123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124 |
- import torch
- from torch import nn
- import torch.nn.functional as F
- class ResidualBlock(nn.Module):
- def __init__(self, channels):
- super(ResidualBlock, self).__init__()
- self.conv1 = nn.Conv2d(channels, channels, kernel_size=3, padding=1, bias=False)
- self.bn1 = nn.BatchNorm2d(channels)
- self.relu6_1 = nn.ReLU6(inplace=True)
- self.conv2 = nn.Conv2d(channels, channels, kernel_size=3, padding=1, bias=False)
- self.bn2 = nn.BatchNorm2d(channels)
- self.relu6_2 = nn.ReLU6(inplace=True)
- self.relu6_latest = nn.ReLU6(inplace=True)
- def forward(self, x):
- residual = self.conv1(x)
- residual = self.bn1(residual)
- residual = self.relu6_1(residual)
- residual = self.conv2(residual)
- residual = self.bn2(residual)
- residual = self.relu6_2(residual)
- add = x + residual
- return self.relu6_latest(add)
- class M64ColorNet(nn.Module):
- def __init__(self):
- super(M64ColorNet, self).__init__()
- self.block1 = nn.Sequential(
- nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, padding=1, bias=False, stride=1),
- nn.BatchNorm2d(16),
- nn.ReLU6(inplace=True)
- )
- self.block2 = nn.Sequential(
- nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, padding=1, bias=False, stride=2),
- nn.BatchNorm2d(32),
- nn.ReLU6(inplace=True)
- )
- self.block3 = nn.Sequential(
- nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, padding=1, bias=False, stride=2),
- nn.BatchNorm2d(64),
- nn.ReLU6(inplace=True)
- )
- self.block4 = ResidualBlock(64)
- self.block5 = ResidualBlock(64)
- self.block6 = ResidualBlock(64)
- self.block7 = ResidualBlock(64)
- self.block8 = ResidualBlock(64)
- self.block9 = nn.Sequential(
- nn.Conv2d(in_channels=64, out_channels=64, kernel_size=3, padding=1, bias=False),
- nn.BatchNorm2d(64),
- nn.ReLU6(inplace=True)
- )
- self.block10 = nn.Sequential(
- # nn.Conv2d(in_channels=64, out_channels=32, kernel_size=3, padding=1, bias=False),
- nn.ConvTranspose2d(in_channels=64, out_channels=32, kernel_size=3, padding=1, bias=False, stride=2, output_padding=1),
- nn.BatchNorm2d(32),
- nn.ReLU6(inplace=True)
- )
- self.block11 = nn.Sequential(
- # nn.Conv2d(in_channels=32, out_channels=16, kernel_size=3, padding=1, bias=False),
- nn.ConvTranspose2d(in_channels=32, out_channels=16, kernel_size=3, padding=1, bias=False, stride=2, output_padding=1),
- nn.BatchNorm2d(16),
- nn.ReLU6(inplace=True)
- )
- self.block12 = nn.Sequential(
- nn.Conv2d(in_channels=16, out_channels=3, kernel_size=3, padding=1, bias=False),
- nn.BatchNorm2d(3),
- nn.ReLU6(inplace=True)
- )
- # self.dropout = nn.Dropout(0.4)
- def forward(self, x):
- input = x
- x = self.block1(x)
- input2 = x
- x = self.block2(x)
- input3 = x
- x = self.block3(x)
- input4 = x
- x = self.block4(x)
- x = self.block5(x)
- x = self.block6(x)
- x = self.block7(x)
- x = self.block8(x)
- x = input4 + x
-
- x = self.block9(x)
- x = self.block10(x)
- x = input3 + x
- x = self.block11(x)
- x = input2 + x
- x = self.block12(x)
- x = input + x
- x = torch.sigmoid(x)
- return x
- @staticmethod
- def load_trained_model(ckpt_path):
- ckpt_dict = torch.load(ckpt_path, map_location=torch.device('cpu'))
- model = M64ColorNet()
- model.load_state_dict(ckpt_dict["model_state_dict"])
- model.eval()
- return model, ckpt_dict["mean"], ckpt_dict["std"], ckpt_dict["loss"], ckpt_dict["ssim_score"], ckpt_dict["psnr_score"]
|