''' Document Localization using Recursive CNN Maintainer : Khurram Javed Email : kjaved@ualberta.ca ''' import os import cv2 import numpy as np import dataprocessor from utils import utils def args_processor(): import argparse parser = argparse.ArgumentParser() parser.add_argument("-i", "--input-dir", help="Path to data files (Extract images using video_to_image.py first") parser.add_argument("-o", "--output-dir", help="Directory to store results") parser.add_argument("-v", "--visualize", help="Draw the point on the corner", default=False, type=bool) parser.add_argument("--dataset", default="smartdoc", help="'smartdoc' or 'selfcollected' dataset") return parser.parse_args() if __name__ == '__main__': args = args_processor() input_directory = args.input_dir if not os.path.isdir(args.output_dir): os.mkdir(args.output_dir) import csv # Dataset iterator if args.dataset=="smartdoc": dataset_test = dataprocessor.dataset.SmartDocDirectories(input_directory) elif args.dataset=="selfcollected": dataset_test = dataprocessor.dataset.SelfCollectedDataset(input_directory) else: print ("Incorrect dataset type; please choose between smartdoc or selfcollected") assert(False) with open(os.path.join(args.output_dir, 'gt.csv'), 'a') as csvfile: spamwriter = csv.writer(csvfile, delimiter=',', quotechar='|', quoting=csv.QUOTE_MINIMAL) # Counter for file naming counter = 0 for data_elem in dataset_test.myData: img_path = data_elem[0] target = data_elem[1].reshape((4, 2)) img = cv2.imread(img_path) if args.dataset=="selfcollected": target = target / (img.shape[1], img.shape[0]) target = target * (1920, 1920) img = cv2.resize(img, (1920, 1920)) corner_cords = target for angle in range(0, 1, 90): img_rotate, gt_rotate = utils.rotate(img, corner_cords, angle) for random_crop in range(0, 1): img_list, gt_list = utils.get_corners(img_rotate, gt_rotate) for a in range(0, 4): counter += 1 f_name = str(counter).zfill(8) # print(gt_list[a]) gt_store = list(np.array(gt_list[a]) / (300, 300)) img_store = cv2.resize(img_list[a], (64, 64)) if args.visualize: cv2.circle(img_store, tuple(list((np.array(gt_store)*64).astype(int))), 2, (255, 0, 0), 2) cv2.imwrite(os.path.join(args.output_dir, f_name + ".jpg"), img_store, [int(cv2.IMWRITE_JPEG_QUALITY), 80]) spamwriter.writerow((f_name + ".jpg", tuple(gt_store))) print(f_name + ".jpg done!")