import os from tqdm import tqdm import cv2 import numpy as np import utils import dataprocessor import argparse def str2bool(v): if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def args_processor(): parser = argparse.ArgumentParser() parser.add_argument("-i", "--input-dir", help="Path to data files (Extract images using video_to_image.py first") parser.add_argument("-o", "--output-dir", help="Directory to store results") parser.add_argument("-v", "--visualize", help="Draw the point on the corner", default=False, type=bool) parser.add_argument("-a", "--augment", type=str2bool, nargs='?', const=True, default=True, help="Augment image dataset") parser.add_argument("--dataset", default="smartdoc", help="'smartdoc' or 'selfcollected' dataset") return parser.parse_args() if __name__ == '__main__': if __name__ == '__main__': args = args_processor() input_directory = args.input_dir if not os.path.isdir(args.output_dir): os.mkdir(args.output_dir) import csv # Dataset iterator if args.dataset == "smartdoc": dataset_test = dataprocessor.dataset.SmartDocDirectories(input_directory) elif args.dataset == "selfcollected": dataset_test = dataprocessor.dataset.SelfCollectedDataset(input_directory) else: print("Incorrect dataset type; please choose between smartdoc or selfcollected") assert (False) with open(os.path.join(args.output_dir, 'gt.csv'), 'a') as csvfile: spamwriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) # Counter for file naming counter = 0 for data_elem in tqdm(dataset_test.myData): img_path = data_elem[0] target = data_elem[1].reshape((4, 2)) img = cv2.imread(img_path) if args.dataset == "selfcollected": target = target / (img.shape[1], img.shape[0]) target = target * (1920, 1920) img = cv2.resize(img, (1920, 1920)) corner_cords = target angles = [0, 271, 90] if args.augment else [0] random_crops = [0, 16] if args.augment else [0] for angle in angles: img_rotate, gt_rotate = utils.utils.rotate(img, corner_cords, angle) for random_crop in random_crops: counter += 1 f_name = str(counter).zfill(8) img_crop, gt_crop = utils.utils.random_crop(img_rotate, gt_rotate) mah_size = img_crop.shape img_crop = cv2.resize(img_crop, (64, 64)) gt_crop = np.array(gt_crop) if (args.visualize): no=0 for a in range(0,4): no+=1 cv2.circle(img_crop, tuple(((gt_crop[a]*64).astype(int))), 2,(255-no*60,no*60,0),9) # # cv2.imwrite("asda.jpg", img) cv2.imwrite(os.path.join(args.output_dir, f_name+".jpg"), img_crop) spamwriter.writerow((f_name+".jpg", tuple(list(gt_crop))))