123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import yaml
- import glob
- from functools import reduce
- import time
- import cv2
- import numpy as np
- import math
- import paddle
- import sys
- parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 3)))
- sys.path.insert(0, parent_path)
- from python.infer import get_test_images
- from python.preprocess import preprocess, NormalizeImage, Permute, Resize_Mult32
- from pipeline.ppvehicle.vehicle_plateutils import create_predictor, get_infer_gpuid, get_rotate_crop_image, draw_boxes
- from pipeline.ppvehicle.vehicleplate_postprocess import build_post_process
- from pipeline.cfg_utils import merge_cfg, print_arguments, argsparser
- class PlateDetector(object):
- def __init__(self, args, cfg):
- self.args = args
- self.pre_process_list = {
- 'Resize_Mult32': {
- 'limit_side_len': cfg['det_limit_side_len'],
- 'limit_type': cfg['det_limit_type'],
- },
- 'NormalizeImage': {
- 'mean': [0.485, 0.456, 0.406],
- 'std': [0.229, 0.224, 0.225],
- 'is_scale': True,
- },
- 'Permute': {}
- }
- postprocess_params = {}
- postprocess_params['name'] = 'DBPostProcess'
- postprocess_params["thresh"] = 0.3
- postprocess_params["box_thresh"] = 0.6
- postprocess_params["max_candidates"] = 1000
- postprocess_params["unclip_ratio"] = 1.5
- postprocess_params["use_dilation"] = False
- postprocess_params["score_mode"] = "fast"
- self.postprocess_op = build_post_process(postprocess_params)
- self.predictor, self.input_tensor, self.output_tensors, self.config = create_predictor(
- args, cfg, 'det')
- def preprocess(self, im_path):
- preprocess_ops = []
- for op_type, new_op_info in self.pre_process_list.items():
- preprocess_ops.append(eval(op_type)(**new_op_info))
- input_im_lst = []
- input_im_info_lst = []
- im, im_info = preprocess(im_path, preprocess_ops)
- input_im_lst.append(im)
- input_im_info_lst.append(im_info['im_shape'] / im_info['scale_factor'])
- return np.stack(input_im_lst, axis=0), input_im_info_lst
- def order_points_clockwise(self, pts):
- rect = np.zeros((4, 2), dtype="float32")
- s = pts.sum(axis=1)
- rect[0] = pts[np.argmin(s)]
- rect[2] = pts[np.argmax(s)]
- diff = np.diff(pts, axis=1)
- rect[1] = pts[np.argmin(diff)]
- rect[3] = pts[np.argmax(diff)]
- return rect
- def clip_det_res(self, points, img_height, img_width):
- for pno in range(points.shape[0]):
- points[pno, 0] = int(min(max(points[pno, 0], 0), img_width - 1))
- points[pno, 1] = int(min(max(points[pno, 1], 0), img_height - 1))
- return points
- def filter_tag_det_res(self, dt_boxes, image_shape):
- img_height, img_width = image_shape[0:2]
- dt_boxes_new = []
- for box in dt_boxes:
- box = self.order_points_clockwise(box)
- box = self.clip_det_res(box, img_height, img_width)
- rect_width = int(np.linalg.norm(box[0] - box[1]))
- rect_height = int(np.linalg.norm(box[0] - box[3]))
- if rect_width <= 3 or rect_height <= 3:
- continue
- dt_boxes_new.append(box)
- dt_boxes = np.array(dt_boxes_new)
- return dt_boxes
- def filter_tag_det_res_only_clip(self, dt_boxes, image_shape):
- img_height, img_width = image_shape[0:2]
- dt_boxes_new = []
- for box in dt_boxes:
- box = self.clip_det_res(box, img_height, img_width)
- dt_boxes_new.append(box)
- dt_boxes = np.array(dt_boxes_new)
- return dt_boxes
- def predict_image(self, img_list):
- st = time.time()
- dt_batch_boxes = []
- for image in img_list:
- img, shape_list = self.preprocess(image)
- if img is None:
- return None, 0
- self.input_tensor.copy_from_cpu(img)
- self.predictor.run()
- outputs = []
- for output_tensor in self.output_tensors:
- output = output_tensor.copy_to_cpu()
- outputs.append(output)
- preds = {}
- preds['maps'] = outputs[0]
- #self.predictor.try_shrink_memory()
- post_result = self.postprocess_op(preds, shape_list)
- # print("post_result length:{}".format(len(post_result)))
- org_shape = image.shape
- dt_boxes = post_result[0]['points']
- dt_boxes = self.filter_tag_det_res(dt_boxes, org_shape)
- dt_batch_boxes.append(dt_boxes)
- et = time.time()
- return dt_batch_boxes, et - st
- class TextRecognizer(object):
- def __init__(self, args, cfg, use_gpu=True):
- self.rec_image_shape = cfg['rec_image_shape']
- self.rec_batch_num = cfg['rec_batch_num']
- word_dict_path = cfg['word_dict_path']
- use_space_char = True
- postprocess_params = {
- 'name': 'CTCLabelDecode',
- "character_dict_path": word_dict_path,
- "use_space_char": use_space_char
- }
- self.postprocess_op = build_post_process(postprocess_params)
- self.predictor, self.input_tensor, self.output_tensors, self.config = \
- create_predictor(args, cfg, 'rec')
- self.use_onnx = False
- def resize_norm_img(self, img, max_wh_ratio):
- imgC, imgH, imgW = self.rec_image_shape
- assert imgC == img.shape[2]
- imgW = int((imgH * max_wh_ratio))
- if self.use_onnx:
- w = self.input_tensor.shape[3:][0]
- if w is not None and w > 0:
- imgW = w
- h, w = img.shape[:2]
- ratio = w / float(h)
- if math.ceil(imgH * ratio) > imgW:
- resized_w = imgW
- else:
- resized_w = int(math.ceil(imgH * ratio))
- resized_image = cv2.resize(img, (resized_w, imgH))
- resized_image = resized_image.astype('float32')
- resized_image = resized_image.transpose((2, 0, 1)) / 255
- resized_image -= 0.5
- resized_image /= 0.5
- padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
- padding_im[:, :, 0:resized_w] = resized_image
- return padding_im
- def predict_text(self, img_list):
- img_num = len(img_list)
- # Calculate the aspect ratio of all text bars
- width_list = []
- for img in img_list:
- width_list.append(img.shape[1] / float(img.shape[0]))
- # Sorting can speed up the recognition process
- indices = np.argsort(np.array(width_list))
- rec_res = [['', 0.0]] * img_num
- batch_num = self.rec_batch_num
- st = time.time()
- for beg_img_no in range(0, img_num, batch_num):
- end_img_no = min(img_num, beg_img_no + batch_num)
- norm_img_batch = []
- imgC, imgH, imgW = self.rec_image_shape
- max_wh_ratio = imgW / imgH
- # max_wh_ratio = 0
- for ino in range(beg_img_no, end_img_no):
- h, w = img_list[indices[ino]].shape[0:2]
- wh_ratio = w * 1.0 / h
- max_wh_ratio = max(max_wh_ratio, wh_ratio)
- for ino in range(beg_img_no, end_img_no):
- norm_img = self.resize_norm_img(img_list[indices[ino]],
- max_wh_ratio)
- norm_img = norm_img[np.newaxis, :]
- norm_img_batch.append(norm_img)
- norm_img_batch = np.concatenate(norm_img_batch)
- norm_img_batch = norm_img_batch.copy()
- if self.use_onnx:
- input_dict = {}
- input_dict[self.input_tensor.name] = norm_img_batch
- outputs = self.predictor.run(self.output_tensors, input_dict)
- preds = outputs[0]
- else:
- self.input_tensor.copy_from_cpu(norm_img_batch)
- self.predictor.run()
- outputs = []
- for output_tensor in self.output_tensors:
- output = output_tensor.copy_to_cpu()
- outputs.append(output)
- if len(outputs) != 1:
- preds = outputs
- else:
- preds = outputs[0]
- rec_result = self.postprocess_op(preds)
- for rno in range(len(rec_result)):
- rec_res[indices[beg_img_no + rno]] = rec_result[rno]
- return rec_res, time.time() - st
- class PlateRecognizer(object):
- def __init__(self, args, cfg):
- use_gpu = args.device.lower() == "gpu"
- self.platedetector = PlateDetector(args, cfg)
- self.textrecognizer = TextRecognizer(args, cfg, use_gpu=use_gpu)
- def get_platelicense(self, image_list):
- plate_text_list = []
- plateboxes, det_time = self.platedetector.predict_image(image_list)
- for idx, boxes_pcar in enumerate(plateboxes):
- plate_pcar_list = []
- for box in boxes_pcar:
- plate_images = get_rotate_crop_image(image_list[idx], box)
- plate_texts = self.textrecognizer.predict_text([plate_images])
- plate_pcar_list.append(plate_texts)
- plate_text_list.append(plate_pcar_list)
- return self.check_plate(plate_text_list)
- def check_plate(self, text_list):
- plate_all = {"plate": []}
- for text_pcar in text_list:
- platelicense = ""
- for text_info in text_pcar:
- text = text_info[0][0][0]
- if len(text) > 2 and len(text) < 10:
- platelicense = self.replace_cn_code(text)
- plate_all["plate"].append(platelicense)
- return plate_all
- def replace_cn_code(self, text):
- simcode = {
- '浙': 'ZJ-',
- '粤': 'GD-',
- '京': 'BJ-',
- '津': 'TJ-',
- '冀': 'HE-',
- '晋': 'SX-',
- '蒙': 'NM-',
- '辽': 'LN-',
- '黑': 'HLJ-',
- '沪': 'SH-',
- '吉': 'JL-',
- '苏': 'JS-',
- '皖': 'AH-',
- '赣': 'JX-',
- '鲁': 'SD-',
- '豫': 'HA-',
- '鄂': 'HB-',
- '湘': 'HN-',
- '桂': 'GX-',
- '琼': 'HI-',
- '渝': 'CQ-',
- '川': 'SC-',
- '贵': 'GZ-',
- '云': 'YN-',
- '藏': 'XZ-',
- '陕': 'SN-',
- '甘': 'GS-',
- '青': 'QH-',
- '宁': 'NX-',
- '闽': 'FJ-',
- '·': ' '
- }
- for _char in text:
- if _char in simcode:
- text = text.replace(_char, simcode[_char])
- return text
- def main():
- cfg = merge_cfg(FLAGS)
- print_arguments(cfg)
- vehicleplate_cfg = cfg['VEHICLE_PLATE']
- detector = PlateRecognizer(FLAGS, vehicleplate_cfg)
- # predict from image
- img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
- for img in img_list:
- image = cv2.imread(img)
- results = detector.get_platelicense([image])
- print(results)
- if __name__ == '__main__':
- paddle.enable_static()
- parser = argsparser()
- FLAGS = parser.parse_args()
- FLAGS.device = FLAGS.device.upper()
- assert FLAGS.device in ['CPU', 'GPU', 'XPU'
- ], "device should be CPU, GPU or XPU"
- main()
|