123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296 |
- ''' Document Localization using Recursive CNN
- Maintainer : Khurram Javed
- Email : kjaved@ualberta.ca '''
- import random
- import cv2
- import numpy as np
- import polygon
- def unison_shuffled_copies(a, b):
- assert len(a) == len(b)
- p = np.random.permutation(len(a))
- return a[p], b[p]
- def intersection(a, b, img):
- img1 = np.zeros_like(img)
- cv2.fillConvexPoly(img1, a, (255, 0, 0))
- img1 = np.sum(img1, axis=2)
- img1 = img1 / 255
- img2 = np.zeros_like(img)
- cv2.fillConvexPoly(img2, b, (255, 0, 0))
- img2 = np.sum(img2, axis=2)
- img2 = img2 / 255
- inte = img1 * img2
- union = np.logical_or(img1, img2)
- iou = np.sum(inte) / np.sum(union)
- print(iou)
- return iou
- def intersection_with_correction(a, b, img):
- img1 = np.zeros_like(img)
- cv2.fillConvexPoly(img1, a, (255, 0, 0))
- img2 = np.zeros_like(img)
- cv2.fillConvexPoly(img2, b, (255, 0, 0))
- min_x = min(a[0][0], a[1][0], a[2][0], a[3][0])
- min_y = min(a[0][1], a[1][1], a[2][1], a[3][1])
- max_x = max(a[0][0], a[1][0], a[2][0], a[3][0])
- max_y = max(a[0][1], a[1][1], a[2][1], a[3][1])
- dst = np.array(((min_x, min_y), (max_x, min_y), (max_x, max_y), (min_x, max_y)))
- mat = cv2.getPerspectiveTransform(a.astype(np.float32), dst.astype(np.float32))
- img1 = cv2.warpPerspective(img1, mat, tuple((img.shape[0], img.shape[1])))
- img2 = cv2.warpPerspective(img2, mat, tuple((img.shape[0], img.shape[1])))
- img1 = np.sum(img1, axis=2)
- img1 = img1 / 255
- img2 = np.sum(img2, axis=2)
- img2 = img2 / 255
- inte = img1 * img2
- union = np.logical_or(img1, img2)
- iou = np.sum(inte) / np.sum(union)
- return iou
- def intersection_with_correction_smart_doc_implementation(gt, prediction, img):
- # Reference : https://github.com/jchazalon/smartdoc15-ch1-eval
- gt = sort_gt(gt)
- prediction = sort_gt(prediction)
- img1 = np.zeros_like(img)
- cv2.fillConvexPoly(img1, gt, (255, 0, 0))
- target_width = 2100
- target_height = 2970
- # Referential: (0,0) at TL, x > 0 toward right and y > 0 toward bottom
- # Corner order: TL, BL, BR, TR
- # object_coord_target = np.float32([[0, 0], [0, target_height], [target_width, target_height], [target_width, 0]])
- object_coord_target = np.array(np.float32([[0, 0], [target_width, 0], [target_width, target_height],[0, target_height]]))
- # print (gt, object_coord_target)
- H = cv2.getPerspectiveTransform(gt.astype(np.float32).reshape(-1, 1, 2), object_coord_target.reshape(-1, 1, 2))
- # 2/ Apply to test result to project in target referential
- test_coords = cv2.perspectiveTransform(prediction.astype(np.float32).reshape(-1, 1, 2), H)
- # 3/ Compute intersection between target region and test result region
- # poly = Polygon.Polygon([(0,0),(1,0),(0,1)])
- poly_target = polygon.Polygon(object_coord_target.reshape(-1, 2))
- poly_test = polygon.Polygon(test_coords.reshape(-1, 2))
- poly_inter = poly_target & poly_test
- area_target = poly_target.area()
- area_test = poly_test.area()
- area_inter = poly_inter.area()
- area_union = area_test + area_target - area_inter
- # Little hack to cope with float precision issues when dealing with polygons:
- # If intersection area is close enough to target area or GT area, but slighlty >,
- # then fix it, assuming it is due to rounding issues.
- area_min = min(area_target, area_test)
- if area_min < area_inter and area_min * 1.0000000001 > area_inter:
- area_inter = area_min
- print("Capping area_inter.")
- jaccard_index = area_inter / area_union
- return jaccard_index
- def __rotateImage(image, angle):
- rot_mat = cv2.getRotationMatrix2D((image.shape[1] / 2, image.shape[0] / 2), angle, 1)
- result = cv2.warpAffine(image, rot_mat, (image.shape[1], image.shape[0]), flags=cv2.INTER_LINEAR)
- return result, rot_mat
- def rotate(img, gt, angle):
- img, mat = __rotateImage(img, angle)
- gt = gt.astype(np.float64)
- for a in range(0, 4):
- gt[a] = np.dot(mat[..., 0:2], gt[a]) + mat[..., 2]
- return img, gt
- def random_crop(img, gt):
- ptr1 = (min(gt[0][0], gt[1][0], gt[2][0], gt[3][0]),
- min(gt[0][1], gt[1][1], gt[2][1], gt[3][1]))
- ptr2 = ((max(gt[0][0], gt[1][0], gt[2][0], gt[3][0]),
- max(gt[0][1], gt[1][1], gt[2][1], gt[3][1])))
- start_x = np.random.randint(0, int(max(ptr1[0] - 1, 1)))
- start_y = np.random.randint(0, int(max(ptr1[1] - 1, 1)))
- end_x = np.random.randint(int(min(ptr2[0] + 1, img.shape[1] - 1)), img.shape[1])
- end_y = np.random.randint(int(min(ptr2[1] + 1, img.shape[0] - 1)), img.shape[0])
- img = img[start_y:end_y, start_x:end_x]
- myGt = gt - (start_x, start_y)
- myGt = myGt * (1.0 / img.shape[1], 1.0 / img.shape[0])
- myGtTemp = myGt * myGt
- sum_array = myGtTemp.sum(axis=1)
- tl_index = np.argmin(sum_array)
- tl = myGt[tl_index]
- tr = myGt[(tl_index + 1) % 4]
- br = myGt[(tl_index + 2) % 4]
- bl = myGt[(tl_index + 3) % 4]
- return img, (tl, tr, br, bl)
- def get_corners(img, gt):
- gt = gt.astype(int)
- list_of_points = {}
- myGt = gt
- myGtTemp = myGt * myGt
- sum_array = myGtTemp.sum(axis=1)
- tl_index = np.argmin(sum_array)
- tl = myGt[tl_index]
- tr = myGt[(tl_index + 1) % 4]
- br = myGt[(tl_index + 2) % 4]
- bl = myGt[(tl_index + 3) % 4]
- list_of_points["tr"] = tr
- list_of_points["tl"] = tl
- list_of_points["br"] = br
- list_of_points["bl"] = bl
- gt_list = []
- images_list = []
- for k, v in list_of_points.items():
- if (k == "tl"):
- cords_x = __get_cords(v[0], 0, list_of_points["tr"][0], buf=10, size=abs(list_of_points["tr"][0] - v[0]))
- cords_y = __get_cords(v[1], 0, list_of_points["bl"][1], buf=10, size=abs(list_of_points["bl"][1] - v[1]))
- # print cords_y, cords_x
- gt = (v[0] - cords_x[0], v[1] - cords_y[0])
- cut_image = img[cords_y[0]:cords_y[1], cords_x[0]:cords_x[1]]
- if (k == "tr"):
- cords_x = __get_cords(v[0], list_of_points["tl"][0], img.shape[1], buf=10,
- size=abs(list_of_points["tl"][0] - v[0]))
- cords_y = __get_cords(v[1], 0, list_of_points["br"][1], buf=10, size=abs(list_of_points["br"][1] - v[1]))
- # print cords_y, cords_x
- gt = (v[0] - cords_x[0], v[1] - cords_y[0])
- cut_image = img[cords_y[0]:cords_y[1], cords_x[0]:cords_x[1]]
- if (k == "bl"):
- cords_x = __get_cords(v[0], 0, list_of_points["br"][1], buf=10,
- size=abs(list_of_points["br"][0] - v[0]))
- cords_y = __get_cords(v[1], list_of_points["tl"][1], img.shape[0], buf=10,
- size=abs(list_of_points["tl"][1] - v[1]))
- # print cords_y, cords_x
- gt = (v[0] - cords_x[0], v[1] - cords_y[0])
- cut_image = img[cords_y[0]:cords_y[1], cords_x[0]:cords_x[1]]
- if (k == "br"):
- cords_x = __get_cords(v[0], 0, list_of_points["bl"][1], buf=10,
- size=abs(list_of_points["bl"][0] - v[0]))
- cords_y = __get_cords(v[1], list_of_points["tr"][0], img.shape[0], buf=10,
- size=abs(list_of_points["tr"][1] - v[1]))
- # print cords_y, cords_x
- gt = (v[0] - cords_x[0], v[1] - cords_y[0])
- cut_image = img[cords_y[0]:cords_y[1], cords_x[0]:cords_x[1]]
- # cv2.circle(cut_image, gt, 2, (255, 0, 0), 6)
- mah_size = cut_image.shape
- cut_image = cv2.resize(cut_image, (300, 300))
- a = int(gt[0] * 300 / mah_size[1])
- b = int(gt[1] * 300 / mah_size[0])
- images_list.append(cut_image)
- gt_list.append((a, b))
- return images_list, gt_list
- def __get_cords(cord, min_start, max_end, size=299, buf=5, random_scale=True):
- # size = max(abs(cord-min_start), abs(cord-max_end))
- iter = 0
- if (random_scale):
- size /= random.randint(1, 4)
- while (max_end - min_start) < size:
- size = size * .9
- temp = -1
- while (temp < 1):
- temp = random.normalvariate(size / 2, size / 6)
- x_start = max(cord - temp, min_start)
- x_start = int(x_start)
- if x_start >= cord:
- print("XSTART AND CORD", x_start, cord)
- assert (x_start < cord)
- while ((x_start < min_start) or (x_start + size > max_end) or (x_start + size <= cord)):
- # x_start = random.randint(int(min(max(min_start, int(cord - size + buf)), cord - buf - 1)), cord - buf)
- temp = -1
- while (temp < 1):
- temp = random.normalvariate(size / 2, size / 6)
- temp = max(temp, 1)
- x_start = max(cord - temp, min_start)
- x_start = int(x_start)
- size = size * .995
- iter += 1
- if (iter == 1000):
- x_start = int(cord - (size / 2))
- print("Gets here")
- break
- assert (x_start >= 0)
- if x_start >= cord:
- print("XSTART AND CORD", x_start, cord)
- assert (x_start < cord)
- assert (x_start + size <= max_end)
- assert (x_start + size > cord)
- return (x_start, int(x_start + size))
- def setup_logger(path):
- import logging
- logger = logging.getLogger('iCARL')
- logger.setLevel(logging.DEBUG)
- fh = logging.FileHandler(path + ".log")
- fh.setLevel(logging.DEBUG)
- fh2 = logging.FileHandler("../temp.log")
- fh2.setLevel(logging.DEBUG)
- ch = logging.StreamHandler()
- ch.setLevel(logging.DEBUG)
- formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')
- fh.setFormatter(formatter)
- fh2.setFormatter(formatter)
- logger.addHandler(fh)
- logger.addHandler(fh2)
- logger.addHandler(ch)
- return logger
- def sort_gt(gt):
- '''
- Sort the ground truth labels so that TL corresponds to the label with smallest distance from O
- :param gt:
- :return: sorted gt
- '''
- myGtTemp = gt * gt
- sum_array = myGtTemp.sum(axis=1)
- tl_index = np.argmin(sum_array)
- tl = gt[tl_index]
- tr = gt[(tl_index + 1) % 4]
- br = gt[(tl_index + 2) % 4]
- bl = gt[(tl_index + 3) % 4]
- return np.asarray((tl, tr, br, bl))
|