// This file is part of OpenCV project. // It is subject to the license terms in the LICENSE file found in the top-level directory // of this distribution and at http://opencv.org/license.html. // // Copyright (C) 2019-2021 Intel Corporation #ifndef OPENCV_GAPI_INFER_IE_HPP #define OPENCV_GAPI_INFER_IE_HPP #include #include #include #include #include // tuple, tuple_size #include #include #include #include // GAPI_EXPORTS #include // GKernelPackage #include // Generic #include // Preproc Dev & Ctx namespace cv { namespace gapi { // FIXME: introduce a new sub-namespace for NN? /** * @brief This namespace contains G-API OpenVINO backend functions, * structures, and symbols. */ namespace ie { GAPI_EXPORTS cv::gapi::GBackend backend(); /** * Specifies how G-API and IE should trait input data * * In OpenCV, the same cv::Mat is used to represent both * image and tensor data. Sometimes those are hardly distinguishable, * so this extra parameter is used to give G-API a hint. * * This hint controls how G-API reinterprets the data when converting * it to IE Blob format (and which layout/etc is assigned to this data). */ enum class TraitAs: int { TENSOR, //!< G-API traits an associated cv::Mat as a raw tensor and passes dimensions as-is IMAGE //!< G-API traits an associated cv::Mat as an image so creates an "image" blob (NCHW/NHWC, etc) }; using IEConfig = std::map; namespace detail { struct ParamDesc { std::string model_path; std::string weights_path; std::string device_id; std::vector input_names; std::vector output_names; using ConstInput = std::pair; std::unordered_map const_inputs; std::size_t num_in; std::size_t num_out; enum class Kind {Load, Import}; Kind kind; bool is_generic; IEConfig config; std::map> reshape_table; std::unordered_set layer_names_to_reshape; // NB: Number of asyncrhonious infer requests size_t nireq; // NB: An optional config to setup RemoteContext for IE cv::util::any context_config; // NB: batch_size can't be equal to 1 by default, because some of models // have 2D (Layout::NC) input and if the first dimension not equal to 1 // net.setBatchSize(1) will overwrite it. cv::optional batch_size; cv::optional vpl_preproc_device; cv::optional vpl_preproc_ctx; }; } // namespace detail // FIXME: this is probably a shared (reusable) thing template struct PortCfg { using In = std::array < std::string , std::tuple_size::value >; using Out = std::array < std::string , std::tuple_size::value >; }; /** * @brief This structure provides functions * that fill inference parameters for "OpenVINO Toolkit" model. */ template class Params { public: /** @brief Class constructor. Constructs Params based on model information and specifies default values for other inference description parameters. Model is loaded and compiled using "OpenVINO Toolkit". @param model Path to topology IR (.xml file). @param weights Path to weights (.bin file). @param device target device to use. */ Params(const std::string &model, const std::string &weights, const std::string &device) : desc{ model, weights, device, {}, {}, {} , std::tuple_size::value // num_in , std::tuple_size::value // num_out , detail::ParamDesc::Kind::Load , false , {} , {} , {} , 1u , {} , {} , {} , {}} { }; /** @overload Use this constructor to work with pre-compiled network. Model is imported from a pre-compiled blob. @param model Path to model. @param device target device to use. */ Params(const std::string &model, const std::string &device) : desc{ model, {}, device, {}, {}, {} , std::tuple_size::value // num_in , std::tuple_size::value // num_out , detail::ParamDesc::Kind::Import , false , {} , {} , {} , 1u , {} , {} , {} , {}} { }; /** @brief Specifies sequence of network input layers names for inference. The function is used to associate cv::gapi::infer<> inputs with the model inputs. Number of names has to match the number of network inputs as defined in G_API_NET(). In case a network has only single input layer, there is no need to specify name manually. @param layer_names std::array where N is the number of inputs as defined in the @ref G_API_NET. Contains names of input layers. @return reference to this parameter structure. */ Params& cfgInputLayers(const typename PortCfg::In &layer_names) { desc.input_names.clear(); desc.input_names.reserve(layer_names.size()); std::copy(layer_names.begin(), layer_names.end(), std::back_inserter(desc.input_names)); return *this; } /** @brief Specifies sequence of network output layers names for inference. The function is used to associate cv::gapi::infer<> outputs with the model outputs. Number of names has to match the number of network outputs as defined in G_API_NET(). In case a network has only single output layer, there is no need to specify name manually. @param layer_names std::array where N is the number of outputs as defined in the @ref G_API_NET. Contains names of output layers. @return reference to this parameter structure. */ Params& cfgOutputLayers(const typename PortCfg::Out &layer_names) { desc.output_names.clear(); desc.output_names.reserve(layer_names.size()); std::copy(layer_names.begin(), layer_names.end(), std::back_inserter(desc.output_names)); return *this; } /** @brief Specifies a constant input. The function is used to set a constant input. This input has to be a preprocessed tensor if its type is TENSOR. Need to provide name of the network layer which will receive provided data. @param layer_name Name of network layer. @param data cv::Mat that contains data which will be associated with network layer. @param hint Input type @sa cv::gapi::ie::TraitAs. @return reference to this parameter structure. */ Params& constInput(const std::string &layer_name, const cv::Mat &data, TraitAs hint = TraitAs::TENSOR) { desc.const_inputs[layer_name] = {data, hint}; return *this; } /** @brief Specifies OpenVINO plugin configuration. The function is used to set configuration for OpenVINO plugin. Some parameters can be different for each plugin. Please follow https://docs.openvinotoolkit.org/latest/index.html to check information about specific plugin. @param cfg Map of pairs: (config parameter name, config parameter value). @return reference to this parameter structure. */ Params& pluginConfig(const IEConfig& cfg) { desc.config = cfg; return *this; } /** @overload Function with a rvalue parameter. @param cfg rvalue map of pairs: (config parameter name, config parameter value). @return reference to this parameter structure. */ Params& pluginConfig(IEConfig&& cfg) { desc.config = std::move(cfg); return *this; } /** @brief Specifies configuration for RemoteContext in InferenceEngine. When RemoteContext is configured the backend imports the networks using the context. It also expects cv::MediaFrames to be actually remote, to operate with blobs via the context. @param ctx_cfg cv::util::any value which holds InferenceEngine::ParamMap. @return reference to this parameter structure. */ Params& cfgContextParams(const cv::util::any& ctx_cfg) { desc.context_config = ctx_cfg; return *this; } /** @overload Function with an rvalue parameter. @param ctx_cfg cv::util::any value which holds InferenceEngine::ParamMap. @return reference to this parameter structure. */ Params& cfgContextParams(cv::util::any&& ctx_cfg) { desc.context_config = std::move(ctx_cfg); return *this; } /** @brief Specifies number of asynchronous inference requests. @param nireq Number of inference asynchronous requests. @return reference to this parameter structure. */ Params& cfgNumRequests(size_t nireq) { GAPI_Assert(nireq > 0 && "Number of infer requests must be greater than zero!"); desc.nireq = nireq; return *this; } /** @brief Specifies new input shapes for the network inputs. The function is used to specify new input shapes for the network inputs. Follow https://docs.openvinotoolkit.org/latest/classInferenceEngine_1_1networkNetwork.html for additional information. @param reshape_table Map of pairs: name of corresponding data and its dimension. @return reference to this parameter structure. */ Params& cfgInputReshape(const std::map>& reshape_table) { desc.reshape_table = reshape_table; return *this; } /** @overload */ Params& cfgInputReshape(std::map>&& reshape_table) { desc.reshape_table = std::move(reshape_table); return *this; } /** @overload @param layer_name Name of layer. @param layer_dims New dimensions for this layer. @return reference to this parameter structure. */ Params& cfgInputReshape(const std::string& layer_name, const std::vector& layer_dims) { desc.reshape_table.emplace(layer_name, layer_dims); return *this; } /** @overload */ Params& cfgInputReshape(std::string&& layer_name, std::vector&& layer_dims) { desc.reshape_table.emplace(layer_name, layer_dims); return *this; } /** @overload @param layer_names set of names of network layers that will be used for network reshape. @return reference to this parameter structure. */ Params& cfgInputReshape(const std::unordered_set& layer_names) { desc.layer_names_to_reshape = layer_names; return *this; } /** @overload @param layer_names rvalue set of the selected layers will be reshaped automatically its input image size. @return reference to this parameter structure. */ Params& cfgInputReshape(std::unordered_set&& layer_names) { desc.layer_names_to_reshape = std::move(layer_names); return *this; } /** @brief Specifies the inference batch size. The function is used to specify inference batch size. Follow https://docs.openvinotoolkit.org/latest/classInferenceEngine_1_1CNNNetwork.html#a8e9d19270a48aab50cb5b1c43eecb8e9 for additional information @param size batch size which will be used. @return reference to this parameter structure. */ Params& cfgBatchSize(const size_t size) { desc.batch_size = cv::util::make_optional(size); return *this; } Params& cfgPreprocessingParams(const cv::gapi::wip::onevpl::Device &device, const cv::gapi::wip::onevpl::Context &ctx) { desc.vpl_preproc_device = cv::util::make_optional(device); desc.vpl_preproc_ctx = cv::util::make_optional(ctx); return *this; } // BEGIN(G-API's network parametrization API) GBackend backend() const { return cv::gapi::ie::backend(); } std::string tag() const { return Net::tag(); } cv::util::any params() const { return { desc }; } // END(G-API's network parametrization API) protected: detail::ParamDesc desc; }; /* * @brief This structure provides functions for generic network type that * fill inference parameters. * @see struct Generic */ template<> class Params { public: /** @brief Class constructor. Constructs Params based on model information and sets default values for other inference description parameters. Model is loaded and compiled using OpenVINO Toolkit. @param tag string tag of the network for which these parameters are intended. @param model path to topology IR (.xml file). @param weights path to weights (.bin file). @param device target device to use. */ Params(const std::string &tag, const std::string &model, const std::string &weights, const std::string &device) : desc{ model, weights, device, {}, {}, {}, 0u, 0u, detail::ParamDesc::Kind::Load, true, {}, {}, {}, 1u, {}, {}, {}, {}}, m_tag(tag) { }; /** @overload This constructor for pre-compiled networks. Model is imported from pre-compiled blob. @param tag string tag of the network for which these parameters are intended. @param model path to model. @param device target device to use. */ Params(const std::string &tag, const std::string &model, const std::string &device) : desc{ model, {}, device, {}, {}, {}, 0u, 0u, detail::ParamDesc::Kind::Import, true, {}, {}, {}, 1u, {}, {}, {}, {}}, m_tag(tag) { }; /** @see ie::Params::pluginConfig. */ Params& pluginConfig(const IEConfig& cfg) { desc.config = cfg; return *this; } /** @overload */ Params& pluginConfig(IEConfig&& cfg) { desc.config = std::move(cfg); return *this; } /** @see ie::Params::constInput. */ Params& constInput(const std::string &layer_name, const cv::Mat &data, TraitAs hint = TraitAs::TENSOR) { desc.const_inputs[layer_name] = {data, hint}; return *this; } /** @see ie::Params::cfgNumRequests. */ Params& cfgNumRequests(size_t nireq) { GAPI_Assert(nireq > 0 && "Number of infer requests must be greater than zero!"); desc.nireq = nireq; return *this; } /** @see ie::Params::cfgInputReshape */ Params& cfgInputReshape(const std::map>&reshape_table) { desc.reshape_table = reshape_table; return *this; } /** @overload */ Params& cfgInputReshape(std::map> && reshape_table) { desc.reshape_table = std::move(reshape_table); return *this; } /** @overload */ Params& cfgInputReshape(std::string && layer_name, std::vector && layer_dims) { desc.reshape_table.emplace(layer_name, layer_dims); return *this; } /** @overload */ Params& cfgInputReshape(const std::string & layer_name, const std::vector&layer_dims) { desc.reshape_table.emplace(layer_name, layer_dims); return *this; } /** @overload */ Params& cfgInputReshape(std::unordered_set && layer_names) { desc.layer_names_to_reshape = std::move(layer_names); return *this; } /** @overload */ Params& cfgInputReshape(const std::unordered_set&layer_names) { desc.layer_names_to_reshape = layer_names; return *this; } /** @see ie::Params::cfgBatchSize */ Params& cfgBatchSize(const size_t size) { desc.batch_size = cv::util::make_optional(size); return *this; } // BEGIN(G-API's network parametrization API) GBackend backend() const { return cv::gapi::ie::backend(); } std::string tag() const { return m_tag; } cv::util::any params() const { return { desc }; } // END(G-API's network parametrization API) protected: detail::ParamDesc desc; std::string m_tag; }; } // namespace ie } // namespace gapi } // namespace cv #endif // OPENCV_GAPI_INFER_IE_HPP