123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168 |
- # copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/RubanSeven/Text-Image-Augmentation-python/blob/master/warp_mls.py
- """
- import numpy as np
- class WarpMLS:
- def __init__(self, src, src_pts, dst_pts, dst_w, dst_h, trans_ratio=1.):
- self.src = src
- self.src_pts = src_pts
- self.dst_pts = dst_pts
- self.pt_count = len(self.dst_pts)
- self.dst_w = dst_w
- self.dst_h = dst_h
- self.trans_ratio = trans_ratio
- self.grid_size = 100
- self.rdx = np.zeros((self.dst_h, self.dst_w))
- self.rdy = np.zeros((self.dst_h, self.dst_w))
- @staticmethod
- def __bilinear_interp(x, y, v11, v12, v21, v22):
- return (v11 * (1 - y) + v12 * y) * (1 - x) + (v21 *
- (1 - y) + v22 * y) * x
- def generate(self):
- self.calc_delta()
- return self.gen_img()
- def calc_delta(self):
- w = np.zeros(self.pt_count, dtype=np.float32)
- if self.pt_count < 2:
- return
- i = 0
- while 1:
- if self.dst_w <= i < self.dst_w + self.grid_size - 1:
- i = self.dst_w - 1
- elif i >= self.dst_w:
- break
- j = 0
- while 1:
- if self.dst_h <= j < self.dst_h + self.grid_size - 1:
- j = self.dst_h - 1
- elif j >= self.dst_h:
- break
- sw = 0
- swp = np.zeros(2, dtype=np.float32)
- swq = np.zeros(2, dtype=np.float32)
- new_pt = np.zeros(2, dtype=np.float32)
- cur_pt = np.array([i, j], dtype=np.float32)
- k = 0
- for k in range(self.pt_count):
- if i == self.dst_pts[k][0] and j == self.dst_pts[k][1]:
- break
- w[k] = 1. / (
- (i - self.dst_pts[k][0]) * (i - self.dst_pts[k][0]) +
- (j - self.dst_pts[k][1]) * (j - self.dst_pts[k][1]))
- sw += w[k]
- swp = swp + w[k] * np.array(self.dst_pts[k])
- swq = swq + w[k] * np.array(self.src_pts[k])
- if k == self.pt_count - 1:
- pstar = 1 / sw * swp
- qstar = 1 / sw * swq
- miu_s = 0
- for k in range(self.pt_count):
- if i == self.dst_pts[k][0] and j == self.dst_pts[k][1]:
- continue
- pt_i = self.dst_pts[k] - pstar
- miu_s += w[k] * np.sum(pt_i * pt_i)
- cur_pt -= pstar
- cur_pt_j = np.array([-cur_pt[1], cur_pt[0]])
- for k in range(self.pt_count):
- if i == self.dst_pts[k][0] and j == self.dst_pts[k][1]:
- continue
- pt_i = self.dst_pts[k] - pstar
- pt_j = np.array([-pt_i[1], pt_i[0]])
- tmp_pt = np.zeros(2, dtype=np.float32)
- tmp_pt[0] = np.sum(pt_i * cur_pt) * self.src_pts[k][0] - \
- np.sum(pt_j * cur_pt) * self.src_pts[k][1]
- tmp_pt[1] = -np.sum(pt_i * cur_pt_j) * self.src_pts[k][0] + \
- np.sum(pt_j * cur_pt_j) * self.src_pts[k][1]
- tmp_pt *= (w[k] / miu_s)
- new_pt += tmp_pt
- new_pt += qstar
- else:
- new_pt = self.src_pts[k]
- self.rdx[j, i] = new_pt[0] - i
- self.rdy[j, i] = new_pt[1] - j
- j += self.grid_size
- i += self.grid_size
- def gen_img(self):
- src_h, src_w = self.src.shape[:2]
- dst = np.zeros_like(self.src, dtype=np.float32)
- for i in np.arange(0, self.dst_h, self.grid_size):
- for j in np.arange(0, self.dst_w, self.grid_size):
- ni = i + self.grid_size
- nj = j + self.grid_size
- w = h = self.grid_size
- if ni >= self.dst_h:
- ni = self.dst_h - 1
- h = ni - i + 1
- if nj >= self.dst_w:
- nj = self.dst_w - 1
- w = nj - j + 1
- di = np.reshape(np.arange(h), (-1, 1))
- dj = np.reshape(np.arange(w), (1, -1))
- delta_x = self.__bilinear_interp(
- di / h, dj / w, self.rdx[i, j], self.rdx[i, nj],
- self.rdx[ni, j], self.rdx[ni, nj])
- delta_y = self.__bilinear_interp(
- di / h, dj / w, self.rdy[i, j], self.rdy[i, nj],
- self.rdy[ni, j], self.rdy[ni, nj])
- nx = j + dj + delta_x * self.trans_ratio
- ny = i + di + delta_y * self.trans_ratio
- nx = np.clip(nx, 0, src_w - 1)
- ny = np.clip(ny, 0, src_h - 1)
- nxi = np.array(np.floor(nx), dtype=np.int32)
- nyi = np.array(np.floor(ny), dtype=np.int32)
- nxi1 = np.array(np.ceil(nx), dtype=np.int32)
- nyi1 = np.array(np.ceil(ny), dtype=np.int32)
- if len(self.src.shape) == 3:
- x = np.tile(np.expand_dims(ny - nyi, axis=-1), (1, 1, 3))
- y = np.tile(np.expand_dims(nx - nxi, axis=-1), (1, 1, 3))
- else:
- x = ny - nyi
- y = nx - nxi
- dst[i:i + h, j:j + w] = self.__bilinear_interp(
- x, y, self.src[nyi, nxi], self.src[nyi, nxi1],
- self.src[nyi1, nxi], self.src[nyi1, nxi1])
- dst = np.clip(dst, 0, 255)
- dst = np.array(dst, dtype=np.uint8)
- return dst
|