123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109 |
- // Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // reference from : https://github.com/PaddlePaddle/Paddle-Inference-Demo/blob/master/python/custom-operator/custom_relu_op.cc
- #include <iostream>
- #include <vector>
- #include "paddle/extension.h"
- template <typename data_t>
- void relu_cpu_forward_kernel(const data_t* x_data,
- data_t* out_data,
- int64_t x_numel) {
- for (int i = 0; i < x_numel; ++i) {
- out_data[i] = std::max(static_cast<data_t>(0.), x_data[i]);
- }
- }
- template <typename data_t>
- void relu_cpu_backward_kernel(const data_t* grad_out_data,
- const data_t* out_data,
- data_t* grad_x_data,
- int64_t out_numel) {
- for (int i = 0; i < out_numel; ++i) {
- grad_x_data[i] =
- grad_out_data[i] * (out_data[i] > static_cast<data_t>(0) ? 1. : 0.);
- }
- }
- std::vector<paddle::Tensor> relu_cpu_forward(const paddle::Tensor& x) {
- auto out = paddle::Tensor(paddle::PlaceType::kCPU);
- out.reshape(x.shape());
- PD_DISPATCH_FLOATING_TYPES(
- x.type(), "relu_cpu_forward", ([&] {
- relu_cpu_forward_kernel<data_t>(
- x.data<data_t>(), out.mutable_data<data_t>(x.place()), x.size());
- }));
- return {out};
- }
- std::vector<paddle::Tensor> relu_cpu_backward(const paddle::Tensor& x,
- const paddle::Tensor& out,
- const paddle::Tensor& grad_out) {
- auto grad_x = paddle::Tensor(paddle::PlaceType::kCPU);
- grad_x.reshape(x.shape());
- PD_DISPATCH_FLOATING_TYPES(out.type(), "relu_cpu_backward", ([&] {
- relu_cpu_backward_kernel<data_t>(
- grad_out.data<data_t>(),
- out.data<data_t>(),
- grad_x.mutable_data<data_t>(x.place()),
- out.size());
- }));
- return {grad_x};
- }
- std::vector<paddle::Tensor> relu_cuda_forward(const paddle::Tensor& x);
- std::vector<paddle::Tensor> relu_cuda_backward(const paddle::Tensor& x,
- const paddle::Tensor& out,
- const paddle::Tensor& grad_out);
- std::vector<paddle::Tensor> ReluForward(const paddle::Tensor& x) {
- // TODO(chenweihang): Check Input
- if (x.place() == paddle::PlaceType::kCPU) {
- return relu_cpu_forward(x);
- } else if (x.place() == paddle::PlaceType::kGPU) {
- return relu_cuda_forward(x);
- } else {
- throw std::runtime_error("Not implemented.");
- }
- }
- std::vector<paddle::Tensor> ReluBackward(const paddle::Tensor& x,
- const paddle::Tensor& out,
- const paddle::Tensor& grad_out) {
- // TODO(chenweihang): Check Input
- if (x.place() == paddle::PlaceType::kCPU) {
- return relu_cpu_backward(x, out, grad_out);
- } else if (x.place() == paddle::PlaceType::kGPU) {
- return relu_cuda_backward(x, out, grad_out);
- } else {
- throw std::runtime_error("Not implemented.");
- }
- }
- PD_BUILD_OP(custom_relu)
- .Inputs({"X"})
- .Outputs({"Out"})
- .SetKernelFn(PD_KERNEL(ReluForward));
- PD_BUILD_GRAD_OP(custom_relu)
- .Inputs({"X", "Out", paddle::Grad("Out")})
- .Outputs({paddle::Grad("X")})
- .SetKernelFn(PD_KERNEL(ReluBackward));
|