123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296 |
- # copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import numpy as np
- import paddle
- from paddle.nn import functional as F
- import re
- from shapely.geometry import Polygon
- import cv2
- import copy
- def build_post_process(config, global_config=None):
- support_dict = ['DBPostProcess', 'CTCLabelDecode']
- config = copy.deepcopy(config)
- module_name = config.pop('name')
- if module_name == "None":
- return
- if global_config is not None:
- config.update(global_config)
- assert module_name in support_dict, Exception(
- 'post process only support {}'.format(support_dict))
- module_class = eval(module_name)(**config)
- return module_class
- class DBPostProcess(object):
- """
- The post process for Differentiable Binarization (DB).
- """
- def __init__(self,
- thresh=0.3,
- box_thresh=0.7,
- max_candidates=1000,
- unclip_ratio=2.0,
- use_dilation=False,
- score_mode="fast",
- **kwargs):
- self.thresh = thresh
- self.box_thresh = box_thresh
- self.max_candidates = max_candidates
- self.unclip_ratio = unclip_ratio
- self.min_size = 3
- self.score_mode = score_mode
- assert score_mode in [
- "slow", "fast"
- ], "Score mode must be in [slow, fast] but got: {}".format(score_mode)
- self.dilation_kernel = None if not use_dilation else np.array(
- [[1, 1], [1, 1]])
- def boxes_from_bitmap(self, pred, _bitmap, dest_width, dest_height):
- '''
- _bitmap: single map with shape (1, H, W),
- whose values are binarized as {0, 1}
- '''
- bitmap = _bitmap
- height, width = bitmap.shape
- outs = cv2.findContours((bitmap * 255).astype(np.uint8), cv2.RETR_LIST,
- cv2.CHAIN_APPROX_SIMPLE)
- if len(outs) == 3:
- img, contours, _ = outs[0], outs[1], outs[2]
- elif len(outs) == 2:
- contours, _ = outs[0], outs[1]
- num_contours = min(len(contours), self.max_candidates)
- boxes = []
- scores = []
- for index in range(num_contours):
- contour = contours[index]
- points, sside = self.get_mini_boxes(contour)
- if sside < self.min_size:
- continue
- points = np.array(points)
- if self.score_mode == "fast":
- score = self.box_score_fast(pred, points.reshape(-1, 2))
- else:
- score = self.box_score_slow(pred, contour)
- if self.box_thresh > score:
- continue
- box = self.unclip(points).reshape(-1, 1, 2)
- box, sside = self.get_mini_boxes(box)
- if sside < self.min_size + 2:
- continue
- box = np.array(box)
- box[:, 0] = np.clip(
- np.round(box[:, 0] / width * dest_width), 0, dest_width)
- box[:, 1] = np.clip(
- np.round(box[:, 1] / height * dest_height), 0, dest_height)
- boxes.append(box.astype(np.int16))
- scores.append(score)
- return np.array(boxes, dtype=np.int16), scores
- def unclip(self, box):
- try:
- import pyclipper
- except Exception as e:
- raise RuntimeError(
- 'Unable to use vehicleplate postprocess in PP-Vehicle, please install pyclipper, for example: `pip install pyclipper`, see https://github.com/fonttools/pyclipper'
- )
- unclip_ratio = self.unclip_ratio
- poly = Polygon(box)
- distance = poly.area * unclip_ratio / poly.length
- offset = pyclipper.PyclipperOffset()
- offset.AddPath(box, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON)
- expanded = np.array(offset.Execute(distance))
- return expanded
- def get_mini_boxes(self, contour):
- bounding_box = cv2.minAreaRect(contour)
- points = sorted(list(cv2.boxPoints(bounding_box)), key=lambda x: x[0])
- index_1, index_2, index_3, index_4 = 0, 1, 2, 3
- if points[1][1] > points[0][1]:
- index_1 = 0
- index_4 = 1
- else:
- index_1 = 1
- index_4 = 0
- if points[3][1] > points[2][1]:
- index_2 = 2
- index_3 = 3
- else:
- index_2 = 3
- index_3 = 2
- box = [
- points[index_1], points[index_2], points[index_3], points[index_4]
- ]
- return box, min(bounding_box[1])
- def box_score_fast(self, bitmap, _box):
- '''
- box_score_fast: use bbox mean score as the mean score
- '''
- h, w = bitmap.shape[:2]
- box = _box.copy()
- xmin = np.clip(np.floor(box[:, 0].min()).astype(np.int), 0, w - 1)
- xmax = np.clip(np.ceil(box[:, 0].max()).astype(np.int), 0, w - 1)
- ymin = np.clip(np.floor(box[:, 1].min()).astype(np.int), 0, h - 1)
- ymax = np.clip(np.ceil(box[:, 1].max()).astype(np.int), 0, h - 1)
- mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
- box[:, 0] = box[:, 0] - xmin
- box[:, 1] = box[:, 1] - ymin
- cv2.fillPoly(mask, box.reshape(1, -1, 2).astype(np.int32), 1)
- return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
- def box_score_slow(self, bitmap, contour):
- '''
- box_score_slow: use polyon mean score as the mean score
- '''
- h, w = bitmap.shape[:2]
- contour = contour.copy()
- contour = np.reshape(contour, (-1, 2))
- xmin = np.clip(np.min(contour[:, 0]), 0, w - 1)
- xmax = np.clip(np.max(contour[:, 0]), 0, w - 1)
- ymin = np.clip(np.min(contour[:, 1]), 0, h - 1)
- ymax = np.clip(np.max(contour[:, 1]), 0, h - 1)
- mask = np.zeros((ymax - ymin + 1, xmax - xmin + 1), dtype=np.uint8)
- contour[:, 0] = contour[:, 0] - xmin
- contour[:, 1] = contour[:, 1] - ymin
- cv2.fillPoly(mask, contour.reshape(1, -1, 2).astype(np.int32), 1)
- return cv2.mean(bitmap[ymin:ymax + 1, xmin:xmax + 1], mask)[0]
- def __call__(self, outs_dict, shape_list):
- pred = outs_dict['maps']
- if isinstance(pred, paddle.Tensor):
- pred = pred.numpy()
- pred = pred[:, 0, :, :]
- segmentation = pred > self.thresh
- boxes_batch = []
- for batch_index in range(pred.shape[0]):
- src_h, src_w = shape_list[batch_index]
- if self.dilation_kernel is not None:
- mask = cv2.dilate(
- np.array(segmentation[batch_index]).astype(np.uint8),
- self.dilation_kernel)
- else:
- mask = segmentation[batch_index]
- boxes, scores = self.boxes_from_bitmap(pred[batch_index], mask,
- src_w, src_h)
- boxes_batch.append({'points': boxes})
- return boxes_batch
- class BaseRecLabelDecode(object):
- """ Convert between text-label and text-index """
- def __init__(self, character_dict_path=None, use_space_char=False):
- self.beg_str = "sos"
- self.end_str = "eos"
- self.character_str = []
- if character_dict_path is None:
- self.character_str = "0123456789abcdefghijklmnopqrstuvwxyz"
- dict_character = list(self.character_str)
- else:
- with open(character_dict_path, "rb") as fin:
- lines = fin.readlines()
- for line in lines:
- line = line.decode('utf-8').strip("\n").strip("\r\n")
- self.character_str.append(line)
- if use_space_char:
- self.character_str.append(" ")
- dict_character = list(self.character_str)
- dict_character = self.add_special_char(dict_character)
- self.dict = {}
- for i, char in enumerate(dict_character):
- self.dict[char] = i
- self.character = dict_character
- def add_special_char(self, dict_character):
- return dict_character
- def decode(self, text_index, text_prob=None, is_remove_duplicate=False):
- """ convert text-index into text-label. """
- result_list = []
- ignored_tokens = self.get_ignored_tokens()
- batch_size = len(text_index)
- for batch_idx in range(batch_size):
- selection = np.ones(len(text_index[batch_idx]), dtype=bool)
- if is_remove_duplicate:
- selection[1:] = text_index[batch_idx][1:] != text_index[
- batch_idx][:-1]
- for ignored_token in ignored_tokens:
- selection &= text_index[batch_idx] != ignored_token
- char_list = [
- self.character[text_id]
- for text_id in text_index[batch_idx][selection]
- ]
- if text_prob is not None:
- conf_list = text_prob[batch_idx][selection]
- else:
- conf_list = [1] * len(selection)
- if len(conf_list) == 0:
- conf_list = [0]
- text = ''.join(char_list)
- result_list.append((text, np.mean(conf_list).tolist()))
- return result_list
- def get_ignored_tokens(self):
- return [0] # for ctc blank
- class CTCLabelDecode(BaseRecLabelDecode):
- """ Convert between text-label and text-index """
- def __init__(self, character_dict_path=None, use_space_char=False,
- **kwargs):
- super(CTCLabelDecode, self).__init__(character_dict_path,
- use_space_char)
- def __call__(self, preds, label=None, *args, **kwargs):
- if isinstance(preds, tuple) or isinstance(preds, list):
- preds = preds[-1]
- if isinstance(preds, paddle.Tensor):
- preds = preds.numpy()
- preds_idx = preds.argmax(axis=2)
- preds_prob = preds.max(axis=2)
- text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
- if label is None:
- return text
- label = self.decode(label)
- return text, label
- def add_special_char(self, dict_character):
- dict_character = ['blank'] + dict_character
- return dict_character
|