123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import numpy as np
- import os
- import sys
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.append(__dir__)
- sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
- os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
- import cv2
- import json
- import paddle
- from ppocr.data import create_operators, transform
- from ppocr.modeling.architectures import build_model
- from ppocr.postprocess import build_post_process
- from ppocr.utils.save_load import load_model
- from ppocr.utils.utility import get_image_file_list
- import tools.program as program
- def draw_det_res(dt_boxes, config, img, img_name, save_path):
- if len(dt_boxes) > 0:
- import cv2
- src_im = img
- for box in dt_boxes:
- box = np.array(box).astype(np.int32).reshape((-1, 1, 2))
- cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
- if not os.path.exists(save_path):
- os.makedirs(save_path)
- save_path = os.path.join(save_path, os.path.basename(img_name))
- cv2.imwrite(save_path, src_im)
- logger.info("The detected Image saved in {}".format(save_path))
- def draw_det_res_and_label(dt_boxes, classes, config, img, img_name, save_path):
- label_list = config["Global"]["label_list"]
- labels = []
- if label_list is not None:
- if isinstance(label_list, str):
- with open(label_list, "r+", encoding="utf-8") as f:
- for line in f.readlines():
- labels.append(line.replace("\n", ""))
- else:
- labels = label_list
- if len(dt_boxes) > 0:
- import cv2
- index = 0
- src_im = img
- for box in dt_boxes:
- box = box.astype(np.int32).reshape((-1, 1, 2))
- cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
- font = cv2.FONT_HERSHEY_SIMPLEX
- src_im = cv2.putText(src_im, labels[classes[index]], (box[0][0][0], box[0][0][1]), font, 0.5, (255, 0, 0), 1)
- index += 1
- if not os.path.exists(save_path):
- os.makedirs(save_path)
- save_path = os.path.join(save_path, os.path.basename(img_name))
- cv2.imwrite(save_path, src_im)
- logger.info("The detected Image saved in {}".format(save_path))
- @paddle.no_grad()
- def main():
- global_config = config['Global']
- if "num_classes" in global_config:
- config['Architecture']["Head"]['num_classes'] = global_config["num_classes"]
- # build model
- model = build_model(config['Architecture'])
- load_model(config, model)
- # build post process
- post_process_class = build_post_process(config['PostProcess'])
- # create data ops
- transforms = []
- for op in config['Eval']['dataset']['transforms']:
- op_name = list(op)[0]
- if 'Label' in op_name:
- continue
- elif op_name == 'KeepKeys':
- op[op_name]['keep_keys'] = ['image', 'shape']
- transforms.append(op)
- ops = create_operators(transforms, global_config)
- save_res_path = config['Global']['save_res_path']
- if not os.path.exists(os.path.dirname(save_res_path)):
- os.makedirs(os.path.dirname(save_res_path))
- model.eval()
- with open(save_res_path, "wb") as fout:
- for file in get_image_file_list(config['Global']['infer_img']):
- logger.info("infer_img: {}".format(file))
- with open(file, 'rb') as f:
- img = f.read()
- data = {'image': img}
- batch = transform(data, ops)
- images = np.expand_dims(batch[0], axis=0)
- shape_list = np.expand_dims(batch[1], axis=0)
- images = paddle.to_tensor(images)
- preds = model(images)
- post_result = post_process_class(preds, shape_list)
- src_img = cv2.imread(file)
- dt_boxes_json = []
- # parser boxes if post_result is dict
- if isinstance(post_result, dict):
- det_box_json = {}
- for k in post_result.keys():
- boxes = post_result[k][0]['points']
- dt_boxes_list = []
- for box in boxes:
- tmp_json = {"transcription": ""}
- tmp_json['points'] = np.array(box).tolist()
- dt_boxes_list.append(tmp_json)
- det_box_json[k] = dt_boxes_list
- save_det_path = os.path.dirname(config['Global'][
- 'save_res_path']) + "/det_results_{}/".format(k)
- draw_det_res(boxes, config, src_img, file, save_det_path)
- else:
- boxes = post_result[0]['points']
- dt_boxes_json = []
- # write result
- for box in boxes:
- tmp_json = {"transcription": ""}
- tmp_json['points'] = np.array(box).tolist()
- dt_boxes_json.append(tmp_json)
- save_det_path = os.path.dirname(config['Global'][
- 'save_res_path']) + "/det_results/"
- if "classes" in post_result[0]:
- draw_det_res_and_label(boxes, post_result[0]["classes"], config, src_img, file, save_det_path)
- else:
- draw_det_res(boxes, config, src_img, file, save_det_path)
- otstr = file + "\t" + json.dumps(dt_boxes_json) + "\n"
- fout.write(otstr.encode())
- logger.info("success!")
- if __name__ == '__main__':
- config, device, logger, vdl_writer = program.preprocess()
- main()
|