123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import sys
- __dir__ = os.path.dirname(os.path.abspath(__file__))
- sys.path.insert(0, __dir__)
- sys.path.insert(0, os.path.abspath(os.path.join(__dir__, '..')))
- import paddle
- from ppocr.data import build_dataloader
- from ppocr.modeling.architectures import build_model
- from ppocr.postprocess import build_post_process
- from ppocr.metrics import build_metric
- from ppocr.utils.save_load import load_model
- import tools.program as program
- def main():
- global_config = config['Global']
- # build dataloader
- valid_dataloader = build_dataloader(config, 'Eval', device, logger)
- # build post process
- post_process_class = build_post_process(config['PostProcess'],
- global_config)
- # build model
- # for rec algorithm
- if hasattr(post_process_class, 'character'):
- char_num = len(getattr(post_process_class, 'character'))
- if config['Architecture']["algorithm"] in ["Distillation",
- ]: # distillation model
- for key in config['Architecture']["Models"]:
- if config['Architecture']['Models'][key]['Head'][
- 'name'] == 'MultiHead': # for multi head
- out_channels_list = {}
- if config['PostProcess'][
- 'name'] == 'DistillationSARLabelDecode':
- char_num = char_num - 2
- out_channels_list['CTCLabelDecode'] = char_num
- out_channels_list['SARLabelDecode'] = char_num + 2
- config['Architecture']['Models'][key]['Head'][
- 'out_channels_list'] = out_channels_list
- else:
- config['Architecture']["Models"][key]["Head"][
- 'out_channels'] = char_num
- elif config['Architecture']['Head'][
- 'name'] == 'MultiHead': # for multi head
- out_channels_list = {}
- if config['PostProcess']['name'] == 'SARLabelDecode':
- char_num = char_num - 2
- out_channels_list['CTCLabelDecode'] = char_num
- out_channels_list['SARLabelDecode'] = char_num + 2
- config['Architecture']['Head'][
- 'out_channels_list'] = out_channels_list
- else: # base rec model
- config['Architecture']["Head"]['out_channels'] = char_num
- if "num_classes" in global_config:
- config['Architecture']["Head"]['num_classes'] = global_config["num_classes"]
- model = build_model(config['Architecture'])
- extra_input_models = [
- "SRN", "NRTR", "SAR", "SEED", "SVTR", "VisionLAN", "RobustScanner"
- ]
- extra_input = False
- if config['Architecture']['algorithm'] == 'Distillation':
- for key in config['Architecture']["Models"]:
- extra_input = extra_input or config['Architecture']['Models'][key][
- 'algorithm'] in extra_input_models
- else:
- extra_input = config['Architecture']['algorithm'] in extra_input_models
- if "model_type" in config['Architecture'].keys():
- if config['Architecture']['algorithm'] == 'CAN':
- model_type = 'can'
- else:
- model_type = config['Architecture']['model_type']
- else:
- model_type = None
- # build metric
- eval_class = build_metric(config['Metric'])
- # amp
- use_amp = config["Global"].get("use_amp", False)
- amp_level = config["Global"].get("amp_level", 'O2')
- amp_custom_black_list = config['Global'].get('amp_custom_black_list', [])
- if use_amp:
- AMP_RELATED_FLAGS_SETTING = {
- 'FLAGS_cudnn_batchnorm_spatial_persistent': 1,
- 'FLAGS_max_inplace_grad_add': 8,
- }
- paddle.fluid.set_flags(AMP_RELATED_FLAGS_SETTING)
- scale_loss = config["Global"].get("scale_loss", 1.0)
- use_dynamic_loss_scaling = config["Global"].get(
- "use_dynamic_loss_scaling", False)
- scaler = paddle.amp.GradScaler(
- init_loss_scaling=scale_loss,
- use_dynamic_loss_scaling=use_dynamic_loss_scaling)
- if amp_level == "O2":
- model = paddle.amp.decorate(
- models=model, level=amp_level, master_weight=True)
- else:
- scaler = None
- best_model_dict = load_model(
- config, model, model_type=config['Architecture']["model_type"])
- if len(best_model_dict):
- logger.info('metric in ckpt ***************')
- for k, v in best_model_dict.items():
- logger.info('{}:{}'.format(k, v))
- # start eval
- metric = program.eval(model, valid_dataloader, post_process_class,
- eval_class, model_type, extra_input, scaler,
- amp_level, amp_custom_black_list)
- logger.info('metric eval ***************')
- for k, v in metric.items():
- logger.info('{}:{}'.format(k, v))
- if __name__ == '__main__':
- config, device, logger, vdl_writer = program.preprocess()
- main()
|