123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- def bbox_area(boxes):
- return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1])
- def intersection_over_box(chips, boxes):
- """
- intersection area over box area
- :param chips: C
- :param boxes: B
- :return: iob, CxB
- """
- M = chips.shape[0]
- N = boxes.shape[0]
- if M * N == 0:
- return np.zeros([M, N], dtype='float32')
- box_area = bbox_area(boxes) # B
- inter_x2y2 = np.minimum(np.expand_dims(chips, 1)[:, :, 2:],
- boxes[:, 2:]) # CxBX2
- inter_x1y1 = np.maximum(np.expand_dims(chips, 1)[:, :, :2],
- boxes[:, :2]) # CxBx2
- inter_wh = inter_x2y2 - inter_x1y1
- inter_wh = np.clip(inter_wh, a_min=0, a_max=None)
- inter_area = inter_wh[:, :, 0] * inter_wh[:, :, 1] # CxB
- iob = inter_area / np.expand_dims(box_area, 0)
- return iob
- def clip_boxes(boxes, im_shape):
- """
- Clip boxes to image boundaries.
- :param boxes: [N, 4]
- :param im_shape: tuple of 2, [h, w]
- :return: [N, 4]
- """
- # x1 >= 0
- boxes[:, 0] = np.clip(boxes[:, 0], 0, im_shape[1] - 1)
- # y1 >= 0
- boxes[:, 1] = np.clip(boxes[:, 1], 0, im_shape[0] - 1)
- # x2 < im_shape[1]
- boxes[:, 2] = np.clip(boxes[:, 2], 1, im_shape[1])
- # y2 < im_shape[0]
- boxes[:, 3] = np.clip(boxes[:, 3], 1, im_shape[0])
- return boxes
- def transform_chip_box(gt_bbox: 'Gx4', boxes_idx: 'B', chip: '4'):
- boxes_idx = np.array(boxes_idx)
- cur_gt_bbox = gt_bbox[boxes_idx].copy() # Bx4
- x1, y1, x2, y2 = chip
- cur_gt_bbox[:, 0] -= x1
- cur_gt_bbox[:, 1] -= y1
- cur_gt_bbox[:, 2] -= x1
- cur_gt_bbox[:, 3] -= y1
- h = y2 - y1
- w = x2 - x1
- cur_gt_bbox = clip_boxes(cur_gt_bbox, (h, w))
- ws = (cur_gt_bbox[:, 2] - cur_gt_bbox[:, 0]).astype(np.int32)
- hs = (cur_gt_bbox[:, 3] - cur_gt_bbox[:, 1]).astype(np.int32)
- valid_idx = (ws >= 2) & (hs >= 2)
- return cur_gt_bbox[valid_idx], boxes_idx[valid_idx]
- def find_chips_to_cover_overlaped_boxes(iob, overlap_threshold):
- chip_ids, box_ids = np.nonzero(iob >= overlap_threshold)
- chip_id2overlap_box_num = np.bincount(chip_ids) # 1d array
- chip_id2overlap_box_num = np.pad(
- chip_id2overlap_box_num, (0, len(iob) - len(chip_id2overlap_box_num)),
- constant_values=0)
- chosen_chip_ids = []
- while len(box_ids) > 0:
- value_counts = np.bincount(chip_ids) # 1d array
- max_count_chip_id = np.argmax(value_counts)
- assert max_count_chip_id not in chosen_chip_ids
- chosen_chip_ids.append(max_count_chip_id)
- box_ids_in_cur_chip = box_ids[chip_ids == max_count_chip_id]
- ids_not_in_cur_boxes_mask = np.logical_not(
- np.isin(box_ids, box_ids_in_cur_chip))
- chip_ids = chip_ids[ids_not_in_cur_boxes_mask]
- box_ids = box_ids[ids_not_in_cur_boxes_mask]
- return chosen_chip_ids, chip_id2overlap_box_num
- def transform_chip_boxes2image_boxes(chip_boxes, chip, img_h, img_w):
- chip_boxes = np.array(sorted(chip_boxes, key=lambda item: -item[1]))
- xmin, ymin, _, _ = chip
- # Transform to origin image loc
- chip_boxes[:, 2] += xmin
- chip_boxes[:, 4] += xmin
- chip_boxes[:, 3] += ymin
- chip_boxes[:, 5] += ymin
- chip_boxes = clip_boxes(chip_boxes, (img_h, img_w))
- return chip_boxes
- def nms(dets, thresh):
- """Apply classic DPM-style greedy NMS."""
- if dets.shape[0] == 0:
- return dets[[], :]
- scores = dets[:, 1]
- x1 = dets[:, 2]
- y1 = dets[:, 3]
- x2 = dets[:, 4]
- y2 = dets[:, 5]
- areas = (x2 - x1 + 1) * (y2 - y1 + 1)
- order = scores.argsort()[::-1]
- ndets = dets.shape[0]
- suppressed = np.zeros((ndets), dtype=np.int32)
- # nominal indices
- # _i, _j
- # sorted indices
- # i, j
- # temp variables for box i's (the box currently under consideration)
- # ix1, iy1, ix2, iy2, iarea
- # variables for computing overlap with box j (lower scoring box)
- # xx1, yy1, xx2, yy2
- # w, h
- # inter, ovr
- for _i in range(ndets):
- i = order[_i]
- if suppressed[i] == 1:
- continue
- ix1 = x1[i]
- iy1 = y1[i]
- ix2 = x2[i]
- iy2 = y2[i]
- iarea = areas[i]
- for _j in range(_i + 1, ndets):
- j = order[_j]
- if suppressed[j] == 1:
- continue
- xx1 = max(ix1, x1[j])
- yy1 = max(iy1, y1[j])
- xx2 = min(ix2, x2[j])
- yy2 = min(iy2, y2[j])
- w = max(0.0, xx2 - xx1 + 1)
- h = max(0.0, yy2 - yy1 + 1)
- inter = w * h
- ovr = inter / (iarea + areas[j] - inter)
- if ovr >= thresh:
- suppressed[j] = 1
- keep = np.where(suppressed == 0)[0]
- dets = dets[keep, :]
- return dets
|