123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141 |
- //
- // This file is auto-generated. Please don't modify it!
- //
- #pragma once
- #ifdef __cplusplus
- //#import "opencv.hpp"
- #import "opencv2/dnn.hpp"
- #import "opencv2/dnn/dnn.hpp"
- #else
- #define CV_EXPORTS
- #endif
- #import <Foundation/Foundation.h>
- #import "Model.h"
- @class FloatVector;
- @class IntVector;
- @class Mat;
- @class Net;
- @class Rect2i;
- NS_ASSUME_NONNULL_BEGIN
- // C++: class DetectionModel
- /**
- * This class represents high-level API for object detection networks.
- *
- * DetectionModel allows to set params for preprocessing input image.
- * DetectionModel creates net from file with trained weights and config,
- * sets preprocessing input, runs forward pass and return result detections.
- * For DetectionModel SSD, Faster R-CNN, YOLO topologies are supported.
- *
- * Member of `Dnn`
- */
- CV_EXPORTS @interface DetectionModel : Model
- #ifdef __cplusplus
- @property(readonly)cv::Ptr<cv::dnn::DetectionModel> nativePtrDetectionModel;
- #endif
- #ifdef __cplusplus
- - (instancetype)initWithNativePtr:(cv::Ptr<cv::dnn::DetectionModel>)nativePtr;
- + (instancetype)fromNative:(cv::Ptr<cv::dnn::DetectionModel>)nativePtr;
- #endif
- #pragma mark - Methods
- //
- // cv::dnn::DetectionModel::DetectionModel(String model, String config = "")
- //
- /**
- * Create detection model from network represented in one of the supported formats.
- * An order of @p model and @p config arguments does not matter.
- * @param model Binary file contains trained weights.
- * @param config Text file contains network configuration.
- */
- - (instancetype)initWithModel:(NSString*)model config:(NSString*)config;
- /**
- * Create detection model from network represented in one of the supported formats.
- * An order of @p model and @p config arguments does not matter.
- * @param model Binary file contains trained weights.
- */
- - (instancetype)initWithModel:(NSString*)model;
- //
- // cv::dnn::DetectionModel::DetectionModel(Net network)
- //
- /**
- * Create model from deep learning network.
- * @param network Net object.
- */
- - (instancetype)initWithNetwork:(Net*)network;
- //
- // DetectionModel cv::dnn::DetectionModel::setNmsAcrossClasses(bool value)
- //
- /**
- * nmsAcrossClasses defaults to false,
- * such that when non max suppression is used during the detect() function, it will do so per-class.
- * This function allows you to toggle this behaviour.
- * @param value The new value for nmsAcrossClasses
- */
- - (DetectionModel*)setNmsAcrossClasses:(BOOL)value NS_SWIFT_NAME(setNmsAcrossClasses(value:));
- //
- // bool cv::dnn::DetectionModel::getNmsAcrossClasses()
- //
- /**
- * Getter for nmsAcrossClasses. This variable defaults to false,
- * such that when non max suppression is used during the detect() function, it will do so only per-class
- */
- - (BOOL)getNmsAcrossClasses NS_SWIFT_NAME(getNmsAcrossClasses());
- //
- // void cv::dnn::DetectionModel::detect(Mat frame, vector_int& classIds, vector_float& confidences, vector_Rect& boxes, float confThreshold = 0.5f, float nmsThreshold = 0.0f)
- //
- /**
- * Given the @p input frame, create input blob, run net and return result detections.
- * @param classIds Class indexes in result detection.
- * @param confidences A set of corresponding confidences.
- * @param boxes A set of bounding boxes.
- * @param confThreshold A threshold used to filter boxes by confidences.
- * @param nmsThreshold A threshold used in non maximum suppression.
- */
- - (void)detect:(Mat*)frame classIds:(IntVector*)classIds confidences:(FloatVector*)confidences boxes:(NSMutableArray<Rect2i*>*)boxes confThreshold:(float)confThreshold nmsThreshold:(float)nmsThreshold NS_SWIFT_NAME(detect(frame:classIds:confidences:boxes:confThreshold:nmsThreshold:));
- /**
- * Given the @p input frame, create input blob, run net and return result detections.
- * @param classIds Class indexes in result detection.
- * @param confidences A set of corresponding confidences.
- * @param boxes A set of bounding boxes.
- * @param confThreshold A threshold used to filter boxes by confidences.
- */
- - (void)detect:(Mat*)frame classIds:(IntVector*)classIds confidences:(FloatVector*)confidences boxes:(NSMutableArray<Rect2i*>*)boxes confThreshold:(float)confThreshold NS_SWIFT_NAME(detect(frame:classIds:confidences:boxes:confThreshold:));
- /**
- * Given the @p input frame, create input blob, run net and return result detections.
- * @param classIds Class indexes in result detection.
- * @param confidences A set of corresponding confidences.
- * @param boxes A set of bounding boxes.
- */
- - (void)detect:(Mat*)frame classIds:(IntVector*)classIds confidences:(FloatVector*)confidences boxes:(NSMutableArray<Rect2i*>*)boxes NS_SWIFT_NAME(detect(frame:classIds:confidences:boxes:));
- @end
- NS_ASSUME_NONNULL_END
|