
- * After the iterations over, the color components of the initial pixel (that is, the pixel from where
- * the iterations started) are set to the final value (average color at the last iteration):
- *
- * `$$I(X,Y) <- (R*,G*,B*)$$`
- *
- * When maxLevel \> 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is
- * run on the smallest layer first. After that, the results are propagated to the larger layer and the
- * iterations are run again only on those pixels where the layer colors differ by more than sr from the
- * lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the
- * results will be actually different from the ones obtained by running the meanshift procedure on the
- * whole original image (i.e. when maxLevel==0).
- *
- * @param src The source 8-bit, 3-channel image.
- * @param dst The destination image of the same format and the same size as the source.
- * @param sp The spatial window radius.
- * @param sr The color window radius.
- * @param maxLevel Maximum level of the pyramid for the segmentation.
- */
- + (void)pyrMeanShiftFiltering:(Mat*)src dst:(Mat*)dst sp:(double)sp sr:(double)sr maxLevel:(int)maxLevel NS_SWIFT_NAME(pyrMeanShiftFiltering(src:dst:sp:sr:maxLevel:));
- /**
- * Performs initial step of meanshift segmentation of an image.
- *
- * The function implements the filtering stage of meanshift segmentation, that is, the output of the
- * function is the filtered "posterized" image with color gradients and fine-grain texture flattened.
- * At every pixel (X,Y) of the input image (or down-sized input image, see below) the function executes
- * meanshift iterations, that is, the pixel (X,Y) neighborhood in the joint space-color hyperspace is
- * considered:
- *
- * `$$(x,y): X- \texttt{sp} \le x \le X+ \texttt{sp} , Y- \texttt{sp} \le y \le Y+ \texttt{sp} , ||(R,G,B)-(r,g,b)|| \le \texttt{sr}$$`
- *
- * where (R,G,B) and (r,g,b) are the vectors of color components at (X,Y) and (x,y), respectively
- * (though, the algorithm does not depend on the color space used, so any 3-component color space can
- * be used instead). Over the neighborhood the average spatial value (X',Y') and average color vector
- * (R',G',B') are found and they act as the neighborhood center on the next iteration:
- *
- * `$$(X,Y)~(X',Y'), (R,G,B)~(R',G',B').$$`
- *
- * After the iterations over, the color components of the initial pixel (that is, the pixel from where
- * the iterations started) are set to the final value (average color at the last iteration):
- *
- * `$$I(X,Y) <- (R*,G*,B*)$$`
- *
- * When maxLevel \> 0, the gaussian pyramid of maxLevel+1 levels is built, and the above procedure is
- * run on the smallest layer first. After that, the results are propagated to the larger layer and the
- * iterations are run again only on those pixels where the layer colors differ by more than sr from the
- * lower-resolution layer of the pyramid. That makes boundaries of color regions sharper. Note that the
- * results will be actually different from the ones obtained by running the meanshift procedure on the
- * whole original image (i.e. when maxLevel==0).
- *
- * @param src The source 8-bit, 3-channel image.
- * @param dst The destination image of the same format and the same size as the source.
- * @param sp The spatial window radius.
- * @param sr The color window radius.
- */
- + (void)pyrMeanShiftFiltering:(Mat*)src dst:(Mat*)dst sp:(double)sp sr:(double)sr NS_SWIFT_NAME(pyrMeanShiftFiltering(src:dst:sp:sr:));
- //
- // void cv::grabCut(Mat img, Mat& mask, Rect rect, Mat& bgdModel, Mat& fgdModel, int iterCount, int mode = GC_EVAL)
- //
- /**
- * Runs the GrabCut algorithm.
- *
- * The function implements the [GrabCut image segmentation algorithm](http://en.wikipedia.org/wiki/GrabCut).
- *
- * @param img Input 8-bit 3-channel image.
- * @param mask Input/output 8-bit single-channel mask. The mask is initialized by the function when
- * mode is set to #GC_INIT_WITH_RECT. Its elements may have one of the #GrabCutClasses.
- * @param rect ROI containing a segmented object. The pixels outside of the ROI are marked as
- * "obvious background". The parameter is only used when mode==#GC_INIT_WITH_RECT .
- * @param bgdModel Temporary array for the background model. Do not modify it while you are
- * processing the same image.
- * @param fgdModel Temporary arrays for the foreground model. Do not modify it while you are
- * processing the same image.
- * @param iterCount Number of iterations the algorithm should make before returning the result. Note
- * that the result can be refined with further calls with mode==#GC_INIT_WITH_MASK or
- * mode==GC_EVAL .
- * @param mode Operation mode that could be one of the #GrabCutModes
- */
- + (void)grabCut:(Mat*)img mask:(Mat*)mask rect:(Rect2i*)rect bgdModel:(Mat*)bgdModel fgdModel:(Mat*)fgdModel iterCount:(int)iterCount mode:(int)mode NS_SWIFT_NAME(grabCut(img:mask:rect:bgdModel:fgdModel:iterCount:mode:));
- /**
- * Runs the GrabCut algorithm.
- *
- * The function implements the [GrabCut image segmentation algorithm](http://en.wikipedia.org/wiki/GrabCut).
- *
- * @param img Input 8-bit 3-channel image.
- * @param mask Input/output 8-bit single-channel mask. The mask is initialized by the function when
- * mode is set to #GC_INIT_WITH_RECT. Its elements may have one of the #GrabCutClasses.
- * @param rect ROI containing a segmented object. The pixels outside of the ROI are marked as
- * "obvious background". The parameter is only used when mode==#GC_INIT_WITH_RECT .
- * @param bgdModel Temporary array for the background model. Do not modify it while you are
- * processing the same image.
- * @param fgdModel Temporary arrays for the foreground model. Do not modify it while you are
- * processing the same image.
- * @param iterCount Number of iterations the algorithm should make before returning the result. Note
- * that the result can be refined with further calls with mode==#GC_INIT_WITH_MASK or
- * mode==GC_EVAL .
- */
- + (void)grabCut:(Mat*)img mask:(Mat*)mask rect:(Rect2i*)rect bgdModel:(Mat*)bgdModel fgdModel:(Mat*)fgdModel iterCount:(int)iterCount NS_SWIFT_NAME(grabCut(img:mask:rect:bgdModel:fgdModel:iterCount:));
- //
- // void cv::distanceTransform(Mat src, Mat& dst, Mat& labels, DistanceTypes distanceType, DistanceTransformMasks maskSize, DistanceTransformLabelTypes labelType = DIST_LABEL_CCOMP)
- //
- /**
- * Calculates the distance to the closest zero pixel for each pixel of the source image.
- *
- * The function cv::distanceTransform calculates the approximate or precise distance from every binary
- * image pixel to the nearest zero pixel. For zero image pixels, the distance will obviously be zero.
- *
- * When maskSize == #DIST_MASK_PRECISE and distanceType == #DIST_L2 , the function runs the
- * algorithm described in CITE: Felzenszwalb04 . This algorithm is parallelized with the TBB library.
- *
- * In other cases, the algorithm CITE: Borgefors86 is used. This means that for a pixel the function
- * finds the shortest path to the nearest zero pixel consisting of basic shifts: horizontal, vertical,
- * diagonal, or knight's move (the latest is available for a `$$5\times 5$$` mask). The overall
- * distance is calculated as a sum of these basic distances. Since the distance function should be
- * symmetric, all of the horizontal and vertical shifts must have the same cost (denoted as a ), all
- * the diagonal shifts must have the same cost (denoted as `b`), and all knight's moves must have the
- * same cost (denoted as `c`). For the #DIST_C and #DIST_L1 types, the distance is calculated
- * precisely, whereas for #DIST_L2 (Euclidean distance) the distance can be calculated only with a
- * relative error (a `$$5\times 5$$` mask gives more accurate results). For `a`,`b`, and `c`, OpenCV
- * uses the values suggested in the original paper:
- * - DIST_L1: `a = 1, b = 2`
- * - DIST_L2:
- * - `3 x 3`: `a=0.955, b=1.3693`
- * - `5 x 5`: `a=1, b=1.4, c=2.1969`
- * - DIST_C: `a = 1, b = 1`
- *
- * Typically, for a fast, coarse distance estimation #DIST_L2, a `$$3\times 3$$` mask is used. For a
- * more accurate distance estimation #DIST_L2, a `$$5\times 5$$` mask or the precise algorithm is used.
- * Note that both the precise and the approximate algorithms are linear on the number of pixels.
- *
- * This variant of the function does not only compute the minimum distance for each pixel `$$(x, y)$$`
- * but also identifies the nearest connected component consisting of zero pixels
- * (labelType==#DIST_LABEL_CCOMP) or the nearest zero pixel (labelType==#DIST_LABEL_PIXEL). Index of the
- * component/pixel is stored in `labels(x, y)`. When labelType==#DIST_LABEL_CCOMP, the function
- * automatically finds connected components of zero pixels in the input image and marks them with
- * distinct labels. When labelType==#DIST_LABEL_PIXEL, the function scans through the input image and
- * marks all the zero pixels with distinct labels.
- *
- * In this mode, the complexity is still linear. That is, the function provides a very fast way to
- * compute the Voronoi diagram for a binary image. Currently, the second variant can use only the
- * approximate distance transform algorithm, i.e. maskSize=#DIST_MASK_PRECISE is not supported
- * yet.
- *
- * @param src 8-bit, single-channel (binary) source image.
- * @param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
- * single-channel image of the same size as src.
- * @param labels Output 2D array of labels (the discrete Voronoi diagram). It has the type
- * CV_32SC1 and the same size as src.
- * @param distanceType Type of distance, see #DistanceTypes
- * @param maskSize Size of the distance transform mask, see #DistanceTransformMasks.
- * #DIST_MASK_PRECISE is not supported by this variant. In case of the #DIST_L1 or #DIST_C distance type,
- * the parameter is forced to 3 because a `$$3\times 3$$` mask gives the same result as `$$5\times
- * 5$$` or any larger aperture.
- * @param labelType Type of the label array to build, see #DistanceTransformLabelTypes.
- */
- + (void)distanceTransformWithLabels:(Mat*)src dst:(Mat*)dst labels:(Mat*)labels distanceType:(DistanceTypes)distanceType maskSize:(DistanceTransformMasks)maskSize labelType:(DistanceTransformLabelTypes)labelType NS_SWIFT_NAME(distanceTransform(src:dst:labels:distanceType:maskSize:labelType:));
- /**
- * Calculates the distance to the closest zero pixel for each pixel of the source image.
- *
- * The function cv::distanceTransform calculates the approximate or precise distance from every binary
- * image pixel to the nearest zero pixel. For zero image pixels, the distance will obviously be zero.
- *
- * When maskSize == #DIST_MASK_PRECISE and distanceType == #DIST_L2 , the function runs the
- * algorithm described in CITE: Felzenszwalb04 . This algorithm is parallelized with the TBB library.
- *
- * In other cases, the algorithm CITE: Borgefors86 is used. This means that for a pixel the function
- * finds the shortest path to the nearest zero pixel consisting of basic shifts: horizontal, vertical,
- * diagonal, or knight's move (the latest is available for a `$$5\times 5$$` mask). The overall
- * distance is calculated as a sum of these basic distances. Since the distance function should be
- * symmetric, all of the horizontal and vertical shifts must have the same cost (denoted as a ), all
- * the diagonal shifts must have the same cost (denoted as `b`), and all knight's moves must have the
- * same cost (denoted as `c`). For the #DIST_C and #DIST_L1 types, the distance is calculated
- * precisely, whereas for #DIST_L2 (Euclidean distance) the distance can be calculated only with a
- * relative error (a `$$5\times 5$$` mask gives more accurate results). For `a`,`b`, and `c`, OpenCV
- * uses the values suggested in the original paper:
- * - DIST_L1: `a = 1, b = 2`
- * - DIST_L2:
- * - `3 x 3`: `a=0.955, b=1.3693`
- * - `5 x 5`: `a=1, b=1.4, c=2.1969`
- * - DIST_C: `a = 1, b = 1`
- *
- * Typically, for a fast, coarse distance estimation #DIST_L2, a `$$3\times 3$$` mask is used. For a
- * more accurate distance estimation #DIST_L2, a `$$5\times 5$$` mask or the precise algorithm is used.
- * Note that both the precise and the approximate algorithms are linear on the number of pixels.
- *
- * This variant of the function does not only compute the minimum distance for each pixel `$$(x, y)$$`
- * but also identifies the nearest connected component consisting of zero pixels
- * (labelType==#DIST_LABEL_CCOMP) or the nearest zero pixel (labelType==#DIST_LABEL_PIXEL). Index of the
- * component/pixel is stored in `labels(x, y)`. When labelType==#DIST_LABEL_CCOMP, the function
- * automatically finds connected components of zero pixels in the input image and marks them with
- * distinct labels. When labelType==#DIST_LABEL_PIXEL, the function scans through the input image and
- * marks all the zero pixels with distinct labels.
- *
- * In this mode, the complexity is still linear. That is, the function provides a very fast way to
- * compute the Voronoi diagram for a binary image. Currently, the second variant can use only the
- * approximate distance transform algorithm, i.e. maskSize=#DIST_MASK_PRECISE is not supported
- * yet.
- *
- * @param src 8-bit, single-channel (binary) source image.
- * @param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
- * single-channel image of the same size as src.
- * @param labels Output 2D array of labels (the discrete Voronoi diagram). It has the type
- * CV_32SC1 and the same size as src.
- * @param distanceType Type of distance, see #DistanceTypes
- * @param maskSize Size of the distance transform mask, see #DistanceTransformMasks.
- * #DIST_MASK_PRECISE is not supported by this variant. In case of the #DIST_L1 or #DIST_C distance type,
- * the parameter is forced to 3 because a `$$3\times 3$$` mask gives the same result as `$$5\times
- * 5$$` or any larger aperture.
- */
- + (void)distanceTransformWithLabels:(Mat*)src dst:(Mat*)dst labels:(Mat*)labels distanceType:(DistanceTypes)distanceType maskSize:(DistanceTransformMasks)maskSize NS_SWIFT_NAME(distanceTransform(src:dst:labels:distanceType:maskSize:));
- //
- // void cv::distanceTransform(Mat src, Mat& dst, DistanceTypes distanceType, DistanceTransformMasks maskSize, int dstType = CV_32F)
- //
- /**
- *
- * @param src 8-bit, single-channel (binary) source image.
- * @param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
- * single-channel image of the same size as src .
- * @param distanceType Type of distance, see #DistanceTypes
- * @param maskSize Size of the distance transform mask, see #DistanceTransformMasks. In case of the
- * #DIST_L1 or #DIST_C distance type, the parameter is forced to 3 because a `$$3\times 3$$` mask gives
- * the same result as `$$5\times 5$$` or any larger aperture.
- * @param dstType Type of output image. It can be CV_8U or CV_32F. Type CV_8U can be used only for
- * the first variant of the function and distanceType == #DIST_L1.
- */
- + (void)distanceTransform:(Mat*)src dst:(Mat*)dst distanceType:(DistanceTypes)distanceType maskSize:(DistanceTransformMasks)maskSize dstType:(int)dstType NS_SWIFT_NAME(distanceTransform(src:dst:distanceType:maskSize:dstType:));
- /**
- *
- * @param src 8-bit, single-channel (binary) source image.
- * @param dst Output image with calculated distances. It is a 8-bit or 32-bit floating-point,
- * single-channel image of the same size as src .
- * @param distanceType Type of distance, see #DistanceTypes
- * @param maskSize Size of the distance transform mask, see #DistanceTransformMasks. In case of the
- * #DIST_L1 or #DIST_C distance type, the parameter is forced to 3 because a `$$3\times 3$$` mask gives
- * the same result as `$$5\times 5$$` or any larger aperture.
- * the first variant of the function and distanceType == #DIST_L1.
- */
- + (void)distanceTransform:(Mat*)src dst:(Mat*)dst distanceType:(DistanceTypes)distanceType maskSize:(DistanceTransformMasks)maskSize NS_SWIFT_NAME(distanceTransform(src:dst:distanceType:maskSize:));
- //
- // int cv::floodFill(Mat& image, Mat& mask, Point seedPoint, Scalar newVal, Rect* rect = 0, Scalar loDiff = Scalar(), Scalar upDiff = Scalar(), int flags = 4)
- //
- /**
- * Fills a connected component with the given color.
- *
- * The function cv::floodFill fills a connected component starting from the seed point with the specified
- * color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The
- * pixel at `$$(x,y)$$` is considered to belong to the repainted domain if:
- *
- * - in case of a grayscale image and floating range
- * `$$\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} (x',y')+ \texttt{upDiff}$$`
- *
- *
- * - in case of a grayscale image and fixed range
- * `$$\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}$$`
- *
- *
- * - in case of a color image and floating range
- * `$$\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,$$`
- * `$$\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g$$`
- * and
- * `$$\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b$$`
- *
- *
- * - in case of a color image and fixed range
- * `$$\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,$$`
- * `$$\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g$$`
- * and
- * `$$\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b$$`
- *
- *
- * where `$$src(x',y')$$` is the value of one of pixel neighbors that is already known to belong to the
- * component. That is, to be added to the connected component, a color/brightness of the pixel should
- * be close enough to:
- * - Color/brightness of one of its neighbors that already belong to the connected component in case
- * of a floating range.
- * - Color/brightness of the seed point in case of a fixed range.
- *
- * Use these functions to either mark a connected component with the specified color in-place, or build
- * a mask and then extract the contour, or copy the region to another image, and so on.
- *
- * @param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the
- * function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See
- * the details below.
- * @param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels
- * taller than image. If an empty Mat is passed it will be created automatically. Since this is both an
- * input and output parameter, you must take responsibility of initializing it.
- * Flood-filling cannot go across non-zero pixels in the input mask. For example,
- * an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the
- * mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags
- * as described below. Additionally, the function fills the border of the mask with ones to simplify
- * internal processing. It is therefore possible to use the same mask in multiple calls to the function
- * to make sure the filled areas do not overlap.
- * @param seedPoint Starting point.
- * @param newVal New value of the repainted domain pixels.
- * @param loDiff Maximal lower brightness/color difference between the currently observed pixel and
- * one of its neighbors belonging to the component, or a seed pixel being added to the component.
- * @param upDiff Maximal upper brightness/color difference between the currently observed pixel and
- * one of its neighbors belonging to the component, or a seed pixel being added to the component.
- * @param rect Optional output parameter set by the function to the minimum bounding rectangle of the
- * repainted domain.
- * @param flags Operation flags. The first 8 bits contain a connectivity value. The default value of
- * 4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A
- * connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner)
- * will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill
- * the mask (the default value is 1). For example, 4 | ( 255 \<\< 8 ) will consider 4 nearest
- * neighbours and fill the mask with a value of 255. The following additional options occupy higher
- * bits and therefore may be further combined with the connectivity and mask fill values using
- * bit-wise or (|), see #FloodFillFlags.
- *
- * NOTE: Since the mask is larger than the filled image, a pixel `$$(x, y)$$` in image corresponds to the
- * pixel `$$(x+1, y+1)$$` in the mask .
- *
- * @see `+findContours:contours:hierarchy:mode:method:offset:`
- */
- + (int)floodFill:(Mat*)image mask:(Mat*)mask seedPoint:(Point2i*)seedPoint newVal:(Scalar*)newVal rect:(Rect2i*)rect loDiff:(Scalar*)loDiff upDiff:(Scalar*)upDiff flags:(int)flags NS_SWIFT_NAME(floodFill(image:mask:seedPoint:newVal:rect:loDiff:upDiff:flags:));
- /**
- * Fills a connected component with the given color.
- *
- * The function cv::floodFill fills a connected component starting from the seed point with the specified
- * color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The
- * pixel at `$$(x,y)$$` is considered to belong to the repainted domain if:
- *
- * - in case of a grayscale image and floating range
- * `$$\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} (x',y')+ \texttt{upDiff}$$`
- *
- *
- * - in case of a grayscale image and fixed range
- * `$$\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}$$`
- *
- *
- * - in case of a color image and floating range
- * `$$\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,$$`
- * `$$\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g$$`
- * and
- * `$$\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b$$`
- *
- *
- * - in case of a color image and fixed range
- * `$$\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,$$`
- * `$$\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g$$`
- * and
- * `$$\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b$$`
- *
- *
- * where `$$src(x',y')$$` is the value of one of pixel neighbors that is already known to belong to the
- * component. That is, to be added to the connected component, a color/brightness of the pixel should
- * be close enough to:
- * - Color/brightness of one of its neighbors that already belong to the connected component in case
- * of a floating range.
- * - Color/brightness of the seed point in case of a fixed range.
- *
- * Use these functions to either mark a connected component with the specified color in-place, or build
- * a mask and then extract the contour, or copy the region to another image, and so on.
- *
- * @param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the
- * function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See
- * the details below.
- * @param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels
- * taller than image. If an empty Mat is passed it will be created automatically. Since this is both an
- * input and output parameter, you must take responsibility of initializing it.
- * Flood-filling cannot go across non-zero pixels in the input mask. For example,
- * an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the
- * mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags
- * as described below. Additionally, the function fills the border of the mask with ones to simplify
- * internal processing. It is therefore possible to use the same mask in multiple calls to the function
- * to make sure the filled areas do not overlap.
- * @param seedPoint Starting point.
- * @param newVal New value of the repainted domain pixels.
- * @param loDiff Maximal lower brightness/color difference between the currently observed pixel and
- * one of its neighbors belonging to the component, or a seed pixel being added to the component.
- * @param upDiff Maximal upper brightness/color difference between the currently observed pixel and
- * one of its neighbors belonging to the component, or a seed pixel being added to the component.
- * @param rect Optional output parameter set by the function to the minimum bounding rectangle of the
- * repainted domain.
- * 4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A
- * connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner)
- * will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill
- * the mask (the default value is 1). For example, 4 | ( 255 \<\< 8 ) will consider 4 nearest
- * neighbours and fill the mask with a value of 255. The following additional options occupy higher
- * bits and therefore may be further combined with the connectivity and mask fill values using
- * bit-wise or (|), see #FloodFillFlags.
- *
- * NOTE: Since the mask is larger than the filled image, a pixel `$$(x, y)$$` in image corresponds to the
- * pixel `$$(x+1, y+1)$$` in the mask .
- *
- * @see `+findContours:contours:hierarchy:mode:method:offset:`
- */
- + (int)floodFill:(Mat*)image mask:(Mat*)mask seedPoint:(Point2i*)seedPoint newVal:(Scalar*)newVal rect:(Rect2i*)rect loDiff:(Scalar*)loDiff upDiff:(Scalar*)upDiff NS_SWIFT_NAME(floodFill(image:mask:seedPoint:newVal:rect:loDiff:upDiff:));
- /**
- * Fills a connected component with the given color.
- *
- * The function cv::floodFill fills a connected component starting from the seed point with the specified
- * color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The
- * pixel at `$$(x,y)$$` is considered to belong to the repainted domain if:
- *
- * - in case of a grayscale image and floating range
- * `$$\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} (x',y')+ \texttt{upDiff}$$`
- *
- *
- * - in case of a grayscale image and fixed range
- * `$$\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}$$`
- *
- *
- * - in case of a color image and floating range
- * `$$\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,$$`
- * `$$\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g$$`
- * and
- * `$$\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b$$`
- *
- *
- * - in case of a color image and fixed range
- * `$$\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,$$`
- * `$$\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g$$`
- * and
- * `$$\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b$$`
- *
- *
- * where `$$src(x',y')$$` is the value of one of pixel neighbors that is already known to belong to the
- * component. That is, to be added to the connected component, a color/brightness of the pixel should
- * be close enough to:
- * - Color/brightness of one of its neighbors that already belong to the connected component in case
- * of a floating range.
- * - Color/brightness of the seed point in case of a fixed range.
- *
- * Use these functions to either mark a connected component with the specified color in-place, or build
- * a mask and then extract the contour, or copy the region to another image, and so on.
- *
- * @param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the
- * function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See
- * the details below.
- * @param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels
- * taller than image. If an empty Mat is passed it will be created automatically. Since this is both an
- * input and output parameter, you must take responsibility of initializing it.
- * Flood-filling cannot go across non-zero pixels in the input mask. For example,
- * an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the
- * mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags
- * as described below. Additionally, the function fills the border of the mask with ones to simplify
- * internal processing. It is therefore possible to use the same mask in multiple calls to the function
- * to make sure the filled areas do not overlap.
- * @param seedPoint Starting point.
- * @param newVal New value of the repainted domain pixels.
- * @param loDiff Maximal lower brightness/color difference between the currently observed pixel and
- * one of its neighbors belonging to the component, or a seed pixel being added to the component.
- * one of its neighbors belonging to the component, or a seed pixel being added to the component.
- * @param rect Optional output parameter set by the function to the minimum bounding rectangle of the
- * repainted domain.
- * 4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A
- * connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner)
- * will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill
- * the mask (the default value is 1). For example, 4 | ( 255 \<\< 8 ) will consider 4 nearest
- * neighbours and fill the mask with a value of 255. The following additional options occupy higher
- * bits and therefore may be further combined with the connectivity and mask fill values using
- * bit-wise or (|), see #FloodFillFlags.
- *
- * NOTE: Since the mask is larger than the filled image, a pixel `$$(x, y)$$` in image corresponds to the
- * pixel `$$(x+1, y+1)$$` in the mask .
- *
- * @see `+findContours:contours:hierarchy:mode:method:offset:`
- */
- + (int)floodFill:(Mat*)image mask:(Mat*)mask seedPoint:(Point2i*)seedPoint newVal:(Scalar*)newVal rect:(Rect2i*)rect loDiff:(Scalar*)loDiff NS_SWIFT_NAME(floodFill(image:mask:seedPoint:newVal:rect:loDiff:));
- /**
- * Fills a connected component with the given color.
- *
- * The function cv::floodFill fills a connected component starting from the seed point with the specified
- * color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The
- * pixel at `$$(x,y)$$` is considered to belong to the repainted domain if:
- *
- * - in case of a grayscale image and floating range
- * `$$\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} (x',y')+ \texttt{upDiff}$$`
- *
- *
- * - in case of a grayscale image and fixed range
- * `$$\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}$$`
- *
- *
- * - in case of a color image and floating range
- * `$$\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,$$`
- * `$$\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g$$`
- * and
- * `$$\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b$$`
- *
- *
- * - in case of a color image and fixed range
- * `$$\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,$$`
- * `$$\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g$$`
- * and
- * `$$\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b$$`
- *
- *
- * where `$$src(x',y')$$` is the value of one of pixel neighbors that is already known to belong to the
- * component. That is, to be added to the connected component, a color/brightness of the pixel should
- * be close enough to:
- * - Color/brightness of one of its neighbors that already belong to the connected component in case
- * of a floating range.
- * - Color/brightness of the seed point in case of a fixed range.
- *
- * Use these functions to either mark a connected component with the specified color in-place, or build
- * a mask and then extract the contour, or copy the region to another image, and so on.
- *
- * @param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the
- * function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See
- * the details below.
- * @param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels
- * taller than image. If an empty Mat is passed it will be created automatically. Since this is both an
- * input and output parameter, you must take responsibility of initializing it.
- * Flood-filling cannot go across non-zero pixels in the input mask. For example,
- * an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the
- * mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags
- * as described below. Additionally, the function fills the border of the mask with ones to simplify
- * internal processing. It is therefore possible to use the same mask in multiple calls to the function
- * to make sure the filled areas do not overlap.
- * @param seedPoint Starting point.
- * @param newVal New value of the repainted domain pixels.
- * one of its neighbors belonging to the component, or a seed pixel being added to the component.
- * one of its neighbors belonging to the component, or a seed pixel being added to the component.
- * @param rect Optional output parameter set by the function to the minimum bounding rectangle of the
- * repainted domain.
- * 4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A
- * connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner)
- * will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill
- * the mask (the default value is 1). For example, 4 | ( 255 \<\< 8 ) will consider 4 nearest
- * neighbours and fill the mask with a value of 255. The following additional options occupy higher
- * bits and therefore may be further combined with the connectivity and mask fill values using
- * bit-wise or (|), see #FloodFillFlags.
- *
- * NOTE: Since the mask is larger than the filled image, a pixel `$$(x, y)$$` in image corresponds to the
- * pixel `$$(x+1, y+1)$$` in the mask .
- *
- * @see `+findContours:contours:hierarchy:mode:method:offset:`
- */
- + (int)floodFill:(Mat*)image mask:(Mat*)mask seedPoint:(Point2i*)seedPoint newVal:(Scalar*)newVal rect:(Rect2i*)rect NS_SWIFT_NAME(floodFill(image:mask:seedPoint:newVal:rect:));
- /**
- * Fills a connected component with the given color.
- *
- * The function cv::floodFill fills a connected component starting from the seed point with the specified
- * color. The connectivity is determined by the color/brightness closeness of the neighbor pixels. The
- * pixel at `$$(x,y)$$` is considered to belong to the repainted domain if:
- *
- * - in case of a grayscale image and floating range
- * `$$\texttt{src} (x',y')- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} (x',y')+ \texttt{upDiff}$$`
- *
- *
- * - in case of a grayscale image and fixed range
- * `$$\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)- \texttt{loDiff} \leq \texttt{src} (x,y) \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)+ \texttt{upDiff}$$`
- *
- *
- * - in case of a color image and floating range
- * `$$\texttt{src} (x',y')_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} (x',y')_r+ \texttt{upDiff} _r,$$`
- * `$$\texttt{src} (x',y')_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} (x',y')_g+ \texttt{upDiff} _g$$`
- * and
- * `$$\texttt{src} (x',y')_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} (x',y')_b+ \texttt{upDiff} _b$$`
- *
- *
- * - in case of a color image and fixed range
- * `$$\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r- \texttt{loDiff} _r \leq \texttt{src} (x,y)_r \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_r+ \texttt{upDiff} _r,$$`
- * `$$\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g- \texttt{loDiff} _g \leq \texttt{src} (x,y)_g \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_g+ \texttt{upDiff} _g$$`
- * and
- * `$$\texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b- \texttt{loDiff} _b \leq \texttt{src} (x,y)_b \leq \texttt{src} ( \texttt{seedPoint} .x, \texttt{seedPoint} .y)_b+ \texttt{upDiff} _b$$`
- *
- *
- * where `$$src(x',y')$$` is the value of one of pixel neighbors that is already known to belong to the
- * component. That is, to be added to the connected component, a color/brightness of the pixel should
- * be close enough to:
- * - Color/brightness of one of its neighbors that already belong to the connected component in case
- * of a floating range.
- * - Color/brightness of the seed point in case of a fixed range.
- *
- * Use these functions to either mark a connected component with the specified color in-place, or build
- * a mask and then extract the contour, or copy the region to another image, and so on.
- *
- * @param image Input/output 1- or 3-channel, 8-bit, or floating-point image. It is modified by the
- * function unless the #FLOODFILL_MASK_ONLY flag is set in the second variant of the function. See
- * the details below.
- * @param mask Operation mask that should be a single-channel 8-bit image, 2 pixels wider and 2 pixels
- * taller than image. If an empty Mat is passed it will be created automatically. Since this is both an
- * input and output parameter, you must take responsibility of initializing it.
- * Flood-filling cannot go across non-zero pixels in the input mask. For example,
- * an edge detector output can be used as a mask to stop filling at edges. On output, pixels in the
- * mask corresponding to filled pixels in the image are set to 1 or to the specified value in flags
- * as described below. Additionally, the function fills the border of the mask with ones to simplify
- * internal processing. It is therefore possible to use the same mask in multiple calls to the function
- * to make sure the filled areas do not overlap.
- * @param seedPoint Starting point.
- * @param newVal New value of the repainted domain pixels.
- * one of its neighbors belonging to the component, or a seed pixel being added to the component.
- * one of its neighbors belonging to the component, or a seed pixel being added to the component.
- * repainted domain.
- * 4 means that only the four nearest neighbor pixels (those that share an edge) are considered. A
- * connectivity value of 8 means that the eight nearest neighbor pixels (those that share a corner)
- * will be considered. The next 8 bits (8-16) contain a value between 1 and 255 with which to fill
- * the mask (the default value is 1). For example, 4 | ( 255 \<\< 8 ) will consider 4 nearest
- * neighbours and fill the mask with a value of 255. The following additional options occupy higher
- * bits and therefore may be further combined with the connectivity and mask fill values using
- * bit-wise or (|), see #FloodFillFlags.
- *
- * NOTE: Since the mask is larger than the filled image, a pixel `$$(x, y)$$` in image corresponds to the
- * pixel `$$(x+1, y+1)$$` in the mask .
- *
- * @see `+findContours:contours:hierarchy:mode:method:offset:`
- */
- + (int)floodFill:(Mat*)image mask:(Mat*)mask seedPoint:(Point2i*)seedPoint newVal:(Scalar*)newVal NS_SWIFT_NAME(floodFill(image:mask:seedPoint:newVal:));
- //
- // void cv::blendLinear(Mat src1, Mat src2, Mat weights1, Mat weights2, Mat& dst)
- //
- /**
- *
- *
- * variant without `mask` parameter
- */
- + (void)blendLinear:(Mat*)src1 src2:(Mat*)src2 weights1:(Mat*)weights1 weights2:(Mat*)weights2 dst:(Mat*)dst NS_SWIFT_NAME(blendLinear(src1:src2:weights1:weights2:dst:));
- //
- // void cv::cvtColor(Mat src, Mat& dst, ColorConversionCodes code, int dstCn = 0)
- //
- /**
- * Converts an image from one color space to another.
- *
- * The function converts an input image from one color space to another. In case of a transformation
- * to-from RGB color space, the order of the channels should be specified explicitly (RGB or BGR). Note
- * that the default color format in OpenCV is often referred to as RGB but it is actually BGR (the
- * bytes are reversed). So the first byte in a standard (24-bit) color image will be an 8-bit Blue
- * component, the second byte will be Green, and the third byte will be Red. The fourth, fifth, and
- * sixth bytes would then be the second pixel (Blue, then Green, then Red), and so on.
- *
- * The conventional ranges for R, G, and B channel values are:
- * - 0 to 255 for CV_8U images
- * - 0 to 65535 for CV_16U images
- * - 0 to 1 for CV_32F images
- *
- * In case of linear transformations, the range does not matter. But in case of a non-linear
- * transformation, an input RGB image should be normalized to the proper value range to get the correct
- * results, for example, for RGB `$$\rightarrow$$` L\*u\*v\* transformation. For example, if you have a
- * 32-bit floating-point image directly converted from an 8-bit image without any scaling, then it will
- * have the 0..255 value range instead of 0..1 assumed by the function. So, before calling #cvtColor ,
- * you need first to scale the image down:
- *
- * img *= 1./255;
- * cvtColor(img, img, COLOR_BGR2Luv);
- *
- * If you use #cvtColor with 8-bit images, the conversion will have some information lost. For many
- * applications, this will not be noticeable but it is recommended to use 32-bit images in applications
- * that need the full range of colors or that convert an image before an operation and then convert
- * back.
- *
- * If conversion adds the alpha channel, its value will set to the maximum of corresponding channel
- * range: 255 for CV_8U, 65535 for CV_16U, 1 for CV_32F.
- *
- * @param src input image: 8-bit unsigned, 16-bit unsigned ( CV_16UC... ), or single-precision
- * floating-point.
- * @param dst output image of the same size and depth as src.
- * @param code color space conversion code (see #ColorConversionCodes).
- * @param dstCn number of channels in the destination image; if the parameter is 0, the number of the
- * channels is derived automatically from src and code.
- *
- * @see `REF: imgproc_color_conversions`
- */
- + (void)cvtColor:(Mat*)src dst:(Mat*)dst code:(ColorConversionCodes)code dstCn:(int)dstCn NS_SWIFT_NAME(cvtColor(src:dst:code:dstCn:));
- /**
- * Converts an image from one color space to another.
- *
- * The function converts an input image from one color space to another. In case of a transformation
- * to-from RGB color space, the order of the channels should be specified explicitly (RGB or BGR). Note
- * that the default color format in OpenCV is often referred to as RGB but it is actually BGR (the
- * bytes are reversed). So the first byte in a standard (24-bit) color image will be an 8-bit Blue
- * component, the second byte will be Green, and the third byte will be Red. The fourth, fifth, and
- * sixth bytes would then be the second pixel (Blue, then Green, then Red), and so on.
- *
- * The conventional ranges for R, G, and B channel values are:
- * - 0 to 255 for CV_8U images
- * - 0 to 65535 for CV_16U images
- * - 0 to 1 for CV_32F images
- *
- * In case of linear transformations, the range does not matter. But in case of a non-linear
- * transformation, an input RGB image should be normalized to the proper value range to get the correct
- * results, for example, for RGB `$$\rightarrow$$` L\*u\*v\* transformation. For example, if you have a
- * 32-bit floating-point image directly converted from an 8-bit image without any scaling, then it will
- * have the 0..255 value range instead of 0..1 assumed by the function. So, before calling #cvtColor ,
- * you need first to scale the image down:
- *
- * img *= 1./255;
- * cvtColor(img, img, COLOR_BGR2Luv);
- *
- * If you use #cvtColor with 8-bit images, the conversion will have some information lost. For many
- * applications, this will not be noticeable but it is recommended to use 32-bit images in applications
- * that need the full range of colors or that convert an image before an operation and then convert
- * back.
- *
- * If conversion adds the alpha channel, its value will set to the maximum of corresponding channel
- * range: 255 for CV_8U, 65535 for CV_16U, 1 for CV_32F.
- *
- * @param src input image: 8-bit unsigned, 16-bit unsigned ( CV_16UC... ), or single-precision
- * floating-point.
- * @param dst output image of the same size and depth as src.
- * @param code color space conversion code (see #ColorConversionCodes).
- * channels is derived automatically from src and code.
- *
- * @see `REF: imgproc_color_conversions`
- */
- + (void)cvtColor:(Mat*)src dst:(Mat*)dst code:(ColorConversionCodes)code NS_SWIFT_NAME(cvtColor(src:dst:code:));
- //
- // void cv::cvtColorTwoPlane(Mat src1, Mat src2, Mat& dst, int code)
- //
- /**
- * Converts an image from one color space to another where the source image is
- * stored in two planes.
- *
- * This function only supports YUV420 to RGB conversion as of now.
- *
- * - #COLOR_YUV2BGR_NV12
- * - #COLOR_YUV2RGB_NV12
- * - #COLOR_YUV2BGRA_NV12
- * - #COLOR_YUV2RGBA_NV12
- * - #COLOR_YUV2BGR_NV21
- * - #COLOR_YUV2RGB_NV21
- * - #COLOR_YUV2BGRA_NV21
- * - #COLOR_YUV2RGBA_NV21
- */
- + (void)cvtColorTwoPlane:(Mat*)src1 src2:(Mat*)src2 dst:(Mat*)dst code:(int)code NS_SWIFT_NAME(cvtColorTwoPlane(src1:src2:dst:code:));
- //
- // void cv::demosaicing(Mat src, Mat& dst, int code, int dstCn = 0)
- //
- /**
- * main function for all demosaicing processes
- *
- * @param src input image: 8-bit unsigned or 16-bit unsigned.
- * @param dst output image of the same size and depth as src.
- * @param code Color space conversion code (see the description below).
- * @param dstCn number of channels in the destination image; if the parameter is 0, the number of the
- * channels is derived automatically from src and code.
- *
- * The function can do the following transformations:
- *
- * - Demosaicing using bilinear interpolation
- *
- * #COLOR_BayerBG2BGR , #COLOR_BayerGB2BGR , #COLOR_BayerRG2BGR , #COLOR_BayerGR2BGR
- *
- * #COLOR_BayerBG2GRAY , #COLOR_BayerGB2GRAY , #COLOR_BayerRG2GRAY , #COLOR_BayerGR2GRAY
- *
- * - Demosaicing using Variable Number of Gradients.
- *
- * #COLOR_BayerBG2BGR_VNG , #COLOR_BayerGB2BGR_VNG , #COLOR_BayerRG2BGR_VNG , #COLOR_BayerGR2BGR_VNG
- *
- * - Edge-Aware Demosaicing.
- *
- * #COLOR_BayerBG2BGR_EA , #COLOR_BayerGB2BGR_EA , #COLOR_BayerRG2BGR_EA , #COLOR_BayerGR2BGR_EA
- *
- * - Demosaicing with alpha channel
- *
- * #COLOR_BayerBG2BGRA , #COLOR_BayerGB2BGRA , #COLOR_BayerRG2BGRA , #COLOR_BayerGR2BGRA
- *
- * @see `+cvtColor:dst:code:dstCn:`
- */
- + (void)demosaicing:(Mat*)src dst:(Mat*)dst code:(int)code dstCn:(int)dstCn NS_SWIFT_NAME(demosaicing(src:dst:code:dstCn:));
- /**
- * main function for all demosaicing processes
- *
- * @param src input image: 8-bit unsigned or 16-bit unsigned.
- * @param dst output image of the same size and depth as src.
- * @param code Color space conversion code (see the description below).
- * channels is derived automatically from src and code.
- *
- * The function can do the following transformations:
- *
- * - Demosaicing using bilinear interpolation
- *
- * #COLOR_BayerBG2BGR , #COLOR_BayerGB2BGR , #COLOR_BayerRG2BGR , #COLOR_BayerGR2BGR
- *
- * #COLOR_BayerBG2GRAY , #COLOR_BayerGB2GRAY , #COLOR_BayerRG2GRAY , #COLOR_BayerGR2GRAY
- *
- * - Demosaicing using Variable Number of Gradients.
- *
- * #COLOR_BayerBG2BGR_VNG , #COLOR_BayerGB2BGR_VNG , #COLOR_BayerRG2BGR_VNG , #COLOR_BayerGR2BGR_VNG
- *
- * - Edge-Aware Demosaicing.
- *
- * #COLOR_BayerBG2BGR_EA , #COLOR_BayerGB2BGR_EA , #COLOR_BayerRG2BGR_EA , #COLOR_BayerGR2BGR_EA
- *
- * - Demosaicing with alpha channel
- *
- * #COLOR_BayerBG2BGRA , #COLOR_BayerGB2BGRA , #COLOR_BayerRG2BGRA , #COLOR_BayerGR2BGRA
- *
- * @see `+cvtColor:dst:code:dstCn:`
- */
- + (void)demosaicing:(Mat*)src dst:(Mat*)dst code:(int)code NS_SWIFT_NAME(demosaicing(src:dst:code:));
- //
- // Moments cv::moments(Mat array, bool binaryImage = false)
- //
- /**
- * Calculates all of the moments up to the third order of a polygon or rasterized shape.
- *
- * The function computes moments, up to the 3rd order, of a vector shape or a rasterized shape. The
- * results are returned in the structure cv::Moments.
- *
- * @param array Raster image (single-channel, 8-bit or floating-point 2D array) or an array (
- * `$$1 \times N$$` or `$$N \times 1$$` ) of 2D points (Point or Point2f ).
- * @param binaryImage If it is true, all non-zero image pixels are treated as 1's. The parameter is
- * used for images only.
- * @return moments.
- *
- * NOTE: Only applicable to contour moments calculations from Python bindings: Note that the numpy
- * type for the input array should be either np.int32 or np.float32.
- *
- * @see `+contourArea:oriented:`, `+arcLength:closed:`
- */
- + (Moments*)moments:(Mat*)array binaryImage:(BOOL)binaryImage NS_SWIFT_NAME(moments(array:binaryImage:));
- /**
- * Calculates all of the moments up to the third order of a polygon or rasterized shape.
- *
- * The function computes moments, up to the 3rd order, of a vector shape or a rasterized shape. The
- * results are returned in the structure cv::Moments.
- *
- * @param array Raster image (single-channel, 8-bit or floating-point 2D array) or an array (
- * `$$1 \times N$$` or `$$N \times 1$$` ) of 2D points (Point or Point2f ).
- * used for images only.
- * @return moments.
- *
- * NOTE: Only applicable to contour moments calculations from Python bindings: Note that the numpy
- * type for the input array should be either np.int32 or np.float32.
- *
- * @see `+contourArea:oriented:`, `+arcLength:closed:`
- */
- + (Moments*)moments:(Mat*)array NS_SWIFT_NAME(moments(array:));
- //
- // void cv::HuMoments(Moments m, Mat& hu)
- //
- + (void)HuMoments:(Moments*)m hu:(Mat*)hu NS_SWIFT_NAME(HuMoments(m:hu:));
- //
- // void cv::matchTemplate(Mat image, Mat templ, Mat& result, TemplateMatchModes method, Mat mask = Mat())
- //
- /**
- * Compares a template against overlapped image regions.
- *
- * The function slides through image , compares the overlapped patches of size `$$w \times h$$` against
- * templ using the specified method and stores the comparison results in result . #TemplateMatchModes
- * describes the formulae for the available comparison methods ( `$$I$$` denotes image, `$$T$$`
- * template, `$$R$$` result, `$$M$$` the optional mask ). The summation is done over template and/or
- * the image patch: `$$x' = 0...w-1, y' = 0...h-1$$`
- *
- * After the function finishes the comparison, the best matches can be found as global minimums (when
- * #TM_SQDIFF was used) or maximums (when #TM_CCORR or #TM_CCOEFF was used) using the
- * #minMaxLoc function. In case of a color image, template summation in the numerator and each sum in
- * the denominator is done over all of the channels and separate mean values are used for each channel.
- * That is, the function can take a color template and a color image. The result will still be a
- * single-channel image, which is easier to analyze.
- *
- * @param image Image where the search is running. It must be 8-bit or 32-bit floating-point.
- * @param templ Searched template. It must be not greater than the source image and have the same
- * data type.
- * @param result Map of comparison results. It must be single-channel 32-bit floating-point. If image
- * is `$$W \times H$$` and templ is `$$w \times h$$` , then result is `$$(W-w+1) \times (H-h+1)$$` .
- * @param method Parameter specifying the comparison method, see #TemplateMatchModes
- * @param mask Optional mask. It must have the same size as templ. It must either have the same number
- * of channels as template or only one channel, which is then used for all template and
- * image channels. If the data type is #CV_8U, the mask is interpreted as a binary mask,
- * meaning only elements where mask is nonzero are used and are kept unchanged independent
- * of the actual mask value (weight equals 1). For data tpye #CV_32F, the mask values are
- * used as weights. The exact formulas are documented in #TemplateMatchModes.
- */
- + (void)matchTemplate:(Mat*)image templ:(Mat*)templ result:(Mat*)result method:(TemplateMatchModes)method mask:(Mat*)mask NS_SWIFT_NAME(matchTemplate(image:templ:result:method:mask:));
- /**
- * Compares a template against overlapped image regions.
- *
- * The function slides through image , compares the overlapped patches of size `$$w \times h$$` against
- * templ using the specified method and stores the comparison results in result . #TemplateMatchModes
- * describes the formulae for the available comparison methods ( `$$I$$` denotes image, `$$T$$`
- * template, `$$R$$` result, `$$M$$` the optional mask ). The summation is done over template and/or
- * the image patch: `$$x' = 0...w-1, y' = 0...h-1$$`
- *
- * After the function finishes the comparison, the best matches can be found as global minimums (when
- * #TM_SQDIFF was used) or maximums (when #TM_CCORR or #TM_CCOEFF was used) using the
- * #minMaxLoc function. In case of a color image, template summation in the numerator and each sum in
- * the denominator is done over all of the channels and separate mean values are used for each channel.
- * That is, the function can take a color template and a color image. The result will still be a
- * single-channel image, which is easier to analyze.
- *
- * @param image Image where the search is running. It must be 8-bit or 32-bit floating-point.
- * @param templ Searched template. It must be not greater than the source image and have the same
- * data type.
- * @param result Map of comparison results. It must be single-channel 32-bit floating-point. If image
- * is `$$W \times H$$` and templ is `$$w \times h$$` , then result is `$$(W-w+1) \times (H-h+1)$$` .
- * @param method Parameter specifying the comparison method, see #TemplateMatchModes
- * of channels as template or only one channel, which is then used for all template and
- * image channels. If the data type is #CV_8U, the mask is interpreted as a binary mask,
- * meaning only elements where mask is nonzero are used and are kept unchanged independent
- * of the actual mask value (weight equals 1). For data tpye #CV_32F, the mask values are
- * used as weights. The exact formulas are documented in #TemplateMatchModes.
- */
- + (void)matchTemplate:(Mat*)image templ:(Mat*)templ result:(Mat*)result method:(TemplateMatchModes)method NS_SWIFT_NAME(matchTemplate(image:templ:result:method:));
- //
- // int cv::connectedComponents(Mat image, Mat& labels, int connectivity, int ltype, int ccltype)
- //
- /**
- * computes the connected components labeled image of boolean image
- *
- * image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
- * represents the background label. ltype specifies the output label image type, an important
- * consideration based on the total number of labels or alternatively the total number of pixels in
- * the source image. ccltype specifies the connected components labeling algorithm to use, currently
- * Bolelli (Spaghetti) CITE: Bolelli2019, Grana (BBDT) CITE: Grana2010 and Wu's (SAUF) CITE: Wu2009 algorithms
- * are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces
- * a row major ordering of labels while Spaghetti and BBDT do not.
- * This function uses parallel version of the algorithms if at least one allowed
- * parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs.
- *
- * @param image the 8-bit single-channel image to be labeled
- * @param labels destination labeled image
- * @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
- * @param ltype output image label type. Currently CV_32S and CV_16U are supported.
- * @param ccltype connected components algorithm type (see the #ConnectedComponentsAlgorithmsTypes).
- */
- + (int)connectedComponentsWithAlgorithm:(Mat*)image labels:(Mat*)labels connectivity:(int)connectivity ltype:(int)ltype ccltype:(int)ccltype NS_SWIFT_NAME(connectedComponents(image:labels:connectivity:ltype:ccltype:));
- //
- // int cv::connectedComponents(Mat image, Mat& labels, int connectivity = 8, int ltype = CV_32S)
- //
- /**
- *
- *
- * @param image the 8-bit single-channel image to be labeled
- * @param labels destination labeled image
- * @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
- * @param ltype output image label type. Currently CV_32S and CV_16U are supported.
- */
- + (int)connectedComponents:(Mat*)image labels:(Mat*)labels connectivity:(int)connectivity ltype:(int)ltype NS_SWIFT_NAME(connectedComponents(image:labels:connectivity:ltype:));
- /**
- *
- *
- * @param image the 8-bit single-channel image to be labeled
- * @param labels destination labeled image
- * @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
- */
- + (int)connectedComponents:(Mat*)image labels:(Mat*)labels connectivity:(int)connectivity NS_SWIFT_NAME(connectedComponents(image:labels:connectivity:));
- /**
- *
- *
- * @param image the 8-bit single-channel image to be labeled
- * @param labels destination labeled image
- */
- + (int)connectedComponents:(Mat*)image labels:(Mat*)labels NS_SWIFT_NAME(connectedComponents(image:labels:));
- //
- // int cv::connectedComponentsWithStats(Mat image, Mat& labels, Mat& stats, Mat& centroids, int connectivity, int ltype, ConnectedComponentsAlgorithmsTypes ccltype)
- //
- /**
- * computes the connected components labeled image of boolean image and also produces a statistics output for each label
- *
- * image with 4 or 8 way connectivity - returns N, the total number of labels [0, N-1] where 0
- * represents the background label. ltype specifies the output label image type, an important
- * consideration based on the total number of labels or alternatively the total number of pixels in
- * the source image. ccltype specifies the connected components labeling algorithm to use, currently
- * Bolelli (Spaghetti) CITE: Bolelli2019, Grana (BBDT) CITE: Grana2010 and Wu's (SAUF) CITE: Wu2009 algorithms
- * are supported, see the #ConnectedComponentsAlgorithmsTypes for details. Note that SAUF algorithm forces
- * a row major ordering of labels while Spaghetti and BBDT do not.
- * This function uses parallel version of the algorithms (statistics included) if at least one allowed
- * parallel framework is enabled and if the rows of the image are at least twice the number returned by #getNumberOfCPUs.
- *
- * @param image the 8-bit single-channel image to be labeled
- * @param labels destination labeled image
- * @param stats statistics output for each label, including the background label.
- * Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
- * #ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S.
- * @param centroids centroid output for each label, including the background label. Centroids are
- * accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
- * @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
- * @param ltype output image label type. Currently CV_32S and CV_16U are supported.
- * @param ccltype connected components algorithm type (see #ConnectedComponentsAlgorithmsTypes).
- */
- + (int)connectedComponentsWithStatsWithAlgorithm:(Mat*)image labels:(Mat*)labels stats:(Mat*)stats centroids:(Mat*)centroids connectivity:(int)connectivity ltype:(int)ltype ccltype:(ConnectedComponentsAlgorithmsTypes)ccltype NS_SWIFT_NAME(connectedComponentsWithStats(image:labels:stats:centroids:connectivity:ltype:ccltype:));
- //
- // int cv::connectedComponentsWithStats(Mat image, Mat& labels, Mat& stats, Mat& centroids, int connectivity = 8, int ltype = CV_32S)
- //
- /**
- *
- * @param image the 8-bit single-channel image to be labeled
- * @param labels destination labeled image
- * @param stats statistics output for each label, including the background label.
- * Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
- * #ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S.
- * @param centroids centroid output for each label, including the background label. Centroids are
- * accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
- * @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
- * @param ltype output image label type. Currently CV_32S and CV_16U are supported.
- */
- + (int)connectedComponentsWithStats:(Mat*)image labels:(Mat*)labels stats:(Mat*)stats centroids:(Mat*)centroids connectivity:(int)connectivity ltype:(int)ltype NS_SWIFT_NAME(connectedComponentsWithStats(image:labels:stats:centroids:connectivity:ltype:));
- /**
- *
- * @param image the 8-bit single-channel image to be labeled
- * @param labels destination labeled image
- * @param stats statistics output for each label, including the background label.
- * Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
- * #ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S.
- * @param centroids centroid output for each label, including the background label. Centroids are
- * accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
- * @param connectivity 8 or 4 for 8-way or 4-way connectivity respectively
- */
- + (int)connectedComponentsWithStats:(Mat*)image labels:(Mat*)labels stats:(Mat*)stats centroids:(Mat*)centroids connectivity:(int)connectivity NS_SWIFT_NAME(connectedComponentsWithStats(image:labels:stats:centroids:connectivity:));
- /**
- *
- * @param image the 8-bit single-channel image to be labeled
- * @param labels destination labeled image
- * @param stats statistics output for each label, including the background label.
- * Statistics are accessed via stats(label, COLUMN) where COLUMN is one of
- * #ConnectedComponentsTypes, selecting the statistic. The data type is CV_32S.
- * @param centroids centroid output for each label, including the background label. Centroids are
- * accessed via centroids(label, 0) for x and centroids(label, 1) for y. The data type CV_64F.
- */
- + (int)connectedComponentsWithStats:(Mat*)image labels:(Mat*)labels stats:(Mat*)stats centroids:(Mat*)centroids NS_SWIFT_NAME(connectedComponentsWithStats(image:labels:stats:centroids:));
- //
- // void cv::findContours(Mat image, vector_vector_Point& contours, Mat& hierarchy, RetrievalModes mode, ContourApproximationModes method, Point offset = Point())
- //
- /**
- * Finds contours in a binary image.
- *
- * The function retrieves contours from the binary image using the algorithm CITE: Suzuki85 . The contours
- * are a useful tool for shape analysis and object detection and recognition. See squares.cpp in the
- * OpenCV sample directory.
- * NOTE: Since opencv 3.2 source image is not modified by this function.
- *
- * @param image Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero
- * pixels remain 0's, so the image is treated as binary . You can use #compare, #inRange, #threshold ,
- * #adaptiveThreshold, #Canny, and others to create a binary image out of a grayscale or color one.
- * If mode equals to #RETR_CCOMP or #RETR_FLOODFILL, the input can also be a 32-bit integer image of labels (CV_32SC1).
- * @param contours Detected contours. Each contour is stored as a vector of points (e.g.
- * std::vector<std::vector<cv::Point> >).
- * @param hierarchy Optional output vector (e.g. std::vector<cv::Vec4i>), containing information about the image topology. It has
- * as many elements as the number of contours. For each i-th contour contours[i], the elements
- * hierarchy[i][0] , hierarchy[i][1] , hierarchy[i][2] , and hierarchy[i][3] are set to 0-based indices
- * in contours of the next and previous contours at the same hierarchical level, the first child
- * contour and the parent contour, respectively. If for the contour i there are no next, previous,
- * parent, or nested contours, the corresponding elements of hierarchy[i] will be negative.
- * NOTE: In Python, hierarchy is nested inside a top level array. Use hierarchy[0][i] to access hierarchical elements of i-th contour.
- * @param mode Contour retrieval mode, see #RetrievalModes
- * @param method Contour approximation method, see #ContourApproximationModes
- * @param offset Optional offset by which every contour point is shifted. This is useful if the
- * contours are extracted from the image ROI and then they should be analyzed in the whole image
- * context.
- */
- + (void)findContours:(Mat*)image contours:(NSMutableArray<NSMutableArray<Point2i*>*>*)contours hierarchy:(Mat*)hierarchy mode:(RetrievalModes)mode method:(ContourApproximationModes)method offset:(Point2i*)offset NS_SWIFT_NAME(findContours(image:contours:hierarchy:mode:method:offset:));
- /**
- * Finds contours in a binary image.
- *
- * The function retrieves contours from the binary image using the algorithm CITE: Suzuki85 . The contours
- * are a useful tool for shape analysis and object detection and recognition. See squares.cpp in the
- * OpenCV sample directory.
- * NOTE: Since opencv 3.2 source image is not modified by this function.
- *
- * @param image Source, an 8-bit single-channel image. Non-zero pixels are treated as 1's. Zero
- * pixels remain 0's, so the image is treated as binary . You can use #compare, #inRange, #threshold ,
- * #adaptiveThreshold, #Canny, and others to create a binary image out of a grayscale or color one.
- * If mode equals to #RETR_CCOMP or #RETR_FLOODFILL, the input can also be a 32-bit integer image of labels (CV_32SC1).
- * @param contours Detected contours. Each contour is stored as a vector of points (e.g.
- * std::vector<std::vector<cv::Point> >).
- * @param hierarchy Optional output vector (e.g. std::vector<cv::Vec4i>), containing information about the image topology. It has
- * as many elements as the number of contours. For each i-th contour contours[i], the elements
- * hierarchy[i][0] , hierarchy[i][1] , hierarchy[i][2] , and hierarchy[i][3] are set to 0-based indices
- * in contours of the next and previous contours at the same hierarchical level, the first child
- * contour and the parent contour, respectively. If for the contour i there are no next, previous,
- * parent, or nested contours, the corresponding elements of hierarchy[i] will be negative.
- * NOTE: In Python, hierarchy is nested inside a top level array. Use hierarchy[0][i] to access hierarchical elements of i-th contour.
- * @param mode Contour retrieval mode, see #RetrievalModes
- * @param method Contour approximation method, see #ContourApproximationModes
- * contours are extracted from the image ROI and then they should be analyzed in the whole image
- * context.
- */
- + (void)findContours:(Mat*)image contours:(NSMutableArray<NSMutableArray<Point2i*>*>*)contours hierarchy:(Mat*)hierarchy mode:(RetrievalModes)mode method:(ContourApproximationModes)method NS_SWIFT_NAME(findContours(image:contours:hierarchy:mode:method:));
- //
- // void cv::approxPolyDP(vector_Point2f curve, vector_Point2f& approxCurve, double epsilon, bool closed)
- //
- /**
- * Approximates a polygonal curve(s) with the specified precision.
- *
- * The function cv::approxPolyDP approximates a curve or a polygon with another curve/polygon with less
- * vertices so that the distance between them is less or equal to the specified precision. It uses the
- * Douglas-Peucker algorithm <http://en.wikipedia.org/wiki/Ramer-Douglas-Peucker_algorithm>
- *
- * @param curve Input vector of a 2D point stored in std::vector or Mat
- * @param approxCurve Result of the approximation. The type should match the type of the input curve.
- * @param epsilon Parameter specifying the approximation accuracy. This is the maximum distance
- * between the original curve and its approximation.
- * @param closed If true, the approximated curve is closed (its first and last vertices are
- * connected). Otherwise, it is not closed.
- */
- + (void)approxPolyDP:(NSArray<Point2f*>*)curve approxCurve:(NSMutableArray<Point2f*>*)approxCurve epsilon:(double)epsilon closed:(BOOL)closed NS_SWIFT_NAME(approxPolyDP(curve:approxCurve:epsilon:closed:));
- //
- // double cv::arcLength(vector_Point2f curve, bool closed)
- //
- /**
- * Calculates a contour perimeter or a curve length.
- *
- * The function computes a curve length or a closed contour perimeter.
- *
- * @param curve Input vector of 2D points, stored in std::vector or Mat.
- * @param closed Flag indicating whether the curve is closed or not.
- */
- + (double)arcLength:(NSArray<Point2f*>*)curve closed:(BOOL)closed NS_SWIFT_NAME(arcLength(curve:closed:));
- //
- // Rect cv::boundingRect(Mat array)
- //
- /**
- * Calculates the up-right bounding rectangle of a point set or non-zero pixels of gray-scale image.
- *
- * The function calculates and returns the minimal up-right bounding rectangle for the specified point set or
- * non-zero pixels of gray-scale image.
- *
- * @param array Input gray-scale image or 2D point set, stored in std::vector or Mat.
- */
- + (Rect2i*)boundingRect:(Mat*)array NS_SWIFT_NAME(boundingRect(array:));
- //
- // double cv::contourArea(Mat contour, bool oriented = false)
- //
- /**
- * Calculates a contour area.
- *
- * The function computes a contour area. Similarly to moments , the area is computed using the Green
- * formula. Thus, the returned area and the number of non-zero pixels, if you draw the contour using
- * #drawContours or #fillPoly , can be different. Also, the function will most certainly give a wrong
- * results for contours with self-intersections.
- *
- * Example:
- *
- * vector<Point> contour;
- * contour.push_back(Point2f(0, 0));
- * contour.push_back(Point2f(10, 0));
- * contour.push_back(Point2f(10, 10));
- * contour.push_back(Point2f(5, 4));
- *
- * double area0 = contourArea(contour);
- * vector<Point> approx;
- * approxPolyDP(contour, approx, 5, true);
- * double area1 = contourArea(approx);
- *
- * cout << "area0 =" << area0 << endl <<
- * "area1 =" << area1 << endl <<
- * "approx poly vertices" << approx.size() << endl;
- *
- * @param contour Input vector of 2D points (contour vertices), stored in std::vector or Mat.
- * @param oriented Oriented area flag. If it is true, the function returns a signed area value,
- * depending on the contour orientation (clockwise or counter-clockwise). Using this feature you can
- * determine orientation of a contour by taking the sign of an area. By default, the parameter is
- * false, which means that the absolute value is returned.
- */
- + (double)contourArea:(Mat*)contour oriented:(BOOL)oriented NS_SWIFT_NAME(contourArea(contour:oriented:));
- /**
- * Calculates a contour area.
- *
- * The function computes a contour area. Similarly to moments , the area is computed using the Green
- * formula. Thus, the returned area and the number of non-zero pixels, if you draw the contour using
- * #drawContours or #fillPoly , can be different. Also, the function will most certainly give a wrong
- * results for contours with self-intersections.
- *
- * Example:
- *
- * vector<Point> contour;
- * contour.push_back(Point2f(0, 0));
- * contour.push_back(Point2f(10, 0));
- * contour.push_back(Point2f(10, 10));
- * contour.push_back(Point2f(5, 4));
- *
- * double area0 = contourArea(contour);
- * vector<Point> approx;
- * approxPolyDP(contour, approx, 5, true);
- * double area1 = contourArea(approx);
- *
- * cout << "area0 =" << area0 << endl <<
- * "area1 =" << area1 << endl <<
- * "approx poly vertices" << approx.size() << endl;
- *
- * @param contour Input vector of 2D points (contour vertices), stored in std::vector or Mat.
- * depending on the contour orientation (clockwise or counter-clockwise). Using this feature you can
- * determine orientation of a contour by taking the sign of an area. By default, the parameter is
- * false, which means that the absolute value is returned.
- */
- + (double)contourArea:(Mat*)contour NS_SWIFT_NAME(contourArea(contour:));
- //
- // RotatedRect cv::minAreaRect(vector_Point2f points)
- //
- /**
- * Finds a rotated rectangle of the minimum area enclosing the input 2D point set.
- *
- * The function calculates and returns the minimum-area bounding rectangle (possibly rotated) for a
- * specified point set. Developer should keep in mind that the returned RotatedRect can contain negative
- * indices when data is close to the containing Mat element boundary.
- *
- * @param points Input vector of 2D points, stored in std::vector\<\> or Mat
- */
- + (RotatedRect*)minAreaRect:(NSArray<Point2f*>*)points NS_SWIFT_NAME(minAreaRect(points:));
- //
- // void cv::boxPoints(RotatedRect box, Mat& points)
- //
- /**
- * Finds the four vertices of a rotated rect. Useful to draw the rotated rectangle.
- *
- * The function finds the four vertices of a rotated rectangle. This function is useful to draw the
- * rectangle. In C++, instead of using this function, you can directly use RotatedRect::points method. Please
- * visit the REF: tutorial_bounding_rotated_ellipses "tutorial on Creating Bounding rotated boxes and ellipses for contours" for more information.
- *
- * @param box The input rotated rectangle. It may be the output of
- * @param points The output array of four vertices of rectangles.
- */
- + (void)boxPoints:(RotatedRect*)box points:(Mat*)points NS_SWIFT_NAME(boxPoints(box:points:));
- //
- // void cv::minEnclosingCircle(vector_Point2f points, Point2f& center, float& radius)
- //
- /**
- * Finds a circle of the minimum area enclosing a 2D point set.
- *
- * The function finds the minimal enclosing circle of a 2D point set using an iterative algorithm.
- *
- * @param points Input vector of 2D points, stored in std::vector\<\> or Mat
- * @param center Output center of the circle.
- * @param radius Output radius of the circle.
- */
- + (void)minEnclosingCircle:(NSArray<Point2f*>*)points center:(Point2f*)center radius:(float*)radius NS_SWIFT_NAME(minEnclosingCircle(points:center:radius:));
- //
- // double cv::minEnclosingTriangle(Mat points, Mat& triangle)
- //
- /**
- * Finds a triangle of minimum area enclosing a 2D point set and returns its area.
- *
- * The function finds a triangle of minimum area enclosing the given set of 2D points and returns its
- * area. The output for a given 2D point set is shown in the image below. 2D points are depicted in
- * red* and the enclosing triangle in *yellow*.
- *
- * ![Sample output of the minimum enclosing triangle function](pics/minenclosingtriangle.png)
- *
- * The implementation of the algorithm is based on O'Rourke's CITE: ORourke86 and Klee and Laskowski's
- * CITE: KleeLaskowski85 papers. O'Rourke provides a `$$\theta(n)$$` algorithm for finding the minimal
- * enclosing triangle of a 2D convex polygon with n vertices. Since the #minEnclosingTriangle function
- * takes a 2D point set as input an additional preprocessing step of computing the convex hull of the
- * 2D point set is required. The complexity of the #convexHull function is `$$O(n log(n))$$` which is higher
- * than `$$\theta(n)$$`. Thus the overall complexity of the function is `$$O(n log(n))$$`.
- *
- * @param points Input vector of 2D points with depth CV_32S or CV_32F, stored in std::vector\<\> or Mat
- * @param triangle Output vector of three 2D points defining the vertices of the triangle. The depth
- * of the OutputArray must be CV_32F.
- */
- + (double)minEnclosingTriangle:(Mat*)points triangle:(Mat*)triangle NS_SWIFT_NAME(minEnclosingTriangle(points:triangle:));
- //
- // double cv::matchShapes(Mat contour1, Mat contour2, ShapeMatchModes method, double parameter)
- //
- /**
- * Compares two shapes.
- *
- * The function compares two shapes. All three implemented methods use the Hu invariants (see #HuMoments)
- *
- * @param contour1 First contour or grayscale image.
- * @param contour2 Second contour or grayscale image.
- * @param method Comparison method, see #ShapeMatchModes
- * @param parameter Method-specific parameter (not supported now).
- */
- + (double)matchShapes:(Mat*)contour1 contour2:(Mat*)contour2 method:(ShapeMatchModes)method parameter:(double)parameter NS_SWIFT_NAME(matchShapes(contour1:contour2:method:parameter:));
- //
- // void cv::convexHull(vector_Point points, vector_int& hull, bool clockwise = false, _hidden_ returnPoints = true)
- //
- /**
- * Finds the convex hull of a point set.
- *
- * The function cv::convexHull finds the convex hull of a 2D point set using the Sklansky's algorithm CITE: Sklansky82
- * that has *O(N logN)* complexity in the current implementation.
- *
- * @param points Input 2D point set, stored in std::vector or Mat.
- * @param hull Output convex hull. It is either an integer vector of indices or vector of points. In
- * the first case, the hull elements are 0-based indices of the convex hull points in the original
- * array (since the set of convex hull points is a subset of the original point set). In the second
- * case, hull elements are the convex hull points themselves.
- * @param clockwise Orientation flag. If it is true, the output convex hull is oriented clockwise.
- * Otherwise, it is oriented counter-clockwise. The assumed coordinate system has its X axis pointing
- * to the right, and its Y axis pointing upwards.
- * @param returnPoints Operation flag. In case of a matrix, when the flag is true, the function
- * returns convex hull points. Otherwise, it returns indices of the convex hull points. When the
- * output array is std::vector, the flag is ignored, and the output depends on the type of the
- * vector: std::vector\<int\> implies returnPoints=false, std::vector\<Point\> implies
- * returnPoints=true.
- *
- * NOTE: `points` and `hull` should be different arrays, inplace processing isn't supported.
- *
- * Check REF: tutorial_hull "the corresponding tutorial" for more details.
- *
- * useful links:
- *
- * https://www.learnopencv.com/convex-hull-using-opencv-in-python-and-c/
- */
- + (void)convexHull:(NSArray<Point2i*>*)points hull:(IntVector*)hull clockwise:(BOOL)clockwise NS_SWIFT_NAME(convexHull(points:hull:clockwise:));
- /**
- * Finds the convex hull of a point set.
- *
- * The function cv::convexHull finds the convex hull of a 2D point set using the Sklansky's algorithm CITE: Sklansky82
- * that has *O(N logN)* complexity in the current implementation.
- *
- * @param points Input 2D point set, stored in std::vector or Mat.
- * @param hull Output convex hull. It is either an integer vector of indices or vector of points. In
- * the first case, the hull elements are 0-based indices of the convex hull points in the original
- * array (since the set of convex hull points is a subset of the original point set). In the second
- * case, hull elements are the convex hull points themselves.
- * Otherwise, it is oriented counter-clockwise. The assumed coordinate system has its X axis pointing
- * to the right, and its Y axis pointing upwards.
- * returns convex hull points. Otherwise, it returns indices of the convex hull points. When the
- * output array is std::vector, the flag is ignored, and the output depends on the type of the
- * vector: std::vector\<int\> implies returnPoints=false, std::vector\<Point\> implies
- * returnPoints=true.
- *
- * NOTE: `points` and `hull` should be different arrays, inplace processing isn't supported.
- *
- * Check REF: tutorial_hull "the corresponding tutorial" for more details.
- *
- * useful links:
- *
- * https://www.learnopencv.com/convex-hull-using-opencv-in-python-and-c/
- */
- + (void)convexHull:(NSArray<Point2i*>*)points hull:(IntVector*)hull NS_SWIFT_NAME(convexHull(points:hull:));
- //
- // void cv::convexityDefects(vector_Point contour, vector_int convexhull, vector_Vec4i& convexityDefects)
- //
- /**
- * Finds the convexity defects of a contour.
- *
- * The figure below displays convexity defects of a hand contour:
- *
- * ![image](pics/defects.png)
- *
- * @param contour Input contour.
- * @param convexhull Convex hull obtained using convexHull that should contain indices of the contour
- * points that make the hull.
- * @param convexityDefects The output vector of convexity defects. In C++ and the new Python/Java
- * interface each convexity defect is represented as 4-element integer vector (a.k.a. #Vec4i):
- * (start_index, end_index, farthest_pt_index, fixpt_depth), where indices are 0-based indices
- * in the original contour of the convexity defect beginning, end and the farthest point, and
- * fixpt_depth is fixed-point approximation (with 8 fractional bits) of the distance between the
- * farthest contour point and the hull. That is, to get the floating-point value of the depth will be
- * fixpt_depth/256.0.
- */
- + (void)convexityDefects:(NSArray<Point2i*>*)contour convexhull:(IntVector*)convexhull convexityDefects:(NSMutableArray<Int4*>*)convexityDefects NS_SWIFT_NAME(convexityDefects(contour:convexhull:convexityDefects:));
- //
- // bool cv::isContourConvex(vector_Point contour)
- //
- /**
- * Tests a contour convexity.
- *
- * The function tests whether the input contour is convex or not. The contour must be simple, that is,
- * without self-intersections. Otherwise, the function output is undefined.
- *
- * @param contour Input vector of 2D points, stored in std::vector\<\> or Mat
- */
- + (BOOL)isContourConvex:(NSArray<Point2i*>*)contour NS_SWIFT_NAME(isContourConvex(contour:));
- //
- // float cv::intersectConvexConvex(Mat p1, Mat p2, Mat& p12, bool handleNested = true)
- //
- /**
- * Finds intersection of two convex polygons
- *
- * @param p1 First polygon
- * @param p2 Second polygon
- * @param p12 Output polygon describing the intersecting area
- * @param handleNested When true, an intersection is found if one of the polygons is fully enclosed in the other.
- * When false, no intersection is found. If the polygons share a side or the vertex of one polygon lies on an edge
- * of the other, they are not considered nested and an intersection will be found regardless of the value of handleNested.
- *
- * @return Absolute value of area of intersecting polygon
- *
- * NOTE: intersectConvexConvex doesn't confirm that both polygons are convex and will return invalid results if they aren't.
- */
- + (float)intersectConvexConvex:(Mat*)p1 p2:(Mat*)p2 p12:(Mat*)p12 handleNested:(BOOL)handleNested NS_SWIFT_NAME(intersectConvexConvex(p1:p2:p12:handleNested:));
- /**
- * Finds intersection of two convex polygons
- *
- * @param p1 First polygon
- * @param p2 Second polygon
- * @param p12 Output polygon describing the intersecting area
- * When false, no intersection is found. If the polygons share a side or the vertex of one polygon lies on an edge
- * of the other, they are not considered nested and an intersection will be found regardless of the value of handleNested.
- *
- * @return Absolute value of area of intersecting polygon
- *
- * NOTE: intersectConvexConvex doesn't confirm that both polygons are convex and will return invalid results if they aren't.
- */
- + (float)intersectConvexConvex:(Mat*)p1 p2:(Mat*)p2 p12:(Mat*)p12 NS_SWIFT_NAME(intersectConvexConvex(p1:p2:p12:));
- //
- // RotatedRect cv::fitEllipse(vector_Point2f points)
- //
- /**
- * Fits an ellipse around a set of 2D points.
- *
- * The function calculates the ellipse that fits (in a least-squares sense) a set of 2D points best of
- * all. It returns the rotated rectangle in which the ellipse is inscribed. The first algorithm described by CITE: Fitzgibbon95
- * is used. Developer should keep in mind that it is possible that the returned
- * ellipse/rotatedRect data contains negative indices, due to the data points being close to the
- * border of the containing Mat element.
- *
- * @param points Input 2D point set, stored in std::vector\<\> or Mat
- */
- + (RotatedRect*)fitEllipse:(NSArray<Point2f*>*)points NS_SWIFT_NAME(fitEllipse(points:));
- //
- // RotatedRect cv::fitEllipseAMS(Mat points)
- //
- /**
- * Fits an ellipse around a set of 2D points.
- *
- * The function calculates the ellipse that fits a set of 2D points.
- * It returns the rotated rectangle in which the ellipse is inscribed.
- * The Approximate Mean Square (AMS) proposed by CITE: Taubin1991 is used.
- *
- * For an ellipse, this basis set is `$$ \chi= \left(x^2, x y, y^2, x, y, 1\right) $$`,
- * which is a set of six free coefficients `$$ A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} $$`.
- * However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths `$$ (a,b) $$`,
- * the position `$$ (x_0,y_0) $$`, and the orientation `$$ \theta $$`. This is because the basis set includes lines,
- * quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits.
- * If the fit is found to be a parabolic or hyperbolic function then the standard #fitEllipse method is used.
- * The AMS method restricts the fit to parabolic, hyperbolic and elliptical curves
- * by imposing the condition that `$$ A^T ( D_x^T D_x + D_y^T D_y) A = 1 $$` where
- * the matrices `$$ Dx $$` and `$$ Dy $$` are the partial derivatives of the design matrix `$$ D $$` with
- * respect to x and y. The matrices are formed row by row applying the following to
- * each of the points in the set:
- * `$$\begin{aligned}
- * D(i,:)&=\left\{x_i^2, x_i y_i, y_i^2, x_i, y_i, 1\right\} &
- * D_x(i,:)&=\left\{2 x_i,y_i,0,1,0,0\right\} &
- * D_y(i,:)&=\left\{0,x_i,2 y_i,0,1,0\right\}
- * \end{aligned}$$`
- * The AMS method minimizes the cost function
- * `$$\begin{aligned}
- * \epsilon ^2=\frac{ A^T D^T D A }{ A^T (D_x^T D_x + D_y^T D_y) A^T }
- * \end{aligned}$$`
- *
- * The minimum cost is found by solving the generalized eigenvalue problem.
- *
- * `$$\begin{aligned}
- * D^T D A = \lambda \left( D_x^T D_x + D_y^T D_y\right) A
- * \end{aligned}$$`
- *
- * @param points Input 2D point set, stored in std::vector\<\> or Mat
- */
- + (RotatedRect*)fitEllipseAMS:(Mat*)points NS_SWIFT_NAME(fitEllipseAMS(points:));
- //
- // RotatedRect cv::fitEllipseDirect(Mat points)
- //
- /**
- * Fits an ellipse around a set of 2D points.
- *
- * The function calculates the ellipse that fits a set of 2D points.
- * It returns the rotated rectangle in which the ellipse is inscribed.
- * The Direct least square (Direct) method by CITE: Fitzgibbon1999 is used.
- *
- * For an ellipse, this basis set is `$$ \chi= \left(x^2, x y, y^2, x, y, 1\right) $$`,
- * which is a set of six free coefficients `$$ A^T=\left\{A_{\text{xx}},A_{\text{xy}},A_{\text{yy}},A_x,A_y,A_0\right\} $$`.
- * However, to specify an ellipse, all that is needed is five numbers; the major and minor axes lengths `$$ (a,b) $$`,
- * the position `$$ (x_0,y_0) $$`, and the orientation `$$ \theta $$`. This is because the basis set includes lines,
- * quadratics, parabolic and hyperbolic functions as well as elliptical functions as possible fits.
- * The Direct method confines the fit to ellipses by ensuring that `$$ 4 A_{xx} A_{yy}- A_{xy}^2 > 0 $$`.
- * The condition imposed is that `$$ 4 A_{xx} A_{yy}- A_{xy}^2=1 $$` which satisfies the inequality
- * and as the coefficients can be arbitrarily scaled is not overly restrictive.
- *
- * `$$\begin{aligned}
- * \epsilon ^2= A^T D^T D A \quad \text{with} \quad A^T C A =1 \quad \text{and} \quad C=\left(\begin{matrix}
- * 0 & 0 & 2 & 0 & 0 & 0 \\
- * 0 & -1 & 0 & 0 & 0 & 0 \\
- * 2 & 0 & 0 & 0 & 0 & 0 \\
- * 0 & 0 & 0 & 0 & 0 & 0 \\
- * 0 & 0 & 0 & 0 & 0 & 0 \\
- * 0 & 0 & 0 & 0 & 0 & 0
- * \end{matrix} \right)
- * \end{aligned}$$`
- *
- * The minimum cost is found by solving the generalized eigenvalue problem.
- *
- * `$$\begin{aligned}
- * D^T D A = \lambda \left( C\right) A
- * \end{aligned}$$`
- *
- * The system produces only one positive eigenvalue `$$ \lambda$$` which is chosen as the solution
- * with its eigenvector `$$\mathbf{u}$$`. These are used to find the coefficients
- *
- * `$$\begin{aligned}
- * A = \sqrt{\frac{1}{\mathbf{u}^T C \mathbf{u}}} \mathbf{u}
- * \end{aligned}$$`
- * The scaling factor guarantees that `$$A^T C A =1$$`.
- *
- * @param points Input 2D point set, stored in std::vector\<\> or Mat
- */
- + (RotatedRect*)fitEllipseDirect:(Mat*)points NS_SWIFT_NAME(fitEllipseDirect(points:));
- //
- // void cv::fitLine(Mat points, Mat& line, DistanceTypes distType, double param, double reps, double aeps)
- //
- /**
- * Fits a line to a 2D or 3D point set.
- *
- * The function fitLine fits a line to a 2D or 3D point set by minimizing `$$\sum_i \rho(r_i)$$` where
- * `$$r_i$$` is a distance between the `$$i^{th}$$` point, the line and `$$\rho(r)$$` is a distance function, one
- * of the following:
- * - DIST_L2
- * `$$\rho (r) = r^2/2 \quad \text{(the simplest and the fastest least-squares method)}$$`
- * - DIST_L1
- * `$$\rho (r) = r$$`
- * - DIST_L12
- * `$$\rho (r) = 2 \cdot ( \sqrt{1 + \frac{r^2}{2}} - 1)$$`
- * - DIST_FAIR
- * `$$\rho \left (r \right ) = C^2 \cdot \left ( \frac{r}{C} - \log{\left(1 + \frac{r}{C}\right)} \right ) \quad \text{where} \quad C=1.3998$$`
- * - DIST_WELSCH
- * `$$\rho \left (r \right ) = \frac{C^2}{2} \cdot \left ( 1 - \exp{\left(-\left(\frac{r}{C}\right)^2\right)} \right ) \quad \text{where} \quad C=2.9846$$`
- * - DIST_HUBER
- * `$$\newcommand{\fork}[4]{ \left\{ \begin{array}{l l} #1 & \text{#2}\\\\ #3 & \text{#4}\\\\ \end{array} \right.} \rho (r) = \fork{r^2/2}{if \(r < C\)}{C \cdot (r-C/2)}{otherwise} \quad \text{where} \quad C=1.345$$`
- *
- * The algorithm is based on the M-estimator ( <http://en.wikipedia.org/wiki/M-estimator> ) technique
- * that iteratively fits the line using the weighted least-squares algorithm. After each iteration the
- * weights `$$w_i$$` are adjusted to be inversely proportional to `$$\rho(r_i)$$` .
- *
- * @param points Input vector of 2D or 3D points, stored in std::vector\<\> or Mat.
- * @param line Output line parameters. In case of 2D fitting, it should be a vector of 4 elements
- * (like Vec4f) - (vx, vy, x0, y0), where (vx, vy) is a normalized vector collinear to the line and
- * (x0, y0) is a point on the line. In case of 3D fitting, it should be a vector of 6 elements (like
- * Vec6f) - (vx, vy, vz, x0, y0, z0), where (vx, vy, vz) is a normalized vector collinear to the line
- * and (x0, y0, z0) is a point on the line.
- * @param distType Distance used by the M-estimator, see #DistanceTypes
- * @param param Numerical parameter ( C ) for some types of distances. If it is 0, an optimal value
- * is chosen.
- * @param reps Sufficient accuracy for the radius (distance between the coordinate origin and the line).
- * @param aeps Sufficient accuracy for the angle. 0.01 would be a good default value for reps and aeps.
- */
- + (void)fitLine:(Mat*)points line:(Mat*)line distType:(DistanceTypes)distType param:(double)param reps:(double)reps aeps:(double)aeps NS_SWIFT_NAME(fitLine(points:line:distType:param:reps:aeps:));
- //
- // double cv::pointPolygonTest(vector_Point2f contour, Point2f pt, bool measureDist)
- //
- /**
- * Performs a point-in-contour test.
- *
- * The function determines whether the point is inside a contour, outside, or lies on an edge (or
- * coincides with a vertex). It returns positive (inside), negative (outside), or zero (on an edge)
- * value, correspondingly. When measureDist=false , the return value is +1, -1, and 0, respectively.
- * Otherwise, the return value is a signed distance between the point and the nearest contour edge.
- *
- * See below a sample output of the function where each image pixel is tested against the contour:
- *
- * ![sample output](pics/pointpolygon.png)
- *
- * @param contour Input contour.
- * @param pt Point tested against the contour.
- * @param measureDist If true, the function estimates the signed distance from the point to the
- * nearest contour edge. Otherwise, the function only checks if the point is inside a contour or not.
- */
- + (double)pointPolygonTest:(NSArray<Point2f*>*)contour pt:(Point2f*)pt measureDist:(BOOL)measureDist NS_SWIFT_NAME(pointPolygonTest(contour:pt:measureDist:));
- //
- // int cv::rotatedRectangleIntersection(RotatedRect rect1, RotatedRect rect2, Mat& intersectingRegion)
- //
- /**
- * Finds out if there is any intersection between two rotated rectangles.
- *
- * If there is then the vertices of the intersecting region are returned as well.
- *
- * Below are some examples of intersection configurations. The hatched pattern indicates the
- * intersecting region and the red vertices are returned by the function.
- *
- * ![intersection examples](pics/intersection.png)
- *
- * @param rect1 First rectangle
- * @param rect2 Second rectangle
- * @param intersectingRegion The output array of the vertices of the intersecting region. It returns
- * at most 8 vertices. Stored as std::vector\<cv::Point2f\> or cv::Mat as Mx1 of type CV_32FC2.
- * @return One of #RectanglesIntersectTypes
- */
- + (int)rotatedRectangleIntersection:(RotatedRect*)rect1 rect2:(RotatedRect*)rect2 intersectingRegion:(Mat*)intersectingRegion NS_SWIFT_NAME(rotatedRectangleIntersection(rect1:rect2:intersectingRegion:));
- //
- // Ptr_GeneralizedHoughBallard cv::createGeneralizedHoughBallard()
- //
- /**
- * Creates a smart pointer to a cv::GeneralizedHoughBallard class and initializes it.
- */
- + (GeneralizedHoughBallard*)createGeneralizedHoughBallard NS_SWIFT_NAME(createGeneralizedHoughBallard());
- //
- // Ptr_GeneralizedHoughGuil cv::createGeneralizedHoughGuil()
- //
- /**
- * Creates a smart pointer to a cv::GeneralizedHoughGuil class and initializes it.
- */
- + (GeneralizedHoughGuil*)createGeneralizedHoughGuil NS_SWIFT_NAME(createGeneralizedHoughGuil());
- //
- // void cv::applyColorMap(Mat src, Mat& dst, ColormapTypes colormap)
- //
- /**
- * Applies a GNU Octave/MATLAB equivalent colormap on a given image.
- *
- * @param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3.
- * @param dst The result is the colormapped source image. Note: Mat::create is called on dst.
- * @param colormap The colormap to apply, see #ColormapTypes
- */
- + (void)applyColorMap:(Mat*)src dst:(Mat*)dst colormap:(ColormapTypes)colormap NS_SWIFT_NAME(applyColorMap(src:dst:colormap:));
- //
- // void cv::applyColorMap(Mat src, Mat& dst, Mat userColor)
- //
- /**
- * Applies a user colormap on a given image.
- *
- * @param src The source image, grayscale or colored of type CV_8UC1 or CV_8UC3.
- * @param dst The result is the colormapped source image. Note: Mat::create is called on dst.
- * @param userColor The colormap to apply of type CV_8UC1 or CV_8UC3 and size 256
- */
- + (void)applyColorMap:(Mat*)src dst:(Mat*)dst userColor:(Mat*)userColor NS_SWIFT_NAME(applyColorMap(src:dst:userColor:));
- //
- // void cv::line(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, LineTypes lineType = LINE_8, int shift = 0)
- //
- /**
- * Draws a line segment connecting two points.
- *
- * The function line draws the line segment between pt1 and pt2 points in the image. The line is
- * clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected
- * or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased
- * lines are drawn using Gaussian filtering.
- *
- * @param img Image.
- * @param pt1 First point of the line segment.
- * @param pt2 Second point of the line segment.
- * @param color Line color.
- * @param thickness Line thickness.
- * @param lineType Type of the line. See #LineTypes.
- * @param shift Number of fractional bits in the point coordinates.
- */
- + (void)line:(Mat*)img pt1:(Point2i*)pt1 pt2:(Point2i*)pt2 color:(Scalar*)color thickness:(int)thickness lineType:(LineTypes)lineType shift:(int)shift NS_SWIFT_NAME(line(img:pt1:pt2:color:thickness:lineType:shift:));
- /**
- * Draws a line segment connecting two points.
- *
- * The function line draws the line segment between pt1 and pt2 points in the image. The line is
- * clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected
- * or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased
- * lines are drawn using Gaussian filtering.
- *
- * @param img Image.
- * @param pt1 First point of the line segment.
- * @param pt2 Second point of the line segment.
- * @param color Line color.
- * @param thickness Line thickness.
- * @param lineType Type of the line. See #LineTypes.
- */
- + (void)line:(Mat*)img pt1:(Point2i*)pt1 pt2:(Point2i*)pt2 color:(Scalar*)color thickness:(int)thickness lineType:(LineTypes)lineType NS_SWIFT_NAME(line(img:pt1:pt2:color:thickness:lineType:));
- /**
- * Draws a line segment connecting two points.
- *
- * The function line draws the line segment between pt1 and pt2 points in the image. The line is
- * clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected
- * or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased
- * lines are drawn using Gaussian filtering.
- *
- * @param img Image.
- * @param pt1 First point of the line segment.
- * @param pt2 Second point of the line segment.
- * @param color Line color.
- * @param thickness Line thickness.
- */
- + (void)line:(Mat*)img pt1:(Point2i*)pt1 pt2:(Point2i*)pt2 color:(Scalar*)color thickness:(int)thickness NS_SWIFT_NAME(line(img:pt1:pt2:color:thickness:));
- /**
- * Draws a line segment connecting two points.
- *
- * The function line draws the line segment between pt1 and pt2 points in the image. The line is
- * clipped by the image boundaries. For non-antialiased lines with integer coordinates, the 8-connected
- * or 4-connected Bresenham algorithm is used. Thick lines are drawn with rounding endings. Antialiased
- * lines are drawn using Gaussian filtering.
- *
- * @param img Image.
- * @param pt1 First point of the line segment.
- * @param pt2 Second point of the line segment.
- * @param color Line color.
- */
- + (void)line:(Mat*)img pt1:(Point2i*)pt1 pt2:(Point2i*)pt2 color:(Scalar*)color NS_SWIFT_NAME(line(img:pt1:pt2:color:));
- //
- // void cv::arrowedLine(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, LineTypes line_type = 8, int shift = 0, double tipLength = 0.1)
- //
- /**
- * Draws an arrow segment pointing from the first point to the second one.
- *
- * The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line.
- *
- * @param img Image.
- * @param pt1 The point the arrow starts from.
- * @param pt2 The point the arrow points to.
- * @param color Line color.
- * @param thickness Line thickness.
- * @param line_type Type of the line. See #LineTypes
- * @param shift Number of fractional bits in the point coordinates.
- * @param tipLength The length of the arrow tip in relation to the arrow length
- */
- + (void)arrowedLine:(Mat*)img pt1:(Point2i*)pt1 pt2:(Point2i*)pt2 color:(Scalar*)color thickness:(int)thickness line_type:(LineTypes)line_type shift:(int)shift tipLength:(double)tipLength NS_SWIFT_NAME(arrowedLine(img:pt1:pt2:color:thickness:line_type:shift:tipLength:));
- /**
- * Draws an arrow segment pointing from the first point to the second one.
- *
- * The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line.
- *
- * @param img Image.
- * @param pt1 The point the arrow starts from.
- * @param pt2 The point the arrow points to.
- * @param color Line color.
- * @param thickness Line thickness.
- * @param line_type Type of the line. See #LineTypes
- * @param shift Number of fractional bits in the point coordinates.
- */
- + (void)arrowedLine:(Mat*)img pt1:(Point2i*)pt1 pt2:(Point2i*)pt2 color:(Scalar*)color thickness:(int)thickness line_type:(LineTypes)line_type shift:(int)shift NS_SWIFT_NAME(arrowedLine(img:pt1:pt2:color:thickness:line_type:shift:));
- /**
- * Draws an arrow segment pointing from the first point to the second one.
- *
- * The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line.
- *
- * @param img Image.
- * @param pt1 The point the arrow starts from.
- * @param pt2 The point the arrow points to.
- * @param color Line color.
- * @param thickness Line thickness.
- * @param line_type Type of the line. See #LineTypes
- */
- + (void)arrowedLine:(Mat*)img pt1:(Point2i*)pt1 pt2:(Point2i*)pt2 color:(Scalar*)color thickness:(int)thickness line_type:(LineTypes)line_type NS_SWIFT_NAME(arrowedLine(img:pt1:pt2:color:thickness:line_type:));
- /**
- * Draws an arrow segment pointing from the first point to the second one.
- *
- * The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line.
- *
- * @param img Image.
- * @param pt1 The point the arrow starts from.
- * @param pt2 The point the arrow points to.
- * @param color Line color.
- * @param thickness Line thickness.
- */
- + (void)arrowedLine:(Mat*)img pt1:(Point2i*)pt1 pt2:(Point2i*)pt2 color:(Scalar*)color thickness:(int)thickness NS_SWIFT_NAME(arrowedLine(img:pt1:pt2:color:thickness:));
- /**
- * Draws an arrow segment pointing from the first point to the second one.
- *
- * The function cv::arrowedLine draws an arrow between pt1 and pt2 points in the image. See also #line.
- *
- * @param img Image.
- * @param pt1 The point the arrow starts from.
- * @param pt2 The point the arrow points to.
- * @param color Line color.
- */
- + (void)arrowedLine:(Mat*)img pt1:(Point2i*)pt1 pt2:(Point2i*)pt2 color:(Scalar*)color NS_SWIFT_NAME(arrowedLine(img:pt1:pt2:color:));
- //
- // void cv::rectangle(Mat& img, Point pt1, Point pt2, Scalar color, int thickness = 1, LineTypes lineType = LINE_8, int shift = 0)
- //
- /**
- * Draws a simple, thick, or filled up-right rectangle.
- *
- * The function cv::rectangle draws a rectangle outline or a filled rectangle whose two opposite corners
- * are pt1 and pt2.
- *
- * @param img Image.
- * @param pt1 Vertex of the rectangle.
- * @param pt2 Vertex of the rectangle opposite to pt1 .
- * @param color Rectangle color or brightness (grayscale image).
- * @param thickness Thickness of lines that make up the rectangle. Negative values, like #FILLED,
- * mean that the function has to draw a filled rectangle.
- * @param lineType Type of the line. See #LineTypes
- * @param shift Number of fractional bits in the point coordinates.
- */
- + (void)rectangle:(Mat*)img pt1:(Point2i*)pt1 pt2:(Point2i*)pt2 color:(Scalar*)color thickness:(int)thickness lineType:(LineTypes)lineType shift:(int)shift NS_SWIFT_NAME(rectangle(img:pt1:pt2:color:thickness:lineType:shift:));
- /**
- * Draws a simple, thick, or filled up-right rectangle.
- *
- * The function cv::rectangle draws a rectangle outline or a filled rectangle whose two opposite corners
- * are pt1 and pt2.
- *
- * @param img Image.
- * @param pt1 Vertex of the rectangle.
- * @param pt2 Vertex of the rectangle opposite to pt1 .
- * @param color Rectangle color or brightness (grayscale image).
- * @param thickness Thickness of lines that make up the rectangle. Negative values, like #FILLED,
- * mean that the function has to draw a filled rectangle.
- * @param lineType Type of the line. See #LineTypes
- */
- + (void)rectangle:(Mat*)img pt1:(Point2i*)pt1 pt2:(Point2i*)pt2 color:(Scalar*)color thickness:(int)thickness lineType:(LineTypes)lineType NS_SWIFT_NAME(rectangle(img:pt1:pt2:color:thickness:lineType:));
- /**
- * Draws a simple, thick, or filled up-right rectangle.
- *
- * The function cv::rectangle draws a rectangle outline or a filled rectangle whose two opposite corners
- * are pt1 and pt2.
- *
- * @param img Image.
- * @param pt1 Vertex of the rectangle.
- * @param pt2 Vertex of the rectangle opposite to pt1 .
- * @param color Rectangle color or brightness (grayscale image).
- * @param thickness Thickness of lines that make up the rectangle. Negative values, like #FILLED,
- * mean that the function has to draw a filled rectangle.
- */
- + (void)rectangle:(Mat*)img pt1:(Point2i*)pt1 pt2:(Point2i*)pt2 color:(Scalar*)color thickness:(int)thickness NS_SWIFT_NAME(rectangle(img:pt1:pt2:color:thickness:));
- /**
- * Draws a simple, thick, or filled up-right rectangle.
- *
- * The function cv::rectangle draws a rectangle outline or a filled rectangle whose two opposite corners
- * are pt1 and pt2.
- *
- * @param img Image.
- * @param pt1 Vertex of the rectangle.
- * @param pt2 Vertex of the rectangle opposite to pt1 .
- * @param color Rectangle color or brightness (grayscale image).
- * mean that the function has to draw a filled rectangle.
- */
- + (void)rectangle:(Mat*)img pt1:(Point2i*)pt1 pt2:(Point2i*)pt2 color:(Scalar*)color NS_SWIFT_NAME(rectangle(img:pt1:pt2:color:));
- //
- // void cv::rectangle(Mat& img, Rect rec, Scalar color, int thickness = 1, LineTypes lineType = LINE_8, int shift = 0)
- //
- /**
- *
- *
- * use `rec` parameter as alternative specification of the drawn rectangle: `r.tl() and
- * r.br()-Point(1,1)` are opposite corners
- */
- + (void)rectangle:(Mat*)img rec:(Rect2i*)rec color:(Scalar*)color thickness:(int)thickness lineType:(LineTypes)lineType shift:(int)shift NS_SWIFT_NAME(rectangle(img:rec:color:thickness:lineType:shift:));
- /**
- *
- *
- * use `rec` parameter as alternative specification of the drawn rectangle: `r.tl() and
- * r.br()-Point(1,1)` are opposite corners
- */
- + (void)rectangle:(Mat*)img rec:(Rect2i*)rec color:(Scalar*)color thickness:(int)thickness lineType:(LineTypes)lineType NS_SWIFT_NAME(rectangle(img:rec:color:thickness:lineType:));
- /**
- *
- *
- * use `rec` parameter as alternative specification of the drawn rectangle: `r.tl() and
- * r.br()-Point(1,1)` are opposite corners
- */
- + (void)rectangle:(Mat*)img rec:(Rect2i*)rec color:(Scalar*)color thickness:(int)thickness NS_SWIFT_NAME(rectangle(img:rec:color:thickness:));
- /**
- *
- *
- * use `rec` parameter as alternative specification of the drawn rectangle: `r.tl() and
- * r.br()-Point(1,1)` are opposite corners
- */
- + (void)rectangle:(Mat*)img rec:(Rect2i*)rec color:(Scalar*)color NS_SWIFT_NAME(rectangle(img:rec:color:));
- //
- // void cv::circle(Mat& img, Point center, int radius, Scalar color, int thickness = 1, LineTypes lineType = LINE_8, int shift = 0)
- //
- /**
- * Draws a circle.
- *
- * The function cv::circle draws a simple or filled circle with a given center and radius.
- * @param img Image where the circle is drawn.
- * @param center Center of the circle.
- * @param radius Radius of the circle.
- * @param color Circle color.
- * @param thickness Thickness of the circle outline, if positive. Negative values, like #FILLED,
- * mean that a filled circle is to be drawn.
- * @param lineType Type of the circle boundary. See #LineTypes
- * @param shift Number of fractional bits in the coordinates of the center and in the radius value.
- */
- + (void)circle:(Mat*)img center:(Point2i*)center radius:(int)radius color:(Scalar*)color thickness:(int)thickness lineType:(LineTypes)lineType shift:(int)shift NS_SWIFT_NAME(circle(img:center:radius:color:thickness:lineType:shift:));
- /**
- * Draws a circle.
- *
- * The function cv::circle draws a simple or filled circle with a given center and radius.
- * @param img Image where the circle is drawn.
- * @param center Center of the circle.
- * @param radius Radius of the circle.
- * @param color Circle color.
- * @param thickness Thickness of the circle outline, if positive. Negative values, like #FILLED,
- * mean that a filled circle is to be drawn.
- * @param lineType Type of the circle boundary. See #LineTypes
- */
- + (void)circle:(Mat*)img center:(Point2i*)center radius:(int)radius color:(Scalar*)color thickness:(int)thickness lineType:(LineTypes)lineType NS_SWIFT_NAME(circle(img:center:radius:color:thickness:lineType:));
- /**
- * Draws a circle.
- *
- * The function cv::circle draws a simple or filled circle with a given center and radius.
- * @param img Image where the circle is drawn.
- * @param center Center of the circle.
- * @param radius Radius of the circle.
- * @param color Circle color.
- * @param thickness Thickness of the circle outline, if positive. Negative values, like #FILLED,
- * mean that a filled circle is to be drawn.
- */
- + (void)circle:(Mat*)img center:(Point2i*)center radius:(int)radius color:(Scalar*)color thickness:(int)thickness NS_SWIFT_NAME(circle(img:center:radius:color:thickness:));
- /**
- * Draws a circle.
- *
- * The function cv::circle draws a simple or filled circle with a given center and radius.
- * @param img Image where the circle is drawn.
- * @param center Center of the circle.
- * @param radius Radius of the circle.
- * @param color Circle color.
- * mean that a filled circle is to be drawn.
- */
- + (void)circle:(Mat*)img center:(Point2i*)center radius:(int)radius color:(Scalar*)color NS_SWIFT_NAME(circle(img:center:radius:color:));
- //
- // void cv::ellipse(Mat& img, Point center, Size axes, double angle, double startAngle, double endAngle, Scalar color, int thickness = 1, LineTypes lineType = LINE_8, int shift = 0)
- //
- /**
- * Draws a simple or thick elliptic arc or fills an ellipse sector.
- *
- * The function cv::ellipse with more parameters draws an ellipse outline, a filled ellipse, an elliptic
- * arc, or a filled ellipse sector. The drawing code uses general parametric form.
- * A piecewise-linear curve is used to approximate the elliptic arc
- * boundary. If you need more control of the ellipse rendering, you can retrieve the curve using
- * #ellipse2Poly and then render it with #polylines or fill it with #fillPoly. If you use the first
- * variant of the function and want to draw the whole ellipse, not an arc, pass `startAngle=0` and
- * `endAngle=360`. If `startAngle` is greater than `endAngle`, they are swapped. The figure below explains
- * the meaning of the parameters to draw the blue arc.
- *
- * ![Parameters of Elliptic Arc](pics/ellipse.svg)
- *
- * @param img Image.
- * @param center Center of the ellipse.
- * @param axes Half of the size of the ellipse main axes.
- * @param angle Ellipse rotation angle in degrees.
- * @param startAngle Starting angle of the elliptic arc in degrees.
- * @param endAngle Ending angle of the elliptic arc in degrees.
- * @param color Ellipse color.
- * @param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
- * a filled ellipse sector is to be drawn.
- * @param lineType Type of the ellipse boundary. See #LineTypes
- * @param shift Number of fractional bits in the coordinates of the center and values of axes.
- */
- + (void)ellipse:(Mat*)img center:(Point2i*)center axes:(Size2i*)axes angle:(double)angle startAngle:(double)startAngle endAngle:(double)endAngle color:(Scalar*)color thickness:(int)thickness lineType:(LineTypes)lineType shift:(int)shift NS_SWIFT_NAME(ellipse(img:center:axes:angle:startAngle:endAngle:color:thickness:lineType:shift:));
- /**
- * Draws a simple or thick elliptic arc or fills an ellipse sector.
- *
- * The function cv::ellipse with more parameters draws an ellipse outline, a filled ellipse, an elliptic
- * arc, or a filled ellipse sector. The drawing code uses general parametric form.
- * A piecewise-linear curve is used to approximate the elliptic arc
- * boundary. If you need more control of the ellipse rendering, you can retrieve the curve using
- * #ellipse2Poly and then render it with #polylines or fill it with #fillPoly. If you use the first
- * variant of the function and want to draw the whole ellipse, not an arc, pass `startAngle=0` and
- * `endAngle=360`. If `startAngle` is greater than `endAngle`, they are swapped. The figure below explains
- * the meaning of the parameters to draw the blue arc.
- *
- * ![Parameters of Elliptic Arc](pics/ellipse.svg)
- *
- * @param img Image.
- * @param center Center of the ellipse.
- * @param axes Half of the size of the ellipse main axes.
- * @param angle Ellipse rotation angle in degrees.
- * @param startAngle Starting angle of the elliptic arc in degrees.
- * @param endAngle Ending angle of the elliptic arc in degrees.
- * @param color Ellipse color.
- * @param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
- * a filled ellipse sector is to be drawn.
- * @param lineType Type of the ellipse boundary. See #LineTypes
- */
- + (void)ellipse:(Mat*)img center:(Point2i*)center axes:(Size2i*)axes angle:(double)angle startAngle:(double)startAngle endAngle:(double)endAngle color:(Scalar*)color thickness:(int)thickness lineType:(LineTypes)lineType NS_SWIFT_NAME(ellipse(img:center:axes:angle:startAngle:endAngle:color:thickness:lineType:));
- /**
- * Draws a simple or thick elliptic arc or fills an ellipse sector.
- *
- * The function cv::ellipse with more parameters draws an ellipse outline, a filled ellipse, an elliptic
- * arc, or a filled ellipse sector. The drawing code uses general parametric form.
- * A piecewise-linear curve is used to approximate the elliptic arc
- * boundary. If you need more control of the ellipse rendering, you can retrieve the curve using
- * #ellipse2Poly and then render it with #polylines or fill it with #fillPoly. If you use the first
- * variant of the function and want to draw the whole ellipse, not an arc, pass `startAngle=0` and
- * `endAngle=360`. If `startAngle` is greater than `endAngle`, they are swapped. The figure below explains
- * the meaning of the parameters to draw the blue arc.
- *
- * ![Parameters of Elliptic Arc](pics/ellipse.svg)
- *
- * @param img Image.
- * @param center Center of the ellipse.
- * @param axes Half of the size of the ellipse main axes.
- * @param angle Ellipse rotation angle in degrees.
- * @param startAngle Starting angle of the elliptic arc in degrees.
- * @param endAngle Ending angle of the elliptic arc in degrees.
- * @param color Ellipse color.
- * @param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
- * a filled ellipse sector is to be drawn.
- */
- + (void)ellipse:(Mat*)img center:(Point2i*)center axes:(Size2i*)axes angle:(double)angle startAngle:(double)startAngle endAngle:(double)endAngle color:(Scalar*)color thickness:(int)thickness NS_SWIFT_NAME(ellipse(img:center:axes:angle:startAngle:endAngle:color:thickness:));
- /**
- * Draws a simple or thick elliptic arc or fills an ellipse sector.
- *
- * The function cv::ellipse with more parameters draws an ellipse outline, a filled ellipse, an elliptic
- * arc, or a filled ellipse sector. The drawing code uses general parametric form.
- * A piecewise-linear curve is used to approximate the elliptic arc
- * boundary. If you need more control of the ellipse rendering, you can retrieve the curve using
- * #ellipse2Poly and then render it with #polylines or fill it with #fillPoly. If you use the first
- * variant of the function and want to draw the whole ellipse, not an arc, pass `startAngle=0` and
- * `endAngle=360`. If `startAngle` is greater than `endAngle`, they are swapped. The figure below explains
- * the meaning of the parameters to draw the blue arc.
- *
- * ![Parameters of Elliptic Arc](pics/ellipse.svg)
- *
- * @param img Image.
- * @param center Center of the ellipse.
- * @param axes Half of the size of the ellipse main axes.
- * @param angle Ellipse rotation angle in degrees.
- * @param startAngle Starting angle of the elliptic arc in degrees.
- * @param endAngle Ending angle of the elliptic arc in degrees.
- * @param color Ellipse color.
- * a filled ellipse sector is to be drawn.
- */
- + (void)ellipse:(Mat*)img center:(Point2i*)center axes:(Size2i*)axes angle:(double)angle startAngle:(double)startAngle endAngle:(double)endAngle color:(Scalar*)color NS_SWIFT_NAME(ellipse(img:center:axes:angle:startAngle:endAngle:color:));
- //
- // void cv::ellipse(Mat& img, RotatedRect box, Scalar color, int thickness = 1, LineTypes lineType = LINE_8)
- //
- /**
- *
- * @param img Image.
- * @param box Alternative ellipse representation via RotatedRect. This means that the function draws
- * an ellipse inscribed in the rotated rectangle.
- * @param color Ellipse color.
- * @param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
- * a filled ellipse sector is to be drawn.
- * @param lineType Type of the ellipse boundary. See #LineTypes
- */
- + (void)ellipse:(Mat*)img box:(RotatedRect*)box color:(Scalar*)color thickness:(int)thickness lineType:(LineTypes)lineType NS_SWIFT_NAME(ellipse(img:box:color:thickness:lineType:));
- /**
- *
- * @param img Image.
- * @param box Alternative ellipse representation via RotatedRect. This means that the function draws
- * an ellipse inscribed in the rotated rectangle.
- * @param color Ellipse color.
- * @param thickness Thickness of the ellipse arc outline, if positive. Otherwise, this indicates that
- * a filled ellipse sector is to be drawn.
- */
- + (void)ellipse:(Mat*)img box:(RotatedRect*)box color:(Scalar*)color thickness:(int)thickness NS_SWIFT_NAME(ellipse(img:box:color:thickness:));
- /**
- *
- * @param img Image.
- * @param box Alternative ellipse representation via RotatedRect. This means that the function draws
- * an ellipse inscribed in the rotated rectangle.
- * @param color Ellipse color.
- * a filled ellipse sector is to be drawn.
- */
- + (void)ellipse:(Mat*)img box:(RotatedRect*)box color:(Scalar*)color NS_SWIFT_NAME(ellipse(img:box:color:));
- //
- // void cv::drawMarker(Mat& img, Point position, Scalar color, MarkerTypes markerType = MARKER_CROSS, int markerSize = 20, int thickness = 1, LineTypes line_type = 8)
- //
- /**
- * Draws a marker on a predefined position in an image.
- *
- * The function cv::drawMarker draws a marker on a given position in the image. For the moment several
- * marker types are supported, see #MarkerTypes for more information.
- *
- * @param img Image.
- * @param position The point where the crosshair is positioned.
- * @param color Line color.
- * @param markerType The specific type of marker you want to use, see #MarkerTypes
- * @param thickness Line thickness.
- * @param line_type Type of the line, See #LineTypes
- * @param markerSize The length of the marker axis [default = 20 pixels]
- */
- + (void)drawMarker:(Mat*)img position:(Point2i*)position color:(Scalar*)color markerType:(MarkerTypes)markerType markerSize:(int)markerSize thickness:(int)thickness line_type:(LineTypes)line_type NS_SWIFT_NAME(drawMarker(img:position:color:markerType:markerSize:thickness:line_type:));
- /**
- * Draws a marker on a predefined position in an image.
- *
- * The function cv::drawMarker draws a marker on a given position in the image. For the moment several
- * marker types are supported, see #MarkerTypes for more information.
- *
- * @param img Image.
- * @param position The point where the crosshair is positioned.
- * @param color Line color.
- * @param markerType The specific type of marker you want to use, see #MarkerTypes
- * @param thickness Line thickness.
- * @param markerSize The length of the marker axis [default = 20 pixels]
- */
- + (void)drawMarker:(Mat*)img position:(Point2i*)position color:(Scalar*)color markerType:(MarkerTypes)markerType markerSize:(int)markerSize thickness:(int)thickness NS_SWIFT_NAME(drawMarker(img:position:color:markerType:markerSize:thickness:));
- /**
- * Draws a marker on a predefined position in an image.
- *
- * The function cv::drawMarker draws a marker on a given position in the image. For the moment several
- * marker types are supported, see #MarkerTypes for more information.
- *
- * @param img Image.
- * @param position The point where the crosshair is positioned.
- * @param color Line color.
- * @param markerType The specific type of marker you want to use, see #MarkerTypes
- * @param markerSize The length of the marker axis [default = 20 pixels]
- */
- + (void)drawMarker:(Mat*)img position:(Point2i*)position color:(Scalar*)color markerType:(MarkerTypes)markerType markerSize:(int)markerSize NS_SWIFT_NAME(drawMarker(img:position:color:markerType:markerSize:));
- /**
- * Draws a marker on a predefined position in an image.
- *
- * The function cv::drawMarker draws a marker on a given position in the image. For the moment several
- * marker types are supported, see #MarkerTypes for more information.
- *
- * @param img Image.
- * @param position The point where the crosshair is positioned.
- * @param color Line color.
- * @param markerType The specific type of marker you want to use, see #MarkerTypes
- */
- + (void)drawMarker:(Mat*)img position:(Point2i*)position color:(Scalar*)color markerType:(MarkerTypes)markerType NS_SWIFT_NAME(drawMarker(img:position:color:markerType:));
- /**
- * Draws a marker on a predefined position in an image.
- *
- * The function cv::drawMarker draws a marker on a given position in the image. For the moment several
- * marker types are supported, see #MarkerTypes for more information.
- *
- * @param img Image.
- * @param position The point where the crosshair is positioned.
- * @param color Line color.
- */
- + (void)drawMarker:(Mat*)img position:(Point2i*)position color:(Scalar*)color NS_SWIFT_NAME(drawMarker(img:position:color:));
- //
- // void cv::fillConvexPoly(Mat& img, vector_Point points, Scalar color, LineTypes lineType = LINE_8, int shift = 0)
- //
- /**
- * Fills a convex polygon.
- *
- * The function cv::fillConvexPoly draws a filled convex polygon. This function is much faster than the
- * function #fillPoly . It can fill not only convex polygons but any monotonic polygon without
- * self-intersections, that is, a polygon whose contour intersects every horizontal line (scan line)
- * twice at the most (though, its top-most and/or the bottom edge could be horizontal).
- *
- * @param img Image.
- * @param points Polygon vertices.
- * @param color Polygon color.
- * @param lineType Type of the polygon boundaries. See #LineTypes
- * @param shift Number of fractional bits in the vertex coordinates.
- */
- + (void)fillConvexPoly:(Mat*)img points:(NSArray<Point2i*>*)points color:(Scalar*)color lineType:(LineTypes)lineType shift:(int)shift NS_SWIFT_NAME(fillConvexPoly(img:points:color:lineType:shift:));
- /**
- * Fills a convex polygon.
- *
- * The function cv::fillConvexPoly draws a filled convex polygon. This function is much faster than the
- * function #fillPoly . It can fill not only convex polygons but any monotonic polygon without
- * self-intersections, that is, a polygon whose contour intersects every horizontal line (scan line)
- * twice at the most (though, its top-most and/or the bottom edge could be horizontal).
- *
- * @param img Image.
- * @param points Polygon vertices.
- * @param color Polygon color.
- * @param lineType Type of the polygon boundaries. See #LineTypes
- */
- + (void)fillConvexPoly:(Mat*)img points:(NSArray<Point2i*>*)points color:(Scalar*)color lineType:(LineTypes)lineType NS_SWIFT_NAME(fillConvexPoly(img:points:color:lineType:));
- /**
- * Fills a convex polygon.
- *
- * The function cv::fillConvexPoly draws a filled convex polygon. This function is much faster than the
- * function #fillPoly . It can fill not only convex polygons but any monotonic polygon without
- * self-intersections, that is, a polygon whose contour intersects every horizontal line (scan line)
- * twice at the most (though, its top-most and/or the bottom edge could be horizontal).
- *
- * @param img Image.
- * @param points Polygon vertices.
- * @param color Polygon color.
- */
- + (void)fillConvexPoly:(Mat*)img points:(NSArray<Point2i*>*)points color:(Scalar*)color NS_SWIFT_NAME(fillConvexPoly(img:points:color:));
- //
- // void cv::fillPoly(Mat& img, vector_vector_Point pts, Scalar color, LineTypes lineType = LINE_8, int shift = 0, Point offset = Point())
- //
- /**
- * Fills the area bounded by one or more polygons.
- *
- * The function cv::fillPoly fills an area bounded by several polygonal contours. The function can fill
- * complex areas, for example, areas with holes, contours with self-intersections (some of their
- * parts), and so forth.
- *
- * @param img Image.
- * @param pts Array of polygons where each polygon is represented as an array of points.
- * @param color Polygon color.
- * @param lineType Type of the polygon boundaries. See #LineTypes
- * @param shift Number of fractional bits in the vertex coordinates.
- * @param offset Optional offset of all points of the contours.
- */
- + (void)fillPoly:(Mat*)img pts:(NSArray<NSArray<Point2i*>*>*)pts color:(Scalar*)color lineType:(LineTypes)lineType shift:(int)shift offset:(Point2i*)offset NS_SWIFT_NAME(fillPoly(img:pts:color:lineType:shift:offset:));
- /**
- * Fills the area bounded by one or more polygons.
- *
- * The function cv::fillPoly fills an area bounded by several polygonal contours. The function can fill
- * complex areas, for example, areas with holes, contours with self-intersections (some of their
- * parts), and so forth.
- *
- * @param img Image.
- * @param pts Array of polygons where each polygon is represented as an array of points.
- * @param color Polygon color.
- * @param lineType Type of the polygon boundaries. See #LineTypes
- * @param shift Number of fractional bits in the vertex coordinates.
- */
- + (void)fillPoly:(Mat*)img pts:(NSArray<NSArray<Point2i*>*>*)pts color:(Scalar*)color lineType:(LineTypes)lineType shift:(int)shift NS_SWIFT_NAME(fillPoly(img:pts:color:lineType:shift:));
- /**
- * Fills the area bounded by one or more polygons.
- *
- * The function cv::fillPoly fills an area bounded by several polygonal contours. The function can fill
- * complex areas, for example, areas with holes, contours with self-intersections (some of their
- * parts), and so forth.
- *
- * @param img Image.
- * @param pts Array of polygons where each polygon is represented as an array of points.
- * @param color Polygon color.
- * @param lineType Type of the polygon boundaries. See #LineTypes
- */
- + (void)fillPoly:(Mat*)img pts:(NSArray<NSArray<Point2i*>*>*)pts color:(Scalar*)color lineType:(LineTypes)lineType NS_SWIFT_NAME(fillPoly(img:pts:color:lineType:));
- /**
- * Fills the area bounded by one or more polygons.
- *
- * The function cv::fillPoly fills an area bounded by several polygonal contours. The function can fill
- * complex areas, for example, areas with holes, contours with self-intersections (some of their
- * parts), and so forth.
- *
- * @param img Image.
- * @param pts Array of polygons where each polygon is represented as an array of points.
- * @param color Polygon color.
- */
- + (void)fillPoly:(Mat*)img pts:(NSArray<NSArray<Point2i*>*>*)pts color:(Scalar*)color NS_SWIFT_NAME(fillPoly(img:pts:color:));
- //
- // void cv::polylines(Mat& img, vector_vector_Point pts, bool isClosed, Scalar color, int thickness = 1, LineTypes lineType = LINE_8, int shift = 0)
- //
- /**
- * Draws several polygonal curves.
- *
- * @param img Image.
- * @param pts Array of polygonal curves.
- * @param isClosed Flag indicating whether the drawn polylines are closed or not. If they are closed,
- * the function draws a line from the last vertex of each curve to its first vertex.
- * @param color Polyline color.
- * @param thickness Thickness of the polyline edges.
- * @param lineType Type of the line segments. See #LineTypes
- * @param shift Number of fractional bits in the vertex coordinates.
- *
- * The function cv::polylines draws one or more polygonal curves.
- */
- + (void)polylines:(Mat*)img pts:(NSArray<NSArray<Point2i*>*>*)pts isClosed:(BOOL)isClosed color:(Scalar*)color thickness:(int)thickness lineType:(LineTypes)lineType shift:(int)shift NS_SWIFT_NAME(polylines(img:pts:isClosed:color:thickness:lineType:shift:));
- /**
- * Draws several polygonal curves.
- *
- * @param img Image.
- * @param pts Array of polygonal curves.
- * @param isClosed Flag indicating whether the drawn polylines are closed or not. If they are closed,
- * the function draws a line from the last vertex of each curve to its first vertex.
- * @param color Polyline color.
- * @param thickness Thickness of the polyline edges.
- * @param lineType Type of the line segments. See #LineTypes
- *
- * The function cv::polylines draws one or more polygonal curves.
- */
- + (void)polylines:(Mat*)img pts:(NSArray<NSArray<Point2i*>*>*)pts isClosed:(BOOL)isClosed color:(Scalar*)color thickness:(int)thickness lineType:(LineTypes)lineType NS_SWIFT_NAME(polylines(img:pts:isClosed:color:thickness:lineType:));
- /**
- * Draws several polygonal curves.
- *
- * @param img Image.
- * @param pts Array of polygonal curves.
- * @param isClosed Flag indicating whether the drawn polylines are closed or not. If they are closed,
- * the function draws a line from the last vertex of each curve to its first vertex.
- * @param color Polyline color.
- * @param thickness Thickness of the polyline edges.
- *
- * The function cv::polylines draws one or more polygonal curves.
- */
- + (void)polylines:(Mat*)img pts:(NSArray<NSArray<Point2i*>*>*)pts isClosed:(BOOL)isClosed color:(Scalar*)color thickness:(int)thickness NS_SWIFT_NAME(polylines(img:pts:isClosed:color:thickness:));
- /**
- * Draws several polygonal curves.
- *
- * @param img Image.
- * @param pts Array of polygonal curves.
- * @param isClosed Flag indicating whether the drawn polylines are closed or not. If they are closed,
- * the function draws a line from the last vertex of each curve to its first vertex.
- * @param color Polyline color.
- *
- * The function cv::polylines draws one or more polygonal curves.
- */
- + (void)polylines:(Mat*)img pts:(NSArray<NSArray<Point2i*>*>*)pts isClosed:(BOOL)isClosed color:(Scalar*)color NS_SWIFT_NAME(polylines(img:pts:isClosed:color:));
- //
- // void cv::drawContours(Mat& image, vector_vector_Point contours, int contourIdx, Scalar color, int thickness = 1, LineTypes lineType = LINE_8, Mat hierarchy = Mat(), int maxLevel = INT_MAX, Point offset = Point())
- //
- /**
- * Draws contours outlines or filled contours.
- *
- * The function draws contour outlines in the image if `$$\texttt{thickness} \ge 0$$` or fills the area
- * bounded by the contours if `$$\texttt{thickness}<0$$` . The example below shows how to retrieve
- * connected components from the binary image and label them: :
- * INCLUDE: snippets/imgproc_drawContours.cpp
- *
- * @param image Destination image.
- * @param contours All the input contours. Each contour is stored as a point vector.
- * @param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn.
- * @param color Color of the contours.
- * @param thickness Thickness of lines the contours are drawn with. If it is negative (for example,
- * thickness=#FILLED ), the contour interiors are drawn.
- * @param lineType Line connectivity. See #LineTypes
- * @param hierarchy Optional information about hierarchy. It is only needed if you want to draw only
- * some of the contours (see maxLevel ).
- * @param maxLevel Maximal level for drawn contours. If it is 0, only the specified contour is drawn.
- * If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function
- * draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This
- * parameter is only taken into account when there is hierarchy available.
- * @param offset Optional contour shift parameter. Shift all the drawn contours by the specified
- * `$$\texttt{offset}=(dx,dy)$$` .
- * NOTE: When thickness=#FILLED, the function is designed to handle connected components with holes correctly
- * even when no hierarchy data is provided. This is done by analyzing all the outlines together
- * using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved
- * contours. In order to solve this problem, you need to call #drawContours separately for each sub-group
- * of contours, or iterate over the collection using contourIdx parameter.
- */
- + (void)drawContours:(Mat*)image contours:(NSArray<NSArray<Point2i*>*>*)contours contourIdx:(int)contourIdx color:(Scalar*)color thickness:(int)thickness lineType:(LineTypes)lineType hierarchy:(Mat*)hierarchy maxLevel:(int)maxLevel offset:(Point2i*)offset NS_SWIFT_NAME(drawContours(image:contours:contourIdx:color:thickness:lineType:hierarchy:maxLevel:offset:));
- /**
- * Draws contours outlines or filled contours.
- *
- * The function draws contour outlines in the image if `$$\texttt{thickness} \ge 0$$` or fills the area
- * bounded by the contours if `$$\texttt{thickness}<0$$` . The example below shows how to retrieve
- * connected components from the binary image and label them: :
- * INCLUDE: snippets/imgproc_drawContours.cpp
- *
- * @param image Destination image.
- * @param contours All the input contours. Each contour is stored as a point vector.
- * @param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn.
- * @param color Color of the contours.
- * @param thickness Thickness of lines the contours are drawn with. If it is negative (for example,
- * thickness=#FILLED ), the contour interiors are drawn.
- * @param lineType Line connectivity. See #LineTypes
- * @param hierarchy Optional information about hierarchy. It is only needed if you want to draw only
- * some of the contours (see maxLevel ).
- * @param maxLevel Maximal level for drawn contours. If it is 0, only the specified contour is drawn.
- * If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function
- * draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This
- * parameter is only taken into account when there is hierarchy available.
- * `$$\texttt{offset}=(dx,dy)$$` .
- * NOTE: When thickness=#FILLED, the function is designed to handle connected components with holes correctly
- * even when no hierarchy data is provided. This is done by analyzing all the outlines together
- * using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved
- * contours. In order to solve this problem, you need to call #drawContours separately for each sub-group
- * of contours, or iterate over the collection using contourIdx parameter.
- */
- + (void)drawContours:(Mat*)image contours:(NSArray<NSArray<Point2i*>*>*)contours contourIdx:(int)contourIdx color:(Scalar*)color thickness:(int)thickness lineType:(LineTypes)lineType hierarchy:(Mat*)hierarchy maxLevel:(int)maxLevel NS_SWIFT_NAME(drawContours(image:contours:contourIdx:color:thickness:lineType:hierarchy:maxLevel:));
- /**
- * Draws contours outlines or filled contours.
- *
- * The function draws contour outlines in the image if `$$\texttt{thickness} \ge 0$$` or fills the area
- * bounded by the contours if `$$\texttt{thickness}<0$$` . The example below shows how to retrieve
- * connected components from the binary image and label them: :
- * INCLUDE: snippets/imgproc_drawContours.cpp
- *
- * @param image Destination image.
- * @param contours All the input contours. Each contour is stored as a point vector.
- * @param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn.
- * @param color Color of the contours.
- * @param thickness Thickness of lines the contours are drawn with. If it is negative (for example,
- * thickness=#FILLED ), the contour interiors are drawn.
- * @param lineType Line connectivity. See #LineTypes
- * @param hierarchy Optional information about hierarchy. It is only needed if you want to draw only
- * some of the contours (see maxLevel ).
- * If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function
- * draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This
- * parameter is only taken into account when there is hierarchy available.
- * `$$\texttt{offset}=(dx,dy)$$` .
- * NOTE: When thickness=#FILLED, the function is designed to handle connected components with holes correctly
- * even when no hierarchy data is provided. This is done by analyzing all the outlines together
- * using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved
- * contours. In order to solve this problem, you need to call #drawContours separately for each sub-group
- * of contours, or iterate over the collection using contourIdx parameter.
- */
- + (void)drawContours:(Mat*)image contours:(NSArray<NSArray<Point2i*>*>*)contours contourIdx:(int)contourIdx color:(Scalar*)color thickness:(int)thickness lineType:(LineTypes)lineType hierarchy:(Mat*)hierarchy NS_SWIFT_NAME(drawContours(image:contours:contourIdx:color:thickness:lineType:hierarchy:));
- /**
- * Draws contours outlines or filled contours.
- *
- * The function draws contour outlines in the image if `$$\texttt{thickness} \ge 0$$` or fills the area
- * bounded by the contours if `$$\texttt{thickness}<0$$` . The example below shows how to retrieve
- * connected components from the binary image and label them: :
- * INCLUDE: snippets/imgproc_drawContours.cpp
- *
- * @param image Destination image.
- * @param contours All the input contours. Each contour is stored as a point vector.
- * @param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn.
- * @param color Color of the contours.
- * @param thickness Thickness of lines the contours are drawn with. If it is negative (for example,
- * thickness=#FILLED ), the contour interiors are drawn.
- * @param lineType Line connectivity. See #LineTypes
- * some of the contours (see maxLevel ).
- * If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function
- * draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This
- * parameter is only taken into account when there is hierarchy available.
- * `$$\texttt{offset}=(dx,dy)$$` .
- * NOTE: When thickness=#FILLED, the function is designed to handle connected components with holes correctly
- * even when no hierarchy data is provided. This is done by analyzing all the outlines together
- * using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved
- * contours. In order to solve this problem, you need to call #drawContours separately for each sub-group
- * of contours, or iterate over the collection using contourIdx parameter.
- */
- + (void)drawContours:(Mat*)image contours:(NSArray<NSArray<Point2i*>*>*)contours contourIdx:(int)contourIdx color:(Scalar*)color thickness:(int)thickness lineType:(LineTypes)lineType NS_SWIFT_NAME(drawContours(image:contours:contourIdx:color:thickness:lineType:));
- /**
- * Draws contours outlines or filled contours.
- *
- * The function draws contour outlines in the image if `$$\texttt{thickness} \ge 0$$` or fills the area
- * bounded by the contours if `$$\texttt{thickness}<0$$` . The example below shows how to retrieve
- * connected components from the binary image and label them: :
- * INCLUDE: snippets/imgproc_drawContours.cpp
- *
- * @param image Destination image.
- * @param contours All the input contours. Each contour is stored as a point vector.
- * @param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn.
- * @param color Color of the contours.
- * @param thickness Thickness of lines the contours are drawn with. If it is negative (for example,
- * thickness=#FILLED ), the contour interiors are drawn.
- * some of the contours (see maxLevel ).
- * If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function
- * draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This
- * parameter is only taken into account when there is hierarchy available.
- * `$$\texttt{offset}=(dx,dy)$$` .
- * NOTE: When thickness=#FILLED, the function is designed to handle connected components with holes correctly
- * even when no hierarchy data is provided. This is done by analyzing all the outlines together
- * using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved
- * contours. In order to solve this problem, you need to call #drawContours separately for each sub-group
- * of contours, or iterate over the collection using contourIdx parameter.
- */
- + (void)drawContours:(Mat*)image contours:(NSArray<NSArray<Point2i*>*>*)contours contourIdx:(int)contourIdx color:(Scalar*)color thickness:(int)thickness NS_SWIFT_NAME(drawContours(image:contours:contourIdx:color:thickness:));
- /**
- * Draws contours outlines or filled contours.
- *
- * The function draws contour outlines in the image if `$$\texttt{thickness} \ge 0$$` or fills the area
- * bounded by the contours if `$$\texttt{thickness}<0$$` . The example below shows how to retrieve
- * connected components from the binary image and label them: :
- * INCLUDE: snippets/imgproc_drawContours.cpp
- *
- * @param image Destination image.
- * @param contours All the input contours. Each contour is stored as a point vector.
- * @param contourIdx Parameter indicating a contour to draw. If it is negative, all the contours are drawn.
- * @param color Color of the contours.
- * thickness=#FILLED ), the contour interiors are drawn.
- * some of the contours (see maxLevel ).
- * If it is 1, the function draws the contour(s) and all the nested contours. If it is 2, the function
- * draws the contours, all the nested contours, all the nested-to-nested contours, and so on. This
- * parameter is only taken into account when there is hierarchy available.
- * `$$\texttt{offset}=(dx,dy)$$` .
- * NOTE: When thickness=#FILLED, the function is designed to handle connected components with holes correctly
- * even when no hierarchy data is provided. This is done by analyzing all the outlines together
- * using even-odd rule. This may give incorrect results if you have a joint collection of separately retrieved
- * contours. In order to solve this problem, you need to call #drawContours separately for each sub-group
- * of contours, or iterate over the collection using contourIdx parameter.
- */
- + (void)drawContours:(Mat*)image contours:(NSArray<NSArray<Point2i*>*>*)contours contourIdx:(int)contourIdx color:(Scalar*)color NS_SWIFT_NAME(drawContours(image:contours:contourIdx:color:));
- //
- // bool cv::clipLine(Rect imgRect, Point& pt1, Point& pt2)
- //
- /**
- *
- * @param imgRect Image rectangle.
- * @param pt1 First line point.
- * @param pt2 Second line point.
- */
- + (BOOL)clipLine:(Rect2i*)imgRect pt1:(Point2i*)pt1 pt2:(Point2i*)pt2 NS_SWIFT_NAME(clipLine(imgRect:pt1:pt2:));
- //
- // void cv::ellipse2Poly(Point center, Size axes, int angle, int arcStart, int arcEnd, int delta, vector_Point& pts)
- //
- /**
- * Approximates an elliptic arc with a polyline.
- *
- * The function ellipse2Poly computes the vertices of a polyline that approximates the specified
- * elliptic arc. It is used by #ellipse. If `arcStart` is greater than `arcEnd`, they are swapped.
- *
- * @param center Center of the arc.
- * @param axes Half of the size of the ellipse main axes. See #ellipse for details.
- * @param angle Rotation angle of the ellipse in degrees. See #ellipse for details.
- * @param arcStart Starting angle of the elliptic arc in degrees.
- * @param arcEnd Ending angle of the elliptic arc in degrees.
- * @param delta Angle between the subsequent polyline vertices. It defines the approximation
- * accuracy.
- * @param pts Output vector of polyline vertices.
- */
- + (void)ellipse2Poly:(Point2i*)center axes:(Size2i*)axes angle:(int)angle arcStart:(int)arcStart arcEnd:(int)arcEnd delta:(int)delta pts:(NSMutableArray<Point2i*>*)pts NS_SWIFT_NAME(ellipse2Poly(center:axes:angle:arcStart:arcEnd:delta:pts:));
- //
- // void cv::putText(Mat& img, String text, Point org, HersheyFonts fontFace, double fontScale, Scalar color, int thickness = 1, LineTypes lineType = LINE_8, bool bottomLeftOrigin = false)
- //
- /**
- * Draws a text string.
- *
- * The function cv::putText renders the specified text string in the image. Symbols that cannot be rendered
- * using the specified font are replaced by question marks. See #getTextSize for a text rendering code
- * example.
- *
- * @param img Image.
- * @param text Text string to be drawn.
- * @param org Bottom-left corner of the text string in the image.
- * @param fontFace Font type, see #HersheyFonts.
- * @param fontScale Font scale factor that is multiplied by the font-specific base size.
- * @param color Text color.
- * @param thickness Thickness of the lines used to draw a text.
- * @param lineType Line type. See #LineTypes
- * @param bottomLeftOrigin When true, the image data origin is at the bottom-left corner. Otherwise,
- * it is at the top-left corner.
- */
- + (void)putText:(Mat*)img text:(NSString*)text org:(Point2i*)org fontFace:(HersheyFonts)fontFace fontScale:(double)fontScale color:(Scalar*)color thickness:(int)thickness lineType:(LineTypes)lineType bottomLeftOrigin:(BOOL)bottomLeftOrigin NS_SWIFT_NAME(putText(img:text:org:fontFace:fontScale:color:thickness:lineType:bottomLeftOrigin:));
- /**
- * Draws a text string.
- *
- * The function cv::putText renders the specified text string in the image. Symbols that cannot be rendered
- * using the specified font are replaced by question marks. See #getTextSize for a text rendering code
- * example.
- *
- * @param img Image.
- * @param text Text string to be drawn.
- * @param org Bottom-left corner of the text string in the image.
- * @param fontFace Font type, see #HersheyFonts.
- * @param fontScale Font scale factor that is multiplied by the font-specific base size.
- * @param color Text color.
- * @param thickness Thickness of the lines used to draw a text.
- * @param lineType Line type. See #LineTypes
- * it is at the top-left corner.
- */
- + (void)putText:(Mat*)img text:(NSString*)text org:(Point2i*)org fontFace:(HersheyFonts)fontFace fontScale:(double)fontScale color:(Scalar*)color thickness:(int)thickness lineType:(LineTypes)lineType NS_SWIFT_NAME(putText(img:text:org:fontFace:fontScale:color:thickness:lineType:));
- /**
- * Draws a text string.
- *
- * The function cv::putText renders the specified text string in the image. Symbols that cannot be rendered
- * using the specified font are replaced by question marks. See #getTextSize for a text rendering code
- * example.
- *
- * @param img Image.
- * @param text Text string to be drawn.
- * @param org Bottom-left corner of the text string in the image.
- * @param fontFace Font type, see #HersheyFonts.
- * @param fontScale Font scale factor that is multiplied by the font-specific base size.
- * @param color Text color.
- * @param thickness Thickness of the lines used to draw a text.
- * it is at the top-left corner.
- */
- + (void)putText:(Mat*)img text:(NSString*)text org:(Point2i*)org fontFace:(HersheyFonts)fontFace fontScale:(double)fontScale color:(Scalar*)color thickness:(int)thickness NS_SWIFT_NAME(putText(img:text:org:fontFace:fontScale:color:thickness:));
- /**
- * Draws a text string.
- *
- * The function cv::putText renders the specified text string in the image. Symbols that cannot be rendered
- * using the specified font are replaced by question marks. See #getTextSize for a text rendering code
- * example.
- *
- * @param img Image.
- * @param text Text string to be drawn.
- * @param org Bottom-left corner of the text string in the image.
- * @param fontFace Font type, see #HersheyFonts.
- * @param fontScale Font scale factor that is multiplied by the font-specific base size.
- * @param color Text color.
- * it is at the top-left corner.
- */
- + (void)putText:(Mat*)img text:(NSString*)text org:(Point2i*)org fontFace:(HersheyFonts)fontFace fontScale:(double)fontScale color:(Scalar*)color NS_SWIFT_NAME(putText(img:text:org:fontFace:fontScale:color:));
- //
- // Size cv::getTextSize(String text, HersheyFonts fontFace, double fontScale, int thickness, int* baseLine)
- //
- /**
- * Calculates the width and height of a text string.
- *
- * The function cv::getTextSize calculates and returns the size of a box that contains the specified text.
- * That is, the following code renders some text, the tight box surrounding it, and the baseline: :
- *
- * String text = "Funny text inside the box";
- * int fontFace = FONT_HERSHEY_SCRIPT_SIMPLEX;
- * double fontScale = 2;
- * int thickness = 3;
- *
- * Mat img(600, 800, CV_8UC3, Scalar::all(0));
- *
- * int baseline=0;
- * Size textSize = getTextSize(text, fontFace,
- * fontScale, thickness, &baseline);
- * baseline += thickness;
- *
- * // center the text
- * Point textOrg((img.cols - textSize.width)/2,
- * (img.rows + textSize.height)/2);
- *
- * // draw the box
- * rectangle(img, textOrg + Point(0, baseline),
- * textOrg + Point(textSize.width, -textSize.height),
- * Scalar(0,0,255));
- * // ... and the baseline first
- * line(img, textOrg + Point(0, thickness),
- * textOrg + Point(textSize.width, thickness),
- * Scalar(0, 0, 255));
- *
- * // then put the text itself
- * putText(img, text, textOrg, fontFace, fontScale,
- * Scalar::all(255), thickness, 8);
- *
- *
- * @param text Input text string.
- * @param fontFace Font to use, see #HersheyFonts.
- * @param fontScale Font scale factor that is multiplied by the font-specific base size.
- * @param thickness Thickness of lines used to render the text. See #putText for details.
- * @param baseLine y-coordinate of the baseline relative to the bottom-most text
- * point.
- * @return The size of a box that contains the specified text.
- *
- * @see `+putText:text:org:fontFace:fontScale:color:thickness:lineType:bottomLeftOrigin:`
- */
- + (Size2i*)getTextSize:(NSString*)text fontFace:(HersheyFonts)fontFace fontScale:(double)fontScale thickness:(int)thickness baseLine:(int*)baseLine NS_SWIFT_NAME(getTextSize(text:fontFace:fontScale:thickness:baseLine:));
- //
- // double cv::getFontScaleFromHeight(int fontFace, int pixelHeight, int thickness = 1)
- //
- /**
- * Calculates the font-specific size to use to achieve a given height in pixels.
- *
- * @param fontFace Font to use, see cv::HersheyFonts.
- * @param pixelHeight Pixel height to compute the fontScale for
- * @param thickness Thickness of lines used to render the text.See putText for details.
- * @return The fontSize to use for cv::putText
- *
- * @see `cv::putText`
- */
- + (double)getFontScaleFromHeight:(int)fontFace pixelHeight:(int)pixelHeight thickness:(int)thickness NS_SWIFT_NAME(getFontScaleFromHeight(fontFace:pixelHeight:thickness:));
- /**
- * Calculates the font-specific size to use to achieve a given height in pixels.
- *
- * @param fontFace Font to use, see cv::HersheyFonts.
- * @param pixelHeight Pixel height to compute the fontScale for
- * @return The fontSize to use for cv::putText
- *
- * @see `cv::putText`
- */
- + (double)getFontScaleFromHeight:(int)fontFace pixelHeight:(int)pixelHeight NS_SWIFT_NAME(getFontScaleFromHeight(fontFace:pixelHeight:));
- //
- // void cv::HoughLinesWithAccumulator(Mat image, Mat& lines, double rho, double theta, int threshold, double srn = 0, double stn = 0, double min_theta = 0, double max_theta = CV_PI)
- //
- /**
- * Finds lines in a binary image using the standard Hough transform and get accumulator.
- *
- * NOTE: This function is for bindings use only. Use original function in C++ code
- *
- * @see `+HoughLines:lines:rho:theta:threshold:srn:stn:min_theta:max_theta:`
- */
- + (void)HoughLinesWithAccumulator:(Mat*)image lines:(Mat*)lines rho:(double)rho theta:(double)theta threshold:(int)threshold srn:(double)srn stn:(double)stn min_theta:(double)min_theta max_theta:(double)max_theta NS_SWIFT_NAME(HoughLinesWithAccumulator(image:lines:rho:theta:threshold:srn:stn:min_theta:max_theta:));
- /**
- * Finds lines in a binary image using the standard Hough transform and get accumulator.
- *
- * NOTE: This function is for bindings use only. Use original function in C++ code
- *
- * @see `+HoughLines:lines:rho:theta:threshold:srn:stn:min_theta:max_theta:`
- */
- + (void)HoughLinesWithAccumulator:(Mat*)image lines:(Mat*)lines rho:(double)rho theta:(double)theta threshold:(int)threshold srn:(double)srn stn:(double)stn min_theta:(double)min_theta NS_SWIFT_NAME(HoughLinesWithAccumulator(image:lines:rho:theta:threshold:srn:stn:min_theta:));
- /**
- * Finds lines in a binary image using the standard Hough transform and get accumulator.
- *
- * NOTE: This function is for bindings use only. Use original function in C++ code
- *
- * @see `+HoughLines:lines:rho:theta:threshold:srn:stn:min_theta:max_theta:`
- */
- + (void)HoughLinesWithAccumulator:(Mat*)image lines:(Mat*)lines rho:(double)rho theta:(double)theta threshold:(int)threshold srn:(double)srn stn:(double)stn NS_SWIFT_NAME(HoughLinesWithAccumulator(image:lines:rho:theta:threshold:srn:stn:));
- /**
- * Finds lines in a binary image using the standard Hough transform and get accumulator.
- *
- * NOTE: This function is for bindings use only. Use original function in C++ code
- *
- * @see `+HoughLines:lines:rho:theta:threshold:srn:stn:min_theta:max_theta:`
- */
- + (void)HoughLinesWithAccumulator:(Mat*)image lines:(Mat*)lines rho:(double)rho theta:(double)theta threshold:(int)threshold srn:(double)srn NS_SWIFT_NAME(HoughLinesWithAccumulator(image:lines:rho:theta:threshold:srn:));
- /**
- * Finds lines in a binary image using the standard Hough transform and get accumulator.
- *
- * NOTE: This function is for bindings use only. Use original function in C++ code
- *
- * @see `+HoughLines:lines:rho:theta:threshold:srn:stn:min_theta:max_theta:`
- */
- + (void)HoughLinesWithAccumulator:(Mat*)image lines:(Mat*)lines rho:(double)rho theta:(double)theta threshold:(int)threshold NS_SWIFT_NAME(HoughLinesWithAccumulator(image:lines:rho:theta:threshold:));
- @end
- NS_ASSUME_NONNULL_END
|