123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from pptracking.python.mot.visualize import plot_tracking
- from python.visualize import visualize_attr
- import os
- import re
- import cv2
- import gc
- import numpy as np
- try:
- from sklearn import preprocessing
- from sklearn.cluster import AgglomerativeClustering
- except:
- print(
- 'Warning: Unable to use MTMCT in PP-Human, please install sklearn, for example: `pip install sklearn`'
- )
- pass
- import pandas as pd
- from tqdm import tqdm
- from functools import reduce
- import warnings
- warnings.filterwarnings("ignore")
- def gen_restxt(output_dir_filename, map_tid, cid_tid_dict):
- pattern = re.compile(r'c(\d)_t(\d)')
- f_w = open(output_dir_filename, 'w')
- for key, res in cid_tid_dict.items():
- cid, tid = pattern.search(key).groups()
- cid = int(cid) + 1
- rects = res["rects"]
- frames = res["frames"]
- for idx, bbox in enumerate(rects):
- bbox[0][3:] -= bbox[0][1:3]
- fid = frames[idx] + 1
- rect = [max(int(x), 0) for x in bbox[0][1:]]
- if key in map_tid:
- new_tid = map_tid[key]
- f_w.write(
- str(cid) + ' ' + str(new_tid) + ' ' + str(fid) + ' ' +
- ' '.join(map(str, rect)) + '\n')
- print('gen_res: write file in {}'.format(output_dir_filename))
- f_w.close()
- def get_mtmct_matching_results(pred_mtmct_file, secs_interval=0.5,
- video_fps=20):
- res = np.loadtxt(pred_mtmct_file) # 'cid, tid, fid, x1, y1, w, h, -1, -1'
- camera_ids = list(map(int, np.unique(res[:, 0])))
- res = res[:, :7]
- # each line in res: 'cid, tid, fid, x1, y1, w, h'
- camera_tids = []
- camera_results = dict()
- for c_id in camera_ids:
- camera_results[c_id] = res[res[:, 0] == c_id]
- tids = np.unique(camera_results[c_id][:, 1])
- tids = list(map(int, tids))
- camera_tids.append(tids)
- # select common tids throughout each video
- common_tids = reduce(np.intersect1d, camera_tids)
- # get mtmct matching results by cid_tid_fid_results[c_id][t_id][f_id]
- cid_tid_fid_results = dict()
- cid_tid_to_fids = dict()
- interval = int(secs_interval * video_fps) # preferably less than 10
- for c_id in camera_ids:
- cid_tid_fid_results[c_id] = dict()
- cid_tid_to_fids[c_id] = dict()
- for t_id in common_tids:
- tid_mask = camera_results[c_id][:, 1] == t_id
- cid_tid_fid_results[c_id][t_id] = dict()
- camera_trackid_results = camera_results[c_id][tid_mask]
- fids = np.unique(camera_trackid_results[:, 2])
- fids = fids[fids % interval == 0]
- fids = list(map(int, fids))
- cid_tid_to_fids[c_id][t_id] = fids
- for f_id in fids:
- st_frame = f_id
- ed_frame = f_id + interval
- st_mask = camera_trackid_results[:, 2] >= st_frame
- ed_mask = camera_trackid_results[:, 2] < ed_frame
- frame_mask = np.logical_and(st_mask, ed_mask)
- cid_tid_fid_results[c_id][t_id][f_id] = camera_trackid_results[
- frame_mask]
- return camera_results, cid_tid_fid_results
- def save_mtmct_vis_results(camera_results, captures, output_dir,
- multi_res=None):
- # camera_results: 'cid, tid, fid, x1, y1, w, h'
- camera_ids = list(camera_results.keys())
- import shutil
- save_dir = os.path.join(output_dir, 'mtmct_vis')
- if os.path.exists(save_dir):
- shutil.rmtree(save_dir)
- os.makedirs(save_dir)
- for idx, video_file in enumerate(captures):
- capture = cv2.VideoCapture(video_file)
- cid = camera_ids[idx]
- basename = os.path.basename(video_file)
- video_out_name = "vis_" + basename
- out_path = os.path.join(save_dir, video_out_name)
- print("Start visualizing output video: {}".format(out_path))
- # Get Video info : resolution, fps, frame count
- width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
- height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
- fps = int(capture.get(cv2.CAP_PROP_FPS))
- frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
- fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
- writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
- frame_id = 0
- while (1):
- if frame_id % 50 == 0:
- print('frame id: ', frame_id)
- ret, frame = capture.read()
- frame_id += 1
- if not ret:
- if frame_id == 1:
- print("video read failed!")
- break
- frame_results = camera_results[cid][camera_results[cid][:, 2] ==
- frame_id]
- boxes = frame_results[:, -4:]
- ids = frame_results[:, 1]
- image = plot_tracking(frame, boxes, ids, frame_id=frame_id, fps=fps)
- # add attr vis
- if multi_res:
- tid_list = multi_res.keys() # c0_t1, c0_t2...
- all_attr_result = [multi_res[i]["attrs"]
- for i in tid_list] # all cid_tid result
- if any(
- all_attr_result
- ): # at least one cid_tid[attrs] is not None will goes to attrs_vis
- attr_res = []
- cid_str = 'c' + str(cid - 1) + "_"
- for k in tid_list:
- if not k.startswith(cid_str):
- continue
- if (frame_id - 1) >= len(multi_res[k]['attrs']):
- t_attr = None
- else:
- t_attr = multi_res[k]['attrs'][frame_id - 1]
- attr_res.append(t_attr)
- assert len(attr_res) == len(boxes)
- image = visualize_attr(
- image, attr_res, boxes, is_mtmct=True)
- writer.write(image)
- writer.release()
- def get_euclidean(x, y, **kwargs):
- m = x.shape[0]
- n = y.shape[0]
- distmat = (np.power(x, 2).sum(axis=1, keepdims=True).repeat(
- n, axis=1) + np.power(y, 2).sum(axis=1, keepdims=True).repeat(
- m, axis=1).T)
- distmat -= np.dot(2 * x, y.T)
- return distmat
- def cosine_similarity(x, y, eps=1e-12):
- """
- Computes cosine similarity between two tensors.
- Value == 1 means the same vector
- Value == 0 means perpendicular vectors
- """
- x_n, y_n = np.linalg.norm(
- x, axis=1, keepdims=True), np.linalg.norm(
- y, axis=1, keepdims=True)
- x_norm = x / np.maximum(x_n, eps * np.ones_like(x_n))
- y_norm = y / np.maximum(y_n, eps * np.ones_like(y_n))
- sim_mt = np.dot(x_norm, y_norm.T)
- return sim_mt
- def get_cosine(x, y, eps=1e-12):
- """
- Computes cosine distance between two tensors.
- The cosine distance is the inverse cosine similarity
- -> cosine_distance = abs(-cosine_distance) to make it
- similar in behaviour to euclidean distance
- """
- sim_mt = cosine_similarity(x, y, eps)
- return sim_mt
- def get_dist_mat(x, y, func_name="euclidean"):
- if func_name == "cosine":
- dist_mat = get_cosine(x, y)
- elif func_name == "euclidean":
- dist_mat = get_euclidean(x, y)
- print("Using {} as distance function during evaluation".format(func_name))
- return dist_mat
- def intracam_ignore(st_mask, cid_tids):
- count = len(cid_tids)
- for i in range(count):
- for j in range(count):
- if cid_tids[i][1] == cid_tids[j][1]:
- st_mask[i, j] = 0.
- return st_mask
- def get_sim_matrix_new(cid_tid_dict, cid_tids):
- # Note: camera independent get_sim_matrix function,
- # which is different from the one in camera_utils.py.
- count = len(cid_tids)
- q_arr = np.array(
- [cid_tid_dict[cid_tids[i]]['mean_feat'] for i in range(count)])
- g_arr = np.array(
- [cid_tid_dict[cid_tids[i]]['mean_feat'] for i in range(count)])
- #compute distmat
- distmat = get_dist_mat(q_arr, g_arr, func_name="cosine")
- #mask the element which belongs to same video
- st_mask = np.ones((count, count), dtype=np.float32)
- st_mask = intracam_ignore(st_mask, cid_tids)
- sim_matrix = distmat * st_mask
- np.fill_diagonal(sim_matrix, 0.)
- return 1. - sim_matrix
- def get_match(cluster_labels):
- cluster_dict = dict()
- cluster = list()
- for i, l in enumerate(cluster_labels):
- if l in list(cluster_dict.keys()):
- cluster_dict[l].append(i)
- else:
- cluster_dict[l] = [i]
- for idx in cluster_dict:
- cluster.append(cluster_dict[idx])
- return cluster
- def get_cid_tid(cluster_labels, cid_tids):
- cluster = list()
- for labels in cluster_labels:
- cid_tid_list = list()
- for label in labels:
- cid_tid_list.append(cid_tids[label])
- cluster.append(cid_tid_list)
- return cluster
- def get_labels(cid_tid_dict, cid_tids):
- #compute cost matrix between features
- cost_matrix = get_sim_matrix_new(cid_tid_dict, cid_tids)
- #cluster all the features
- cluster1 = AgglomerativeClustering(
- n_clusters=None,
- distance_threshold=0.5,
- affinity='precomputed',
- linkage='complete')
- cluster_labels1 = cluster1.fit_predict(cost_matrix)
- labels = get_match(cluster_labels1)
- sub_cluster = get_cid_tid(labels, cid_tids)
- return labels
- def sub_cluster(cid_tid_dict):
- '''
- cid_tid_dict: all camera_id and track_id
- '''
- #get all keys
- cid_tids = sorted([key for key in cid_tid_dict.keys()])
- #cluster all trackid
- clu = get_labels(cid_tid_dict, cid_tids)
- #relabel every cluster groups
- new_clu = list()
- for c_list in clu:
- new_clu.append([cid_tids[c] for c in c_list])
- cid_tid_label = dict()
- for i, c_list in enumerate(new_clu):
- for c in c_list:
- cid_tid_label[c] = i + 1
- return cid_tid_label
- def distill_idfeat(mot_res):
- qualities_list = mot_res["qualities"]
- feature_list = mot_res["features"]
- rects = mot_res["rects"]
- qualities_new = []
- feature_new = []
- #filter rect less than 100*20
- for idx, rect in enumerate(rects):
- conf, xmin, ymin, xmax, ymax = rect[0]
- if (xmax - xmin) * (ymax - ymin) and (xmax > xmin) > 2000:
- qualities_new.append(qualities_list[idx])
- feature_new.append(feature_list[idx])
- #take all features if available rect is less than 2
- if len(qualities_new) < 2:
- qualities_new = qualities_list
- feature_new = feature_list
- #if available frames number is more than 200, take one frame data per 20 frames
- skipf = 1
- if len(qualities_new) > 20:
- skipf = 2
- quality_skip = np.array(qualities_new[::skipf])
- feature_skip = np.array(feature_new[::skipf])
- #sort features with image qualities, take the most trustworth features
- topk_argq = np.argsort(quality_skip)[::-1]
- if (quality_skip > 0.6).sum() > 1:
- topk_feat = feature_skip[topk_argq[quality_skip > 0.6]]
- else:
- topk_feat = feature_skip[topk_argq]
- #get final features by mean or cluster, at most take five
- mean_feat = np.mean(topk_feat[:5], axis=0)
- return mean_feat
- def res2dict(multi_res):
- cid_tid_dict = {}
- for cid, c_res in enumerate(multi_res):
- for tid, res in c_res.items():
- key = "c" + str(cid) + "_t" + str(tid)
- if key not in cid_tid_dict:
- if len(res["features"]) == 0:
- continue
- cid_tid_dict[key] = res
- cid_tid_dict[key]['mean_feat'] = distill_idfeat(res)
- return cid_tid_dict
- def mtmct_process(multi_res, captures, mtmct_vis=True, output_dir="output"):
- cid_tid_dict = res2dict(multi_res)
- if len(cid_tid_dict) == 0:
- print("no tracking result found, mtmct will be skiped.")
- return
- map_tid = sub_cluster(cid_tid_dict)
- if not os.path.exists(output_dir):
- os.mkdir(output_dir)
- pred_mtmct_file = os.path.join(output_dir, 'mtmct_result.txt')
- gen_restxt(pred_mtmct_file, map_tid, cid_tid_dict)
- if mtmct_vis:
- camera_results, cid_tid_fid_res = get_mtmct_matching_results(
- pred_mtmct_file)
- save_mtmct_vis_results(
- camera_results,
- captures,
- output_dir=output_dir,
- multi_res=cid_tid_dict)
|