12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576 |
- // Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // reference https://github.com/PaddlePaddle/Paddle-Inference-Demo/blob/master/python/custom-operator/custom_relu_op.cu
- #include "paddle/extension.h"
- template <typename data_t>
- __global__ void relu_cuda_forward_kernel(const data_t* x,
- data_t* y,
- const int num) {
- int gid = blockIdx.x * blockDim.x + threadIdx.x;
- for (int i = gid; i < num; i += blockDim.x * gridDim.x) {
- y[i] = max(x[i], static_cast<data_t>(0.));
- }
- }
- template <typename data_t>
- __global__ void relu_cuda_backward_kernel(const data_t* dy,
- const data_t* y,
- data_t* dx,
- const int num) {
- int gid = blockIdx.x * blockDim.x + threadIdx.x;
- for (int i = gid; i < num; i += blockDim.x * gridDim.x) {
- dx[i] = dy[i] * (y[i] > 0 ? 1. : 0.);
- }
- }
- std::vector<paddle::Tensor> relu_cuda_forward(const paddle::Tensor& x) {
- auto out = paddle::Tensor(paddle::PlaceType::kGPU);
- out.reshape(x.shape());
- int numel = x.size();
- int block = 512;
- int grid = (numel + block - 1) / block;
- PD_DISPATCH_FLOATING_TYPES(
- x.type(), "relu_cuda_forward_kernel", ([&] {
- relu_cuda_forward_kernel<data_t><<<grid, block, 0, x.stream()>>>(
- x.data<data_t>(), out.mutable_data<data_t>(x.place()), numel);
- }));
- return {out};
- }
- std::vector<paddle::Tensor> relu_cuda_backward(const paddle::Tensor& x,
- const paddle::Tensor& out,
- const paddle::Tensor& grad_out) {
- auto grad_x = paddle::Tensor(paddle::PlaceType::kGPU);
- grad_x.reshape(x.shape());
- int numel = out.size();
- int block = 512;
- int grid = (numel + block - 1) / block;
- PD_DISPATCH_FLOATING_TYPES(
- out.type(), "relu_cuda_backward_kernel", ([&] {
- relu_cuda_backward_kernel<data_t><<<grid, block, 0, x.stream()>>>(
- grad_out.data<data_t>(),
- out.data<data_t>(),
- grad_x.mutable_data<data_t>(x.place()),
- numel);
- }));
- return {grad_x};
- }
|