123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267 |
- //
- // This file is auto-generated. Please don't modify it!
- //
- #pragma once
- #ifdef __cplusplus
- //#import "opencv.hpp"
- #import "opencv2/ml.hpp"
- #else
- #define CV_EXPORTS
- #endif
- #import <Foundation/Foundation.h>
- #import "StatModel.h"
- @class Mat;
- // C++: enum DTreeFlags (cv.ml.DTrees.Flags)
- typedef NS_ENUM(int, DTreeFlags) {
- PREDICT_AUTO = 0,
- PREDICT_SUM = (1<<8),
- PREDICT_MAX_VOTE = (2<<8),
- PREDICT_MASK = (3<<8)
- };
- NS_ASSUME_NONNULL_BEGIN
- // C++: class DTrees
- /**
- * The class represents a single decision tree or a collection of decision trees.
- *
- * The current public interface of the class allows user to train only a single decision tree, however
- * the class is capable of storing multiple decision trees and using them for prediction (by summing
- * responses or using a voting schemes), and the derived from DTrees classes (such as RTrees and Boost)
- * use this capability to implement decision tree ensembles.
- *
- * @see REF: ml_intro_trees
- *
- * Member of `Ml`
- */
- CV_EXPORTS @interface DTrees : StatModel
- #ifdef __cplusplus
- @property(readonly)cv::Ptr<cv::ml::DTrees> nativePtrDTrees;
- #endif
- #ifdef __cplusplus
- - (instancetype)initWithNativePtr:(cv::Ptr<cv::ml::DTrees>)nativePtr;
- + (instancetype)fromNative:(cv::Ptr<cv::ml::DTrees>)nativePtr;
- #endif
- #pragma mark - Methods
- //
- // int cv::ml::DTrees::getMaxCategories()
- //
- /**
- * @see `-setMaxCategories:`
- */
- - (int)getMaxCategories NS_SWIFT_NAME(getMaxCategories());
- //
- // void cv::ml::DTrees::setMaxCategories(int val)
- //
- /**
- * getMaxCategories @see `-getMaxCategories:`
- */
- - (void)setMaxCategories:(int)val NS_SWIFT_NAME(setMaxCategories(val:));
- //
- // int cv::ml::DTrees::getMaxDepth()
- //
- /**
- * @see `-setMaxDepth:`
- */
- - (int)getMaxDepth NS_SWIFT_NAME(getMaxDepth());
- //
- // void cv::ml::DTrees::setMaxDepth(int val)
- //
- /**
- * getMaxDepth @see `-getMaxDepth:`
- */
- - (void)setMaxDepth:(int)val NS_SWIFT_NAME(setMaxDepth(val:));
- //
- // int cv::ml::DTrees::getMinSampleCount()
- //
- /**
- * @see `-setMinSampleCount:`
- */
- - (int)getMinSampleCount NS_SWIFT_NAME(getMinSampleCount());
- //
- // void cv::ml::DTrees::setMinSampleCount(int val)
- //
- /**
- * getMinSampleCount @see `-getMinSampleCount:`
- */
- - (void)setMinSampleCount:(int)val NS_SWIFT_NAME(setMinSampleCount(val:));
- //
- // int cv::ml::DTrees::getCVFolds()
- //
- /**
- * @see `-setCVFolds:`
- */
- - (int)getCVFolds NS_SWIFT_NAME(getCVFolds());
- //
- // void cv::ml::DTrees::setCVFolds(int val)
- //
- /**
- * getCVFolds @see `-getCVFolds:`
- */
- - (void)setCVFolds:(int)val NS_SWIFT_NAME(setCVFolds(val:));
- //
- // bool cv::ml::DTrees::getUseSurrogates()
- //
- /**
- * @see `-setUseSurrogates:`
- */
- - (BOOL)getUseSurrogates NS_SWIFT_NAME(getUseSurrogates());
- //
- // void cv::ml::DTrees::setUseSurrogates(bool val)
- //
- /**
- * getUseSurrogates @see `-getUseSurrogates:`
- */
- - (void)setUseSurrogates:(BOOL)val NS_SWIFT_NAME(setUseSurrogates(val:));
- //
- // bool cv::ml::DTrees::getUse1SERule()
- //
- /**
- * @see `-setUse1SERule:`
- */
- - (BOOL)getUse1SERule NS_SWIFT_NAME(getUse1SERule());
- //
- // void cv::ml::DTrees::setUse1SERule(bool val)
- //
- /**
- * getUse1SERule @see `-getUse1SERule:`
- */
- - (void)setUse1SERule:(BOOL)val NS_SWIFT_NAME(setUse1SERule(val:));
- //
- // bool cv::ml::DTrees::getTruncatePrunedTree()
- //
- /**
- * @see `-setTruncatePrunedTree:`
- */
- - (BOOL)getTruncatePrunedTree NS_SWIFT_NAME(getTruncatePrunedTree());
- //
- // void cv::ml::DTrees::setTruncatePrunedTree(bool val)
- //
- /**
- * getTruncatePrunedTree @see `-getTruncatePrunedTree:`
- */
- - (void)setTruncatePrunedTree:(BOOL)val NS_SWIFT_NAME(setTruncatePrunedTree(val:));
- //
- // float cv::ml::DTrees::getRegressionAccuracy()
- //
- /**
- * @see `-setRegressionAccuracy:`
- */
- - (float)getRegressionAccuracy NS_SWIFT_NAME(getRegressionAccuracy());
- //
- // void cv::ml::DTrees::setRegressionAccuracy(float val)
- //
- /**
- * getRegressionAccuracy @see `-getRegressionAccuracy:`
- */
- - (void)setRegressionAccuracy:(float)val NS_SWIFT_NAME(setRegressionAccuracy(val:));
- //
- // Mat cv::ml::DTrees::getPriors()
- //
- /**
- * @see `-setPriors:`
- */
- - (Mat*)getPriors NS_SWIFT_NAME(getPriors());
- //
- // void cv::ml::DTrees::setPriors(Mat val)
- //
- /**
- * getPriors @see `-getPriors:`
- */
- - (void)setPriors:(Mat*)val NS_SWIFT_NAME(setPriors(val:));
- //
- // static Ptr_DTrees cv::ml::DTrees::create()
- //
- /**
- * Creates the empty model
- *
- * The static method creates empty decision tree with the specified parameters. It should be then
- * trained using train method (see StatModel::train). Alternatively, you can load the model from
- * file using Algorithm::load\<DTrees\>(filename).
- */
- + (DTrees*)create NS_SWIFT_NAME(create());
- //
- // static Ptr_DTrees cv::ml::DTrees::load(String filepath, String nodeName = String())
- //
- /**
- * Loads and creates a serialized DTrees from a file
- *
- * Use DTree::save to serialize and store an DTree to disk.
- * Load the DTree from this file again, by calling this function with the path to the file.
- * Optionally specify the node for the file containing the classifier
- *
- * @param filepath path to serialized DTree
- * @param nodeName name of node containing the classifier
- */
- + (DTrees*)load:(NSString*)filepath nodeName:(NSString*)nodeName NS_SWIFT_NAME(load(filepath:nodeName:));
- /**
- * Loads and creates a serialized DTrees from a file
- *
- * Use DTree::save to serialize and store an DTree to disk.
- * Load the DTree from this file again, by calling this function with the path to the file.
- * Optionally specify the node for the file containing the classifier
- *
- * @param filepath path to serialized DTree
- */
- + (DTrees*)load:(NSString*)filepath NS_SWIFT_NAME(load(filepath:));
- @end
- NS_ASSUME_NONNULL_END
|