123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import yaml
- import glob
- import cv2
- import numpy as np
- import math
- import paddle
- import sys
- from collections import Sequence
- # add deploy path of PadleDetection to sys.path
- parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
- sys.path.insert(0, parent_path)
- from paddle.inference import Config, create_predictor
- from python.utils import argsparser, Timer, get_current_memory_mb
- from python.benchmark_utils import PaddleInferBenchmark
- from python.infer import Detector, print_arguments
- from attr_infer import AttrDetector
- class SkeletonActionRecognizer(Detector):
- """
- Args:
- model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
- device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
- run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
- batch_size (int): size of pre batch in inference
- trt_min_shape (int): min shape for dynamic shape in trt
- trt_max_shape (int): max shape for dynamic shape in trt
- trt_opt_shape (int): opt shape for dynamic shape in trt
- trt_calib_mode (bool): If the model is produced by TRT offline quantitative
- calibration, trt_calib_mode need to set True
- cpu_threads (int): cpu threads
- enable_mkldnn (bool): whether to open MKLDNN
- threshold (float): The threshold of score for visualization
- window_size(int): Temporal size of skeleton feature.
- random_pad (bool): Whether do random padding when frame length < window_size.
- """
- def __init__(self,
- model_dir,
- device='CPU',
- run_mode='paddle',
- batch_size=1,
- trt_min_shape=1,
- trt_max_shape=1280,
- trt_opt_shape=640,
- trt_calib_mode=False,
- cpu_threads=1,
- enable_mkldnn=False,
- output_dir='output',
- threshold=0.5,
- window_size=100,
- random_pad=False):
- assert batch_size == 1, "SkeletonActionRecognizer only support batch_size=1 now."
- super(SkeletonActionRecognizer, self).__init__(
- model_dir=model_dir,
- device=device,
- run_mode=run_mode,
- batch_size=batch_size,
- trt_min_shape=trt_min_shape,
- trt_max_shape=trt_max_shape,
- trt_opt_shape=trt_opt_shape,
- trt_calib_mode=trt_calib_mode,
- cpu_threads=cpu_threads,
- enable_mkldnn=enable_mkldnn,
- output_dir=output_dir,
- threshold=threshold,
- delete_shuffle_pass=True)
- @classmethod
- def init_with_cfg(cls, args, cfg):
- return cls(model_dir=cfg['model_dir'],
- batch_size=cfg['batch_size'],
- window_size=cfg['max_frames'],
- device=args.device,
- run_mode=args.run_mode,
- trt_min_shape=args.trt_min_shape,
- trt_max_shape=args.trt_max_shape,
- trt_opt_shape=args.trt_opt_shape,
- trt_calib_mode=args.trt_calib_mode,
- cpu_threads=args.cpu_threads,
- enable_mkldnn=args.enable_mkldnn)
- def predict(self, repeats=1):
- '''
- Args:
- repeats (int): repeat number for prediction
- Returns:
- results (dict):
- '''
- # model prediction
- output_names = self.predictor.get_output_names()
- for i in range(repeats):
- self.predictor.run()
- output_tensor = self.predictor.get_output_handle(output_names[0])
- np_output = output_tensor.copy_to_cpu()
- result = dict(output=np_output)
- return result
- def predict_skeleton(self, skeleton_list, run_benchmark=False, repeats=1):
- results = []
- for i, skeleton in enumerate(skeleton_list):
- if run_benchmark:
- # preprocess
- inputs = self.preprocess(skeleton) # warmup
- self.det_times.preprocess_time_s.start()
- inputs = self.preprocess(skeleton)
- self.det_times.preprocess_time_s.end()
- # model prediction
- result = self.predict(repeats=repeats) # warmup
- self.det_times.inference_time_s.start()
- result = self.predict(repeats=repeats)
- self.det_times.inference_time_s.end(repeats=repeats)
- # postprocess
- result_warmup = self.postprocess(inputs, result) # warmup
- self.det_times.postprocess_time_s.start()
- result = self.postprocess(inputs, result)
- self.det_times.postprocess_time_s.end()
- self.det_times.img_num += len(skeleton)
- cm, gm, gu = get_current_memory_mb()
- self.cpu_mem += cm
- self.gpu_mem += gm
- self.gpu_util += gu
- else:
- # preprocess
- self.det_times.preprocess_time_s.start()
- inputs = self.preprocess(skeleton)
- self.det_times.preprocess_time_s.end()
- # model prediction
- self.det_times.inference_time_s.start()
- result = self.predict()
- self.det_times.inference_time_s.end()
- # postprocess
- self.det_times.postprocess_time_s.start()
- result = self.postprocess(inputs, result)
- self.det_times.postprocess_time_s.end()
- self.det_times.img_num += len(skeleton)
- results.append(result)
- return results
- def predict_skeleton_with_mot(self, skeleton_with_mot, run_benchmark=False):
- """
- skeleton_with_mot (dict): includes individual skeleton sequences, which shape is [C, T, K, 1]
- and its corresponding track id.
- """
- skeleton_list = skeleton_with_mot["skeleton"]
- mot_id = skeleton_with_mot["mot_id"]
- act_res = self.predict_skeleton(skeleton_list, run_benchmark, repeats=1)
- results = list(zip(mot_id, act_res))
- return results
- def preprocess(self, data):
- preprocess_ops = []
- for op_info in self.pred_config.preprocess_infos:
- new_op_info = op_info.copy()
- op_type = new_op_info.pop('type')
- preprocess_ops.append(eval(op_type)(**new_op_info))
- input_lst = []
- data = action_preprocess(data, preprocess_ops)
- input_lst.append(data)
- input_names = self.predictor.get_input_names()
- inputs = {}
- inputs['data_batch_0'] = np.stack(input_lst, axis=0).astype('float32')
- for i in range(len(input_names)):
- input_tensor = self.predictor.get_input_handle(input_names[i])
- input_tensor.copy_from_cpu(inputs[input_names[i]])
- return inputs
- def postprocess(self, inputs, result):
- # postprocess output of predictor
- output_logit = result['output'][0]
- classes = np.argpartition(output_logit, -1)[-1:]
- classes = classes[np.argsort(-output_logit[classes])]
- scores = output_logit[classes]
- result = {'class': classes, 'score': scores}
- return result
- def action_preprocess(input, preprocess_ops):
- """
- input (str | numpy.array): if input is str, it should be a legal file path with numpy array saved.
- Otherwise it should be numpy.array as direct input.
- return (numpy.array)
- """
- if isinstance(input, str):
- assert os.path.isfile(input) is not None, "{0} not exists".format(input)
- data = np.load(input)
- else:
- data = input
- for operator in preprocess_ops:
- data = operator(data)
- return data
- class AutoPadding(object):
- """
- Sample or Padding frame skeleton feature.
- Args:
- window_size (int): Temporal size of skeleton feature.
- random_pad (bool): Whether do random padding when frame length < window size. Default: False.
- """
- def __init__(self, window_size=100, random_pad=False):
- self.window_size = window_size
- self.random_pad = random_pad
- def get_frame_num(self, data):
- C, T, V, M = data.shape
- for i in range(T - 1, -1, -1):
- tmp = np.sum(data[:, i, :, :])
- if tmp > 0:
- T = i + 1
- break
- return T
- def __call__(self, results):
- data = results
- C, T, V, M = data.shape
- T = self.get_frame_num(data)
- if T == self.window_size:
- data_pad = data[:, :self.window_size, :, :]
- elif T < self.window_size:
- begin = random.randint(
- 0, self.window_size - T) if self.random_pad else 0
- data_pad = np.zeros((C, self.window_size, V, M))
- data_pad[:, begin:begin + T, :, :] = data[:, :T, :, :]
- else:
- if self.random_pad:
- index = np.random.choice(
- T, self.window_size, replace=False).astype('int64')
- else:
- index = np.linspace(0, T, self.window_size).astype("int64")
- data_pad = data[:, index, :, :]
- return data_pad
- def get_test_skeletons(input_file):
- assert input_file is not None, "--action_file can not be None"
- input_data = np.load(input_file)
- if input_data.ndim == 4:
- return [input_data]
- elif input_data.ndim == 5:
- output = list(
- map(lambda x: np.squeeze(x, 0),
- np.split(input_data, input_data.shape[0], 0)))
- return output
- else:
- raise ValueError(
- "Now only support input with shape: (N, C, T, K, M) or (C, T, K, M)")
- class DetActionRecognizer(object):
- """
- Args:
- model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
- device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
- run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
- batch_size (int): size of pre batch in inference
- trt_min_shape (int): min shape for dynamic shape in trt
- trt_max_shape (int): max shape for dynamic shape in trt
- trt_opt_shape (int): opt shape for dynamic shape in trt
- trt_calib_mode (bool): If the model is produced by TRT offline quantitative
- calibration, trt_calib_mode need to set True
- cpu_threads (int): cpu threads
- enable_mkldnn (bool): whether to open MKLDNN
- threshold (float): The threshold of score for action feature object detection.
- display_frames (int): The duration for corresponding detected action.
- skip_frame_num (int): The number of frames for interval prediction. A skipped frame will
- reuse the result of its last frame. If it is set to 0, no frame will be skipped. Default
- is 0.
- """
- def __init__(self,
- model_dir,
- device='CPU',
- run_mode='paddle',
- batch_size=1,
- trt_min_shape=1,
- trt_max_shape=1280,
- trt_opt_shape=640,
- trt_calib_mode=False,
- cpu_threads=1,
- enable_mkldnn=False,
- output_dir='output',
- threshold=0.5,
- display_frames=20,
- skip_frame_num=0):
- super(DetActionRecognizer, self).__init__()
- self.detector = Detector(
- model_dir=model_dir,
- device=device,
- run_mode=run_mode,
- batch_size=batch_size,
- trt_min_shape=trt_min_shape,
- trt_max_shape=trt_max_shape,
- trt_opt_shape=trt_opt_shape,
- trt_calib_mode=trt_calib_mode,
- cpu_threads=cpu_threads,
- enable_mkldnn=enable_mkldnn,
- output_dir=output_dir,
- threshold=threshold)
- self.threshold = threshold
- self.frame_life = display_frames
- self.result_history = {}
- self.skip_frame_num = skip_frame_num
- self.skip_frame_cnt = 0
- self.id_in_last_frame = []
- @classmethod
- def init_with_cfg(cls, args, cfg):
- return cls(model_dir=cfg['model_dir'],
- batch_size=cfg['batch_size'],
- threshold=cfg['threshold'],
- display_frames=cfg['display_frames'],
- skip_frame_num=cfg['skip_frame_num'],
- device=args.device,
- run_mode=args.run_mode,
- trt_min_shape=args.trt_min_shape,
- trt_max_shape=args.trt_max_shape,
- trt_opt_shape=args.trt_opt_shape,
- trt_calib_mode=args.trt_calib_mode,
- cpu_threads=args.cpu_threads,
- enable_mkldnn=args.enable_mkldnn)
- def predict(self, images, mot_result):
- if self.skip_frame_cnt == 0 or (not self.check_id_is_same(mot_result)):
- det_result = self.detector.predict_image(images, visual=False)
- result = self.postprocess(det_result, mot_result)
- else:
- result = self.reuse_result(mot_result)
- self.skip_frame_cnt += 1
- if self.skip_frame_cnt >= self.skip_frame_num:
- self.skip_frame_cnt = 0
- return result
- def postprocess(self, det_result, mot_result):
- np_boxes_num = det_result['boxes_num']
- if np_boxes_num[0] <= 0:
- return [[], []]
- mot_bboxes = mot_result.get('boxes')
- cur_box_idx = 0
- mot_id = []
- act_res = []
- for idx in range(len(mot_bboxes)):
- tracker_id = mot_bboxes[idx, 0]
- # Current now, class 0 is positive, class 1 is negative.
- action_ret = {'class': 1.0, 'score': -1.0}
- box_num = np_boxes_num[idx]
- boxes = det_result['boxes'][cur_box_idx:cur_box_idx + box_num]
- cur_box_idx += box_num
- isvalid = (boxes[:, 1] > self.threshold) & (boxes[:, 0] == 0)
- valid_boxes = boxes[isvalid, :]
- if valid_boxes.shape[0] >= 1:
- action_ret['class'] = valid_boxes[0, 0]
- action_ret['score'] = valid_boxes[0, 1]
- self.result_history[
- tracker_id] = [0, self.frame_life, valid_boxes[0, 1]]
- else:
- history_det, life_remain, history_score = self.result_history.get(
- tracker_id, [1, self.frame_life, -1.0])
- action_ret['class'] = history_det
- action_ret['score'] = -1.0
- life_remain -= 1
- if life_remain <= 0 and tracker_id in self.result_history:
- del (self.result_history[tracker_id])
- elif tracker_id in self.result_history:
- self.result_history[tracker_id][1] = life_remain
- else:
- self.result_history[tracker_id] = [
- history_det, life_remain, history_score
- ]
- mot_id.append(tracker_id)
- act_res.append(action_ret)
- result = list(zip(mot_id, act_res))
- self.id_in_last_frame = mot_id
- return result
- def check_id_is_same(self, mot_result):
- mot_bboxes = mot_result.get('boxes')
- for idx in range(len(mot_bboxes)):
- tracker_id = mot_bboxes[idx, 0]
- if tracker_id not in self.id_in_last_frame:
- return False
- return True
- def reuse_result(self, mot_result):
- # This function reusing previous results of the same ID directly.
- mot_bboxes = mot_result.get('boxes')
- mot_id = []
- act_res = []
- for idx in range(len(mot_bboxes)):
- tracker_id = mot_bboxes[idx, 0]
- history_cls, life_remain, history_score = self.result_history.get(
- tracker_id, [1, 0, -1.0])
- life_remain -= 1
- if tracker_id in self.result_history:
- self.result_history[tracker_id][1] = life_remain
- action_ret = {'class': history_cls, 'score': history_score}
- mot_id.append(tracker_id)
- act_res.append(action_ret)
- result = list(zip(mot_id, act_res))
- self.id_in_last_frame = mot_id
- return result
- class ClsActionRecognizer(AttrDetector):
- """
- Args:
- model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
- device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
- run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
- batch_size (int): size of pre batch in inference
- trt_min_shape (int): min shape for dynamic shape in trt
- trt_max_shape (int): max shape for dynamic shape in trt
- trt_opt_shape (int): opt shape for dynamic shape in trt
- trt_calib_mode (bool): If the model is produced by TRT offline quantitative
- calibration, trt_calib_mode need to set True
- cpu_threads (int): cpu threads
- enable_mkldnn (bool): whether to open MKLDNN
- threshold (float): The threshold of score for action feature object detection.
- display_frames (int): The duration for corresponding detected action.
- skip_frame_num (int): The number of frames for interval prediction. A skipped frame will
- reuse the result of its last frame. If it is set to 0, no frame will be skipped. Default
- is 0.
- """
- def __init__(self,
- model_dir,
- device='CPU',
- run_mode='paddle',
- batch_size=1,
- trt_min_shape=1,
- trt_max_shape=1280,
- trt_opt_shape=640,
- trt_calib_mode=False,
- cpu_threads=1,
- enable_mkldnn=False,
- output_dir='output',
- threshold=0.5,
- display_frames=80,
- skip_frame_num=0):
- super(ClsActionRecognizer, self).__init__(
- model_dir=model_dir,
- device=device,
- run_mode=run_mode,
- batch_size=batch_size,
- trt_min_shape=trt_min_shape,
- trt_max_shape=trt_max_shape,
- trt_opt_shape=trt_opt_shape,
- trt_calib_mode=trt_calib_mode,
- cpu_threads=cpu_threads,
- enable_mkldnn=enable_mkldnn,
- output_dir=output_dir,
- threshold=threshold)
- self.threshold = threshold
- self.frame_life = display_frames
- self.result_history = {}
- self.skip_frame_num = skip_frame_num
- self.skip_frame_cnt = 0
- self.id_in_last_frame = []
- @classmethod
- def init_with_cfg(cls, args, cfg):
- return cls(model_dir=cfg['model_dir'],
- batch_size=cfg['batch_size'],
- threshold=cfg['threshold'],
- display_frames=cfg['display_frames'],
- skip_frame_num=cfg['skip_frame_num'],
- device=args.device,
- run_mode=args.run_mode,
- trt_min_shape=args.trt_min_shape,
- trt_max_shape=args.trt_max_shape,
- trt_opt_shape=args.trt_opt_shape,
- trt_calib_mode=args.trt_calib_mode,
- cpu_threads=args.cpu_threads,
- enable_mkldnn=args.enable_mkldnn)
- def predict_with_mot(self, images, mot_result):
- if self.skip_frame_cnt == 0 or (not self.check_id_is_same(mot_result)):
- images = self.crop_half_body(images)
- cls_result = self.predict_image(images, visual=False)["output"]
- result = self.match_action_with_id(cls_result, mot_result)
- else:
- result = self.reuse_result(mot_result)
- self.skip_frame_cnt += 1
- if self.skip_frame_cnt >= self.skip_frame_num:
- self.skip_frame_cnt = 0
- return result
- def crop_half_body(self, images):
- crop_images = []
- for image in images:
- h = image.shape[0]
- crop_images.append(image[:h // 2 + 1, :, :])
- return crop_images
- def postprocess(self, inputs, result):
- # postprocess output of predictor
- im_results = result['output']
- batch_res = []
- for res in im_results:
- action_res = res.tolist()
- for cid, score in enumerate(action_res):
- action_res[cid] = score
- batch_res.append(action_res)
- result = {'output': batch_res}
- return result
- def match_action_with_id(self, cls_result, mot_result):
- mot_bboxes = mot_result.get('boxes')
- mot_id = []
- act_res = []
- for idx in range(len(mot_bboxes)):
- tracker_id = mot_bboxes[idx, 0]
- cls_id_res = 1
- cls_score_res = -1.0
- for cls_id in range(len(cls_result[idx])):
- score = cls_result[idx][cls_id]
- if score > cls_score_res:
- cls_id_res = cls_id
- cls_score_res = score
- # Current now, class 0 is positive, class 1 is negative.
- if cls_id_res == 1 or (cls_id_res == 0 and
- cls_score_res < self.threshold):
- history_cls, life_remain, history_score = self.result_history.get(
- tracker_id, [1, self.frame_life, -1.0])
- cls_id_res = history_cls
- cls_score_res = 1 - cls_score_res
- life_remain -= 1
- if life_remain <= 0 and tracker_id in self.result_history:
- del (self.result_history[tracker_id])
- elif tracker_id in self.result_history:
- self.result_history[tracker_id][1] = life_remain
- else:
- self.result_history[
- tracker_id] = [cls_id_res, life_remain, cls_score_res]
- else:
- self.result_history[
- tracker_id] = [cls_id_res, self.frame_life, cls_score_res]
- action_ret = {'class': cls_id_res, 'score': cls_score_res}
- mot_id.append(tracker_id)
- act_res.append(action_ret)
- result = list(zip(mot_id, act_res))
- self.id_in_last_frame = mot_id
- return result
- def check_id_is_same(self, mot_result):
- mot_bboxes = mot_result.get('boxes')
- for idx in range(len(mot_bboxes)):
- tracker_id = mot_bboxes[idx, 0]
- if tracker_id not in self.id_in_last_frame:
- return False
- return True
- def reuse_result(self, mot_result):
- # This function reusing previous results of the same ID directly.
- mot_bboxes = mot_result.get('boxes')
- mot_id = []
- act_res = []
- for idx in range(len(mot_bboxes)):
- tracker_id = mot_bboxes[idx, 0]
- history_cls, life_remain, history_score = self.result_history.get(
- tracker_id, [1, 0, -1.0])
- life_remain -= 1
- if tracker_id in self.result_history:
- self.result_history[tracker_id][1] = life_remain
- action_ret = {'class': history_cls, 'score': history_score}
- mot_id.append(tracker_id)
- act_res.append(action_ret)
- result = list(zip(mot_id, act_res))
- self.id_in_last_frame = mot_id
- return result
- def main():
- detector = SkeletonActionRecognizer(
- FLAGS.model_dir,
- device=FLAGS.device,
- run_mode=FLAGS.run_mode,
- batch_size=FLAGS.batch_size,
- trt_min_shape=FLAGS.trt_min_shape,
- trt_max_shape=FLAGS.trt_max_shape,
- trt_opt_shape=FLAGS.trt_opt_shape,
- trt_calib_mode=FLAGS.trt_calib_mode,
- cpu_threads=FLAGS.cpu_threads,
- enable_mkldnn=FLAGS.enable_mkldnn,
- threshold=FLAGS.threshold,
- output_dir=FLAGS.output_dir,
- window_size=FLAGS.window_size,
- random_pad=FLAGS.random_pad)
- # predict from numpy array
- input_list = get_test_skeletons(FLAGS.action_file)
- detector.predict_skeleton(input_list, FLAGS.run_benchmark, repeats=10)
- if not FLAGS.run_benchmark:
- detector.det_times.info(average=True)
- else:
- mems = {
- 'cpu_rss_mb': detector.cpu_mem / len(input_list),
- 'gpu_rss_mb': detector.gpu_mem / len(input_list),
- 'gpu_util': detector.gpu_util * 100 / len(input_list)
- }
- perf_info = detector.det_times.report(average=True)
- model_dir = FLAGS.model_dir
- mode = FLAGS.run_mode
- model_info = {
- 'model_name': model_dir.strip('/').split('/')[-1],
- 'precision': mode.split('_')[-1]
- }
- data_info = {
- 'batch_size': FLAGS.batch_size,
- 'shape': "dynamic_shape",
- 'data_num': perf_info['img_num']
- }
- det_log = PaddleInferBenchmark(detector.config, model_info, data_info,
- perf_info, mems)
- det_log('SkeletonAction')
- if __name__ == '__main__':
- paddle.enable_static()
- parser = argsparser()
- FLAGS = parser.parse_args()
- print_arguments(FLAGS)
- FLAGS.device = FLAGS.device.upper()
- assert FLAGS.device in ['CPU', 'GPU', 'XPU'
- ], "device should be CPU, GPU or XPU"
- assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
- main()
|