123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964 |
- //
- // This file is auto-generated. Please don't modify it!
- //
- #pragma once
- #ifdef __cplusplus
- //#import "opencv.hpp"
- #import "opencv2/dnn.hpp"
- #else
- #define CV_EXPORTS
- #endif
- #import <Foundation/Foundation.h>
- @class ByteVector;
- @class FloatVector;
- @class IntVector;
- @class Mat;
- @class Net;
- @class Rect2d;
- @class Rect2i;
- @class RotatedRect;
- @class Scalar;
- @class Size2i;
- // C++: enum Backend (cv.dnn.Backend)
- typedef NS_ENUM(int, Backend) {
- DNN_BACKEND_DEFAULT = 0,
- DNN_BACKEND_HALIDE = 0+1,
- DNN_BACKEND_INFERENCE_ENGINE = 0+2,
- DNN_BACKEND_OPENCV = 0+3,
- DNN_BACKEND_VKCOM = 0+4,
- DNN_BACKEND_CUDA = 0+5,
- DNN_BACKEND_WEBNN = 0+6,
- DNN_BACKEND_TIMVX = 0+7
- };
- // C++: enum SoftNMSMethod (cv.dnn.SoftNMSMethod)
- typedef NS_ENUM(int, SoftNMSMethod) {
- SoftNMSMethod_SOFTNMS_LINEAR = 1,
- SoftNMSMethod_SOFTNMS_GAUSSIAN = 2
- };
- // C++: enum Target (cv.dnn.Target)
- typedef NS_ENUM(int, Target) {
- DNN_TARGET_CPU = 0,
- DNN_TARGET_OPENCL = 0+1,
- DNN_TARGET_OPENCL_FP16 = 0+2,
- DNN_TARGET_MYRIAD = 0+3,
- DNN_TARGET_VULKAN = 0+4,
- DNN_TARGET_FPGA = 0+5,
- DNN_TARGET_CUDA = 0+6,
- DNN_TARGET_CUDA_FP16 = 0+7,
- DNN_TARGET_HDDL = 0+8,
- DNN_TARGET_NPU = 0+9
- };
- NS_ASSUME_NONNULL_BEGIN
- // C++: class Dnn
- /**
- * The Dnn module
- *
- * Member classes: `DictValue`, `Layer`, `Net`, `Model`, `ClassificationModel`, `KeypointsModel`, `SegmentationModel`, `DetectionModel`, `TextRecognitionModel`, `TextDetectionModel`, `TextDetectionModel_EAST`, `TextDetectionModel_DB`
- *
- * Member enums: `Backend`, `Target`, `SoftNMSMethod`
- */
- CV_EXPORTS @interface Dnn : NSObject
- #pragma mark - Methods
- //
- // vector_Target cv::dnn::getAvailableTargets(dnn_Backend be)
- //
- // Return type 'vector_Target' is not supported, skipping the function
- //
- // Net cv::dnn::readNetFromDarknet(String cfgFile, String darknetModel = String())
- //
- /**
- * Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
- * @param cfgFile path to the .cfg file with text description of the network architecture.
- * @param darknetModel path to the .weights file with learned network.
- * @return Network object that ready to do forward, throw an exception in failure cases.
- * @return Net object.
- */
- + (Net*)readNetFromDarknetFile:(NSString*)cfgFile darknetModel:(NSString*)darknetModel NS_SWIFT_NAME(readNetFromDarknet(cfgFile:darknetModel:));
- /**
- * Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
- * @param cfgFile path to the .cfg file with text description of the network architecture.
- * @return Network object that ready to do forward, throw an exception in failure cases.
- * @return Net object.
- */
- + (Net*)readNetFromDarknetFile:(NSString*)cfgFile NS_SWIFT_NAME(readNetFromDarknet(cfgFile:));
- //
- // Net cv::dnn::readNetFromDarknet(vector_uchar bufferCfg, vector_uchar bufferModel = std::vector<uchar>())
- //
- /**
- * Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
- * @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture.
- * @param bufferModel A buffer contains a content of .weights file with learned network.
- * @return Net object.
- */
- + (Net*)readNetFromDarknetBuffer:(ByteVector*)bufferCfg bufferModel:(ByteVector*)bufferModel NS_SWIFT_NAME(readNetFromDarknet(bufferCfg:bufferModel:));
- /**
- * Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
- * @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture.
- * @return Net object.
- */
- + (Net*)readNetFromDarknetBuffer:(ByteVector*)bufferCfg NS_SWIFT_NAME(readNetFromDarknet(bufferCfg:));
- //
- // Net cv::dnn::readNetFromCaffe(String prototxt, String caffeModel = String())
- //
- /**
- * Reads a network model stored in <a href="http://caffe.berkeleyvision.org">Caffe</a> framework's format.
- * @param prototxt path to the .prototxt file with text description of the network architecture.
- * @param caffeModel path to the .caffemodel file with learned network.
- * @return Net object.
- */
- + (Net*)readNetFromCaffeFile:(NSString*)prototxt caffeModel:(NSString*)caffeModel NS_SWIFT_NAME(readNetFromCaffe(prototxt:caffeModel:));
- /**
- * Reads a network model stored in <a href="http://caffe.berkeleyvision.org">Caffe</a> framework's format.
- * @param prototxt path to the .prototxt file with text description of the network architecture.
- * @return Net object.
- */
- + (Net*)readNetFromCaffeFile:(NSString*)prototxt NS_SWIFT_NAME(readNetFromCaffe(prototxt:));
- //
- // Net cv::dnn::readNetFromCaffe(vector_uchar bufferProto, vector_uchar bufferModel = std::vector<uchar>())
- //
- /**
- * Reads a network model stored in Caffe model in memory.
- * @param bufferProto buffer containing the content of the .prototxt file
- * @param bufferModel buffer containing the content of the .caffemodel file
- * @return Net object.
- */
- + (Net*)readNetFromCaffeBuffer:(ByteVector*)bufferProto bufferModel:(ByteVector*)bufferModel NS_SWIFT_NAME(readNetFromCaffe(bufferProto:bufferModel:));
- /**
- * Reads a network model stored in Caffe model in memory.
- * @param bufferProto buffer containing the content of the .prototxt file
- * @return Net object.
- */
- + (Net*)readNetFromCaffeBuffer:(ByteVector*)bufferProto NS_SWIFT_NAME(readNetFromCaffe(bufferProto:));
- //
- // Net cv::dnn::readNetFromTensorflow(String model, String config = String())
- //
- /**
- * Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
- * @param model path to the .pb file with binary protobuf description of the network architecture
- * @param config path to the .pbtxt file that contains text graph definition in protobuf format.
- * Resulting Net object is built by text graph using weights from a binary one that
- * let us make it more flexible.
- * @return Net object.
- */
- + (Net*)readNetFromTensorflowFile:(NSString*)model config:(NSString*)config NS_SWIFT_NAME(readNetFromTensorflow(model:config:));
- /**
- * Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
- * @param model path to the .pb file with binary protobuf description of the network architecture
- * Resulting Net object is built by text graph using weights from a binary one that
- * let us make it more flexible.
- * @return Net object.
- */
- + (Net*)readNetFromTensorflowFile:(NSString*)model NS_SWIFT_NAME(readNetFromTensorflow(model:));
- //
- // Net cv::dnn::readNetFromTensorflow(vector_uchar bufferModel, vector_uchar bufferConfig = std::vector<uchar>())
- //
- /**
- * Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
- * @param bufferModel buffer containing the content of the pb file
- * @param bufferConfig buffer containing the content of the pbtxt file
- * @return Net object.
- */
- + (Net*)readNetFromTensorflowBuffer:(ByteVector*)bufferModel bufferConfig:(ByteVector*)bufferConfig NS_SWIFT_NAME(readNetFromTensorflow(bufferModel:bufferConfig:));
- /**
- * Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
- * @param bufferModel buffer containing the content of the pb file
- * @return Net object.
- */
- + (Net*)readNetFromTensorflowBuffer:(ByteVector*)bufferModel NS_SWIFT_NAME(readNetFromTensorflow(bufferModel:));
- //
- // Net cv::dnn::readNetFromTorch(String model, bool isBinary = true, bool evaluate = true)
- //
- /**
- * Reads a network model stored in <a href="http://torch.ch">Torch7</a> framework's format.
- * @param model path to the file, dumped from Torch by using torch.save() function.
- * @param isBinary specifies whether the network was serialized in ascii mode or binary.
- * @param evaluate specifies testing phase of network. If true, it's similar to evaluate() method in Torch.
- * @return Net object.
- *
- * NOTE: Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language,
- * which has various bit-length on different systems.
- *
- * The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object
- * with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors.
- *
- * List of supported layers (i.e. object instances derived from Torch nn.Module class):
- * - nn.Sequential
- * - nn.Parallel
- * - nn.Concat
- * - nn.Linear
- * - nn.SpatialConvolution
- * - nn.SpatialMaxPooling, nn.SpatialAveragePooling
- * - nn.ReLU, nn.TanH, nn.Sigmoid
- * - nn.Reshape
- * - nn.SoftMax, nn.LogSoftMax
- *
- * Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported.
- */
- + (Net*)readNetFromTorch:(NSString*)model isBinary:(BOOL)isBinary evaluate:(BOOL)evaluate NS_SWIFT_NAME(readNetFromTorch(model:isBinary:evaluate:));
- /**
- * Reads a network model stored in <a href="http://torch.ch">Torch7</a> framework's format.
- * @param model path to the file, dumped from Torch by using torch.save() function.
- * @param isBinary specifies whether the network was serialized in ascii mode or binary.
- * @return Net object.
- *
- * NOTE: Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language,
- * which has various bit-length on different systems.
- *
- * The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object
- * with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors.
- *
- * List of supported layers (i.e. object instances derived from Torch nn.Module class):
- * - nn.Sequential
- * - nn.Parallel
- * - nn.Concat
- * - nn.Linear
- * - nn.SpatialConvolution
- * - nn.SpatialMaxPooling, nn.SpatialAveragePooling
- * - nn.ReLU, nn.TanH, nn.Sigmoid
- * - nn.Reshape
- * - nn.SoftMax, nn.LogSoftMax
- *
- * Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported.
- */
- + (Net*)readNetFromTorch:(NSString*)model isBinary:(BOOL)isBinary NS_SWIFT_NAME(readNetFromTorch(model:isBinary:));
- /**
- * Reads a network model stored in <a href="http://torch.ch">Torch7</a> framework's format.
- * @param model path to the file, dumped from Torch by using torch.save() function.
- * @return Net object.
- *
- * NOTE: Ascii mode of Torch serializer is more preferable, because binary mode extensively use `long` type of C language,
- * which has various bit-length on different systems.
- *
- * The loading file must contain serialized <a href="https://github.com/torch/nn/blob/master/doc/module.md">nn.Module</a> object
- * with importing network. Try to eliminate a custom objects from serialazing data to avoid importing errors.
- *
- * List of supported layers (i.e. object instances derived from Torch nn.Module class):
- * - nn.Sequential
- * - nn.Parallel
- * - nn.Concat
- * - nn.Linear
- * - nn.SpatialConvolution
- * - nn.SpatialMaxPooling, nn.SpatialAveragePooling
- * - nn.ReLU, nn.TanH, nn.Sigmoid
- * - nn.Reshape
- * - nn.SoftMax, nn.LogSoftMax
- *
- * Also some equivalents of these classes from cunn, cudnn, and fbcunn may be successfully imported.
- */
- + (Net*)readNetFromTorch:(NSString*)model NS_SWIFT_NAME(readNetFromTorch(model:));
- //
- // Net cv::dnn::readNet(String model, String config = "", String framework = "")
- //
- /**
- * Read deep learning network represented in one of the supported formats.
- * @param model Binary file contains trained weights. The following file
- * extensions are expected for models from different frameworks:
- * * `*.caffemodel` (Caffe, http://caffe.berkeleyvision.org/)
- * * `*.pb` (TensorFlow, https://www.tensorflow.org/)
- * * `*.t7` | `*.net` (Torch, http://torch.ch/)
- * * `*.weights` (Darknet, https://pjreddie.com/darknet/)
- * * `*.bin` (DLDT, https://software.intel.com/openvino-toolkit)
- * * `*.onnx` (ONNX, https://onnx.ai/)
- * @param config Text file contains network configuration. It could be a
- * file with the following extensions:
- * * `*.prototxt` (Caffe, http://caffe.berkeleyvision.org/)
- * * `*.pbtxt` (TensorFlow, https://www.tensorflow.org/)
- * * `*.cfg` (Darknet, https://pjreddie.com/darknet/)
- * * `*.xml` (DLDT, https://software.intel.com/openvino-toolkit)
- * @param framework Explicit framework name tag to determine a format.
- * @return Net object.
- *
- * This function automatically detects an origin framework of trained model
- * and calls an appropriate function such REF: readNetFromCaffe, REF: readNetFromTensorflow,
- * REF: readNetFromTorch or REF: readNetFromDarknet. An order of @p model and @p config
- * arguments does not matter.
- */
- + (Net*)readNet:(NSString*)model config:(NSString*)config framework:(NSString*)framework NS_SWIFT_NAME(readNet(model:config:framework:));
- /**
- * Read deep learning network represented in one of the supported formats.
- * @param model Binary file contains trained weights. The following file
- * extensions are expected for models from different frameworks:
- * * `*.caffemodel` (Caffe, http://caffe.berkeleyvision.org/)
- * * `*.pb` (TensorFlow, https://www.tensorflow.org/)
- * * `*.t7` | `*.net` (Torch, http://torch.ch/)
- * * `*.weights` (Darknet, https://pjreddie.com/darknet/)
- * * `*.bin` (DLDT, https://software.intel.com/openvino-toolkit)
- * * `*.onnx` (ONNX, https://onnx.ai/)
- * @param config Text file contains network configuration. It could be a
- * file with the following extensions:
- * * `*.prototxt` (Caffe, http://caffe.berkeleyvision.org/)
- * * `*.pbtxt` (TensorFlow, https://www.tensorflow.org/)
- * * `*.cfg` (Darknet, https://pjreddie.com/darknet/)
- * * `*.xml` (DLDT, https://software.intel.com/openvino-toolkit)
- * @return Net object.
- *
- * This function automatically detects an origin framework of trained model
- * and calls an appropriate function such REF: readNetFromCaffe, REF: readNetFromTensorflow,
- * REF: readNetFromTorch or REF: readNetFromDarknet. An order of @p model and @p config
- * arguments does not matter.
- */
- + (Net*)readNet:(NSString*)model config:(NSString*)config NS_SWIFT_NAME(readNet(model:config:));
- /**
- * Read deep learning network represented in one of the supported formats.
- * @param model Binary file contains trained weights. The following file
- * extensions are expected for models from different frameworks:
- * * `*.caffemodel` (Caffe, http://caffe.berkeleyvision.org/)
- * * `*.pb` (TensorFlow, https://www.tensorflow.org/)
- * * `*.t7` | `*.net` (Torch, http://torch.ch/)
- * * `*.weights` (Darknet, https://pjreddie.com/darknet/)
- * * `*.bin` (DLDT, https://software.intel.com/openvino-toolkit)
- * * `*.onnx` (ONNX, https://onnx.ai/)
- * file with the following extensions:
- * * `*.prototxt` (Caffe, http://caffe.berkeleyvision.org/)
- * * `*.pbtxt` (TensorFlow, https://www.tensorflow.org/)
- * * `*.cfg` (Darknet, https://pjreddie.com/darknet/)
- * * `*.xml` (DLDT, https://software.intel.com/openvino-toolkit)
- * @return Net object.
- *
- * This function automatically detects an origin framework of trained model
- * and calls an appropriate function such REF: readNetFromCaffe, REF: readNetFromTensorflow,
- * REF: readNetFromTorch or REF: readNetFromDarknet. An order of @p model and @p config
- * arguments does not matter.
- */
- + (Net*)readNet:(NSString*)model NS_SWIFT_NAME(readNet(model:));
- //
- // Net cv::dnn::readNet(String framework, vector_uchar bufferModel, vector_uchar bufferConfig = std::vector<uchar>())
- //
- /**
- * Read deep learning network represented in one of the supported formats.
- * This is an overloaded member function, provided for convenience.
- * It differs from the above function only in what argument(s) it accepts.
- * @param framework Name of origin framework.
- * @param bufferModel A buffer with a content of binary file with weights
- * @param bufferConfig A buffer with a content of text file contains network configuration.
- * @return Net object.
- */
- + (Net*)readNet:(NSString*)framework bufferModel:(ByteVector*)bufferModel bufferConfig:(ByteVector*)bufferConfig NS_SWIFT_NAME(readNet(framework:bufferModel:bufferConfig:));
- /**
- * Read deep learning network represented in one of the supported formats.
- * This is an overloaded member function, provided for convenience.
- * It differs from the above function only in what argument(s) it accepts.
- * @param framework Name of origin framework.
- * @param bufferModel A buffer with a content of binary file with weights
- * @return Net object.
- */
- + (Net*)readNet:(NSString*)framework bufferModel:(ByteVector*)bufferModel NS_SWIFT_NAME(readNet(framework:bufferModel:));
- //
- // Mat cv::dnn::readTorchBlob(String filename, bool isBinary = true)
- //
- /**
- * Loads blob which was serialized as torch.Tensor object of Torch7 framework.
- * @warning This function has the same limitations as readNetFromTorch().
- */
- + (Mat*)readTorchBlob:(NSString*)filename isBinary:(BOOL)isBinary NS_SWIFT_NAME(readTorchBlob(filename:isBinary:));
- /**
- * Loads blob which was serialized as torch.Tensor object of Torch7 framework.
- * @warning This function has the same limitations as readNetFromTorch().
- */
- + (Mat*)readTorchBlob:(NSString*)filename NS_SWIFT_NAME(readTorchBlob(filename:));
- //
- // Net cv::dnn::readNetFromModelOptimizer(String xml, String bin)
- //
- /**
- * Load a network from Intel's Model Optimizer intermediate representation.
- * @param xml XML configuration file with network's topology.
- * @param bin Binary file with trained weights.
- * @return Net object.
- * Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
- * backend.
- */
- + (Net*)readNetFromModelOptimizer:(NSString*)xml bin:(NSString*)bin NS_SWIFT_NAME(readNetFromModelOptimizer(xml:bin:));
- //
- // Net cv::dnn::readNetFromModelOptimizer(vector_uchar bufferModelConfig, vector_uchar bufferWeights)
- //
- /**
- * Load a network from Intel's Model Optimizer intermediate representation.
- * @param bufferModelConfig Buffer contains XML configuration with network's topology.
- * @param bufferWeights Buffer contains binary data with trained weights.
- * @return Net object.
- * Networks imported from Intel's Model Optimizer are launched in Intel's Inference Engine
- * backend.
- */
- + (Net*)readNetFromModelOptimizer:(ByteVector*)bufferModelConfig bufferWeights:(ByteVector*)bufferWeights NS_SWIFT_NAME(readNetFromModelOptimizer(bufferModelConfig:bufferWeights:));
- //
- // Net cv::dnn::readNetFromONNX(String onnxFile)
- //
- /**
- * Reads a network model <a href="https://onnx.ai/">ONNX</a>.
- * @param onnxFile path to the .onnx file with text description of the network architecture.
- * @return Network object that ready to do forward, throw an exception in failure cases.
- */
- + (Net*)readNetFromONNXFile:(NSString*)onnxFile NS_SWIFT_NAME(readNetFromONNX(onnxFile:));
- //
- // Net cv::dnn::readNetFromONNX(vector_uchar buffer)
- //
- /**
- * Reads a network model from <a href="https://onnx.ai/">ONNX</a>
- * in-memory buffer.
- * @param buffer in-memory buffer that stores the ONNX model bytes.
- * @return Network object that ready to do forward, throw an exception
- * in failure cases.
- */
- + (Net*)readNetFromONNXBuffer:(ByteVector*)buffer NS_SWIFT_NAME(readNetFromONNX(buffer:));
- //
- // Mat cv::dnn::readTensorFromONNX(String path)
- //
- /**
- * Creates blob from .pb file.
- * @param path to the .pb file with input tensor.
- * @return Mat.
- */
- + (Mat*)readTensorFromONNX:(NSString*)path NS_SWIFT_NAME(readTensorFromONNX(path:));
- //
- // Mat cv::dnn::blobFromImage(Mat image, double scalefactor = 1.0, Size size = Size(), Scalar mean = Scalar(), bool swapRB = false, bool crop = false, int ddepth = CV_32F)
- //
- /**
- * Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
- * subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
- * @param image input image (with 1-, 3- or 4-channels).
- * @param size spatial size for output image
- * @param mean scalar with mean values which are subtracted from channels. Values are intended
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * @param scalefactor multiplier for @p image values.
- * @param swapRB flag which indicates that swap first and last channels
- * in 3-channel image is necessary.
- * @param crop flag which indicates whether image will be cropped after resize or not
- * @param ddepth Depth of output blob. Choose CV_32F or CV_8U.
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- */
- + (Mat*)blobFromImage:(Mat*)image scalefactor:(double)scalefactor size:(Size2i*)size mean:(Scalar*)mean swapRB:(BOOL)swapRB crop:(BOOL)crop ddepth:(int)ddepth NS_SWIFT_NAME(blobFromImage(image:scalefactor:size:mean:swapRB:crop:ddepth:));
- /**
- * Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
- * subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
- * @param image input image (with 1-, 3- or 4-channels).
- * @param size spatial size for output image
- * @param mean scalar with mean values which are subtracted from channels. Values are intended
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * @param scalefactor multiplier for @p image values.
- * @param swapRB flag which indicates that swap first and last channels
- * in 3-channel image is necessary.
- * @param crop flag which indicates whether image will be cropped after resize or not
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- */
- + (Mat*)blobFromImage:(Mat*)image scalefactor:(double)scalefactor size:(Size2i*)size mean:(Scalar*)mean swapRB:(BOOL)swapRB crop:(BOOL)crop NS_SWIFT_NAME(blobFromImage(image:scalefactor:size:mean:swapRB:crop:));
- /**
- * Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
- * subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
- * @param image input image (with 1-, 3- or 4-channels).
- * @param size spatial size for output image
- * @param mean scalar with mean values which are subtracted from channels. Values are intended
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * @param scalefactor multiplier for @p image values.
- * @param swapRB flag which indicates that swap first and last channels
- * in 3-channel image is necessary.
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- */
- + (Mat*)blobFromImage:(Mat*)image scalefactor:(double)scalefactor size:(Size2i*)size mean:(Scalar*)mean swapRB:(BOOL)swapRB NS_SWIFT_NAME(blobFromImage(image:scalefactor:size:mean:swapRB:));
- /**
- * Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
- * subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
- * @param image input image (with 1-, 3- or 4-channels).
- * @param size spatial size for output image
- * @param mean scalar with mean values which are subtracted from channels. Values are intended
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * @param scalefactor multiplier for @p image values.
- * in 3-channel image is necessary.
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- */
- + (Mat*)blobFromImage:(Mat*)image scalefactor:(double)scalefactor size:(Size2i*)size mean:(Scalar*)mean NS_SWIFT_NAME(blobFromImage(image:scalefactor:size:mean:));
- /**
- * Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
- * subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
- * @param image input image (with 1-, 3- or 4-channels).
- * @param size spatial size for output image
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * @param scalefactor multiplier for @p image values.
- * in 3-channel image is necessary.
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- */
- + (Mat*)blobFromImage:(Mat*)image scalefactor:(double)scalefactor size:(Size2i*)size NS_SWIFT_NAME(blobFromImage(image:scalefactor:size:));
- /**
- * Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
- * subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
- * @param image input image (with 1-, 3- or 4-channels).
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * @param scalefactor multiplier for @p image values.
- * in 3-channel image is necessary.
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- */
- + (Mat*)blobFromImage:(Mat*)image scalefactor:(double)scalefactor NS_SWIFT_NAME(blobFromImage(image:scalefactor:));
- /**
- * Creates 4-dimensional blob from image. Optionally resizes and crops @p image from center,
- * subtract @p mean values, scales values by @p scalefactor, swap Blue and Red channels.
- * @param image input image (with 1-, 3- or 4-channels).
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * in 3-channel image is necessary.
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- */
- + (Mat*)blobFromImage:(Mat*)image NS_SWIFT_NAME(blobFromImage(image:));
- //
- // Mat cv::dnn::blobFromImages(vector_Mat images, double scalefactor = 1.0, Size size = Size(), Scalar mean = Scalar(), bool swapRB = false, bool crop = false, int ddepth = CV_32F)
- //
- /**
- * Creates 4-dimensional blob from series of images. Optionally resizes and
- * crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
- * swap Blue and Red channels.
- * @param images input images (all with 1-, 3- or 4-channels).
- * @param size spatial size for output image
- * @param mean scalar with mean values which are subtracted from channels. Values are intended
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * @param scalefactor multiplier for @p images values.
- * @param swapRB flag which indicates that swap first and last channels
- * in 3-channel image is necessary.
- * @param crop flag which indicates whether image will be cropped after resize or not
- * @param ddepth Depth of output blob. Choose CV_32F or CV_8U.
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- */
- + (Mat*)blobFromImages:(NSArray<Mat*>*)images scalefactor:(double)scalefactor size:(Size2i*)size mean:(Scalar*)mean swapRB:(BOOL)swapRB crop:(BOOL)crop ddepth:(int)ddepth NS_SWIFT_NAME(blobFromImages(images:scalefactor:size:mean:swapRB:crop:ddepth:));
- /**
- * Creates 4-dimensional blob from series of images. Optionally resizes and
- * crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
- * swap Blue and Red channels.
- * @param images input images (all with 1-, 3- or 4-channels).
- * @param size spatial size for output image
- * @param mean scalar with mean values which are subtracted from channels. Values are intended
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * @param scalefactor multiplier for @p images values.
- * @param swapRB flag which indicates that swap first and last channels
- * in 3-channel image is necessary.
- * @param crop flag which indicates whether image will be cropped after resize or not
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- */
- + (Mat*)blobFromImages:(NSArray<Mat*>*)images scalefactor:(double)scalefactor size:(Size2i*)size mean:(Scalar*)mean swapRB:(BOOL)swapRB crop:(BOOL)crop NS_SWIFT_NAME(blobFromImages(images:scalefactor:size:mean:swapRB:crop:));
- /**
- * Creates 4-dimensional blob from series of images. Optionally resizes and
- * crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
- * swap Blue and Red channels.
- * @param images input images (all with 1-, 3- or 4-channels).
- * @param size spatial size for output image
- * @param mean scalar with mean values which are subtracted from channels. Values are intended
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * @param scalefactor multiplier for @p images values.
- * @param swapRB flag which indicates that swap first and last channels
- * in 3-channel image is necessary.
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- */
- + (Mat*)blobFromImages:(NSArray<Mat*>*)images scalefactor:(double)scalefactor size:(Size2i*)size mean:(Scalar*)mean swapRB:(BOOL)swapRB NS_SWIFT_NAME(blobFromImages(images:scalefactor:size:mean:swapRB:));
- /**
- * Creates 4-dimensional blob from series of images. Optionally resizes and
- * crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
- * swap Blue and Red channels.
- * @param images input images (all with 1-, 3- or 4-channels).
- * @param size spatial size for output image
- * @param mean scalar with mean values which are subtracted from channels. Values are intended
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * @param scalefactor multiplier for @p images values.
- * in 3-channel image is necessary.
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- */
- + (Mat*)blobFromImages:(NSArray<Mat*>*)images scalefactor:(double)scalefactor size:(Size2i*)size mean:(Scalar*)mean NS_SWIFT_NAME(blobFromImages(images:scalefactor:size:mean:));
- /**
- * Creates 4-dimensional blob from series of images. Optionally resizes and
- * crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
- * swap Blue and Red channels.
- * @param images input images (all with 1-, 3- or 4-channels).
- * @param size spatial size for output image
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * @param scalefactor multiplier for @p images values.
- * in 3-channel image is necessary.
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- */
- + (Mat*)blobFromImages:(NSArray<Mat*>*)images scalefactor:(double)scalefactor size:(Size2i*)size NS_SWIFT_NAME(blobFromImages(images:scalefactor:size:));
- /**
- * Creates 4-dimensional blob from series of images. Optionally resizes and
- * crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
- * swap Blue and Red channels.
- * @param images input images (all with 1-, 3- or 4-channels).
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * @param scalefactor multiplier for @p images values.
- * in 3-channel image is necessary.
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- */
- + (Mat*)blobFromImages:(NSArray<Mat*>*)images scalefactor:(double)scalefactor NS_SWIFT_NAME(blobFromImages(images:scalefactor:));
- /**
- * Creates 4-dimensional blob from series of images. Optionally resizes and
- * crops @p images from center, subtract @p mean values, scales values by @p scalefactor,
- * swap Blue and Red channels.
- * @param images input images (all with 1-, 3- or 4-channels).
- * to be in (mean-R, mean-G, mean-B) order if @p image has BGR ordering and @p swapRB is true.
- * in 3-channel image is necessary.
- * if @p crop is true, input image is resized so one side after resize is equal to corresponding
- * dimension in @p size and another one is equal or larger. Then, crop from the center is performed.
- * If @p crop is false, direct resize without cropping and preserving aspect ratio is performed.
- * @return 4-dimensional Mat with NCHW dimensions order.
- */
- + (Mat*)blobFromImages:(NSArray<Mat*>*)images NS_SWIFT_NAME(blobFromImages(images:));
- //
- // void cv::dnn::imagesFromBlob(Mat blob_, vector_Mat& images_)
- //
- /**
- * Parse a 4D blob and output the images it contains as 2D arrays through a simpler data structure
- * (std::vector<cv::Mat>).
- * @param blob_ 4 dimensional array (images, channels, height, width) in floating point precision (CV_32F) from
- * which you would like to extract the images.
- * @param images_ array of 2D Mat containing the images extracted from the blob in floating point precision
- * (CV_32F). They are non normalized neither mean added. The number of returned images equals the first dimension
- * of the blob (batch size). Every image has a number of channels equals to the second dimension of the blob (depth).
- */
- + (void)imagesFromBlob:(Mat*)blob_ images_:(NSMutableArray<Mat*>*)images_ NS_SWIFT_NAME(imagesFromBlob(blob_:images_:));
- //
- // void cv::dnn::shrinkCaffeModel(String src, String dst, vector_String layersTypes = std::vector<String>())
- //
- /**
- * Convert all weights of Caffe network to half precision floating point.
- * @param src Path to origin model from Caffe framework contains single
- * precision floating point weights (usually has `.caffemodel` extension).
- * @param dst Path to destination model with updated weights.
- * @param layersTypes Set of layers types which parameters will be converted.
- * By default, converts only Convolutional and Fully-Connected layers'
- * weights.
- *
- * NOTE: Shrinked model has no origin float32 weights so it can't be used
- * in origin Caffe framework anymore. However the structure of data
- * is taken from NVidia's Caffe fork: https://github.com/NVIDIA/caffe.
- * So the resulting model may be used there.
- */
- + (void)shrinkCaffeModel:(NSString*)src dst:(NSString*)dst layersTypes:(NSArray<NSString*>*)layersTypes NS_SWIFT_NAME(shrinkCaffeModel(src:dst:layersTypes:));
- /**
- * Convert all weights of Caffe network to half precision floating point.
- * @param src Path to origin model from Caffe framework contains single
- * precision floating point weights (usually has `.caffemodel` extension).
- * @param dst Path to destination model with updated weights.
- * By default, converts only Convolutional and Fully-Connected layers'
- * weights.
- *
- * NOTE: Shrinked model has no origin float32 weights so it can't be used
- * in origin Caffe framework anymore. However the structure of data
- * is taken from NVidia's Caffe fork: https://github.com/NVIDIA/caffe.
- * So the resulting model may be used there.
- */
- + (void)shrinkCaffeModel:(NSString*)src dst:(NSString*)dst NS_SWIFT_NAME(shrinkCaffeModel(src:dst:));
- //
- // void cv::dnn::writeTextGraph(String model, String output)
- //
- /**
- * Create a text representation for a binary network stored in protocol buffer format.
- * @param model A path to binary network.
- * @param output A path to output text file to be created.
- *
- * NOTE: To reduce output file size, trained weights are not included.
- */
- + (void)writeTextGraph:(NSString*)model output:(NSString*)output NS_SWIFT_NAME(writeTextGraph(model:output:));
- //
- // void cv::dnn::NMSBoxes(vector_Rect2d bboxes, vector_float scores, float score_threshold, float nms_threshold, vector_int& indices, float eta = 1.f, int top_k = 0)
- //
- /**
- * Performs non maximum suppression given boxes and corresponding scores.
- *
- * @param bboxes a set of bounding boxes to apply NMS.
- * @param scores a set of corresponding confidences.
- * @param score_threshold a threshold used to filter boxes by score.
- * @param nms_threshold a threshold used in non maximum suppression.
- * @param indices the kept indices of bboxes after NMS.
- * @param eta a coefficient in adaptive threshold formula: `$$nms\_threshold_{i+1}=eta\cdot nms\_threshold_i$$`.
- * @param top_k if `>0`, keep at most @p top_k picked indices.
- */
- + (void)NMSBoxes:(NSArray<Rect2d*>*)bboxes scores:(FloatVector*)scores score_threshold:(float)score_threshold nms_threshold:(float)nms_threshold indices:(IntVector*)indices eta:(float)eta top_k:(int)top_k NS_SWIFT_NAME(NMSBoxes(bboxes:scores:score_threshold:nms_threshold:indices:eta:top_k:));
- /**
- * Performs non maximum suppression given boxes and corresponding scores.
- *
- * @param bboxes a set of bounding boxes to apply NMS.
- * @param scores a set of corresponding confidences.
- * @param score_threshold a threshold used to filter boxes by score.
- * @param nms_threshold a threshold used in non maximum suppression.
- * @param indices the kept indices of bboxes after NMS.
- * @param eta a coefficient in adaptive threshold formula: `$$nms\_threshold_{i+1}=eta\cdot nms\_threshold_i$$`.
- */
- + (void)NMSBoxes:(NSArray<Rect2d*>*)bboxes scores:(FloatVector*)scores score_threshold:(float)score_threshold nms_threshold:(float)nms_threshold indices:(IntVector*)indices eta:(float)eta NS_SWIFT_NAME(NMSBoxes(bboxes:scores:score_threshold:nms_threshold:indices:eta:));
- /**
- * Performs non maximum suppression given boxes and corresponding scores.
- *
- * @param bboxes a set of bounding boxes to apply NMS.
- * @param scores a set of corresponding confidences.
- * @param score_threshold a threshold used to filter boxes by score.
- * @param nms_threshold a threshold used in non maximum suppression.
- * @param indices the kept indices of bboxes after NMS.
- */
- + (void)NMSBoxes:(NSArray<Rect2d*>*)bboxes scores:(FloatVector*)scores score_threshold:(float)score_threshold nms_threshold:(float)nms_threshold indices:(IntVector*)indices NS_SWIFT_NAME(NMSBoxes(bboxes:scores:score_threshold:nms_threshold:indices:));
- //
- // void cv::dnn::NMSBoxes(vector_RotatedRect bboxes, vector_float scores, float score_threshold, float nms_threshold, vector_int& indices, float eta = 1.f, int top_k = 0)
- //
- + (void)NMSBoxesRotated:(NSArray<RotatedRect*>*)bboxes scores:(FloatVector*)scores score_threshold:(float)score_threshold nms_threshold:(float)nms_threshold indices:(IntVector*)indices eta:(float)eta top_k:(int)top_k NS_SWIFT_NAME(NMSBoxes(bboxes:scores:score_threshold:nms_threshold:indices:eta:top_k:));
- + (void)NMSBoxesRotated:(NSArray<RotatedRect*>*)bboxes scores:(FloatVector*)scores score_threshold:(float)score_threshold nms_threshold:(float)nms_threshold indices:(IntVector*)indices eta:(float)eta NS_SWIFT_NAME(NMSBoxes(bboxes:scores:score_threshold:nms_threshold:indices:eta:));
- + (void)NMSBoxesRotated:(NSArray<RotatedRect*>*)bboxes scores:(FloatVector*)scores score_threshold:(float)score_threshold nms_threshold:(float)nms_threshold indices:(IntVector*)indices NS_SWIFT_NAME(NMSBoxes(bboxes:scores:score_threshold:nms_threshold:indices:));
- //
- // void cv::dnn::softNMSBoxes(vector_Rect bboxes, vector_float scores, vector_float& updated_scores, float score_threshold, float nms_threshold, vector_int& indices, size_t top_k = 0, float sigma = 0.5, SoftNMSMethod method = SoftNMSMethod::SOFTNMS_GAUSSIAN)
- //
- /**
- * Performs soft non maximum suppression given boxes and corresponding scores.
- * Reference: https://arxiv.org/abs/1704.04503
- * @param bboxes a set of bounding boxes to apply Soft NMS.
- * @param scores a set of corresponding confidences.
- * @param updated_scores a set of corresponding updated confidences.
- * @param score_threshold a threshold used to filter boxes by score.
- * @param nms_threshold a threshold used in non maximum suppression.
- * @param indices the kept indices of bboxes after NMS.
- * @param top_k keep at most @p top_k picked indices.
- * @param sigma parameter of Gaussian weighting.
- * @param method Gaussian or linear.
- * @see `SoftNMSMethod`
- */
- + (void)softNMSBoxes:(NSArray<Rect2i*>*)bboxes scores:(FloatVector*)scores updated_scores:(FloatVector*)updated_scores score_threshold:(float)score_threshold nms_threshold:(float)nms_threshold indices:(IntVector*)indices top_k:(size_t)top_k sigma:(float)sigma method:(SoftNMSMethod)method NS_SWIFT_NAME(softNMSBoxes(bboxes:scores:updated_scores:score_threshold:nms_threshold:indices:top_k:sigma:method:));
- /**
- * Performs soft non maximum suppression given boxes and corresponding scores.
- * Reference: https://arxiv.org/abs/1704.04503
- * @param bboxes a set of bounding boxes to apply Soft NMS.
- * @param scores a set of corresponding confidences.
- * @param updated_scores a set of corresponding updated confidences.
- * @param score_threshold a threshold used to filter boxes by score.
- * @param nms_threshold a threshold used in non maximum suppression.
- * @param indices the kept indices of bboxes after NMS.
- * @param top_k keep at most @p top_k picked indices.
- * @param sigma parameter of Gaussian weighting.
- * @see `SoftNMSMethod`
- */
- + (void)softNMSBoxes:(NSArray<Rect2i*>*)bboxes scores:(FloatVector*)scores updated_scores:(FloatVector*)updated_scores score_threshold:(float)score_threshold nms_threshold:(float)nms_threshold indices:(IntVector*)indices top_k:(size_t)top_k sigma:(float)sigma NS_SWIFT_NAME(softNMSBoxes(bboxes:scores:updated_scores:score_threshold:nms_threshold:indices:top_k:sigma:));
- /**
- * Performs soft non maximum suppression given boxes and corresponding scores.
- * Reference: https://arxiv.org/abs/1704.04503
- * @param bboxes a set of bounding boxes to apply Soft NMS.
- * @param scores a set of corresponding confidences.
- * @param updated_scores a set of corresponding updated confidences.
- * @param score_threshold a threshold used to filter boxes by score.
- * @param nms_threshold a threshold used in non maximum suppression.
- * @param indices the kept indices of bboxes after NMS.
- * @param top_k keep at most @p top_k picked indices.
- * @see `SoftNMSMethod`
- */
- + (void)softNMSBoxes:(NSArray<Rect2i*>*)bboxes scores:(FloatVector*)scores updated_scores:(FloatVector*)updated_scores score_threshold:(float)score_threshold nms_threshold:(float)nms_threshold indices:(IntVector*)indices top_k:(size_t)top_k NS_SWIFT_NAME(softNMSBoxes(bboxes:scores:updated_scores:score_threshold:nms_threshold:indices:top_k:));
- /**
- * Performs soft non maximum suppression given boxes and corresponding scores.
- * Reference: https://arxiv.org/abs/1704.04503
- * @param bboxes a set of bounding boxes to apply Soft NMS.
- * @param scores a set of corresponding confidences.
- * @param updated_scores a set of corresponding updated confidences.
- * @param score_threshold a threshold used to filter boxes by score.
- * @param nms_threshold a threshold used in non maximum suppression.
- * @param indices the kept indices of bboxes after NMS.
- * @see `SoftNMSMethod`
- */
- + (void)softNMSBoxes:(NSArray<Rect2i*>*)bboxes scores:(FloatVector*)scores updated_scores:(FloatVector*)updated_scores score_threshold:(float)score_threshold nms_threshold:(float)nms_threshold indices:(IntVector*)indices NS_SWIFT_NAME(softNMSBoxes(bboxes:scores:updated_scores:score_threshold:nms_threshold:indices:));
- //
- // String cv::dnn::getInferenceEngineBackendType()
- //
- /**
- * Returns Inference Engine internal backend API.
- *
- * See values of `CV_DNN_BACKEND_INFERENCE_ENGINE_*` macros.
- *
- * `OPENCV_DNN_BACKEND_INFERENCE_ENGINE_TYPE` runtime parameter (environment variable) is ignored since 4.6.0.
- *
- * @deprecated
- */
- + (NSString*)getInferenceEngineBackendType NS_SWIFT_NAME(getInferenceEngineBackendType()) DEPRECATED_ATTRIBUTE;
- //
- // String cv::dnn::setInferenceEngineBackendType(String newBackendType)
- //
- /**
- * Specify Inference Engine internal backend API.
- *
- * See values of `CV_DNN_BACKEND_INFERENCE_ENGINE_*` macros.
- *
- * @return previous value of internal backend API
- *
- * @deprecated
- */
- + (NSString*)setInferenceEngineBackendType:(NSString*)newBackendType NS_SWIFT_NAME(setInferenceEngineBackendType(newBackendType:)) DEPRECATED_ATTRIBUTE;
- //
- // void cv::dnn::resetMyriadDevice()
- //
- /**
- * Release a Myriad device (binded by OpenCV).
- *
- * Single Myriad device cannot be shared across multiple processes which uses
- * Inference Engine's Myriad plugin.
- */
- + (void)resetMyriadDevice NS_SWIFT_NAME(resetMyriadDevice());
- //
- // String cv::dnn::getInferenceEngineVPUType()
- //
- /**
- * Returns Inference Engine VPU type.
- *
- * See values of `CV_DNN_INFERENCE_ENGINE_VPU_TYPE_*` macros.
- */
- + (NSString*)getInferenceEngineVPUType NS_SWIFT_NAME(getInferenceEngineVPUType());
- //
- // String cv::dnn::getInferenceEngineCPUType()
- //
- /**
- * Returns Inference Engine CPU type.
- *
- * Specify OpenVINO plugin: CPU or ARM.
- */
- + (NSString*)getInferenceEngineCPUType NS_SWIFT_NAME(getInferenceEngineCPUType());
- //
- // void cv::dnn::releaseHDDLPlugin()
- //
- /**
- * Release a HDDL plugin.
- */
- + (void)releaseHDDLPlugin NS_SWIFT_NAME(releaseHDDLPlugin());
- @end
- NS_ASSUME_NONNULL_END
|