Linux GPU/CPU 多机多卡训练推理测试的主程序为test_train_inference_python.sh
,可以测试基于Python的模型训练、评估、推理等基本功能。
算法名称 | 模型名称 | 多机多卡 |
---|---|---|
PP-OCRv3 | ch_PP-OCRv3_rec | 分布式训练 |
算法名称 | 模型名称 | device_CPU | device_GPU | batchsize |
---|---|---|---|---|
PP-OCRv3 | ch_PP-OCRv3_rec | 支持 | - | 1/6 |
运行环境配置请参考文档的内容配置TIPC的运行环境。
首先,修改配置文件中的ip
设置: 假设两台机器的ip
地址分别为192.168.0.1
和192.168.0.2
,则对应的配置文件gpu_list
字段需要修改为gpu_list:192.168.0.1,192.168.0.2;0,1
; ip
地址查看命令为ifconfig
。
运行prepare.sh
准备数据和模型,以配置文件test_tipc/configs/ch_PP-OCRv3_rec/train_linux_gpu_fleet_normal_infer_python_linux_gpu_cpu.txt
为例,数据准备命令如下所示。
bash test_tipc/prepare.sh test_tipc/configs/ch_PP-OCRv3_rec/train_linux_gpu_fleet_normal_infer_python_linux_gpu_cpu.txt lite_train_lite_infer
注意: 由于是多机训练,这里需要在所有的节点上均运行启动上述命令,准备数据。
在多机的节点上使用下面的命令设置分布式的起始端口(否则后面运行的时候会由于无法找到运行端口而hang住),一般建议设置在10000~20000
之间。
export FLAGS_START_PORT=17000
以配置文件test_tipc/configs/ch_PP-OCRv3_rec/train_linux_gpu_fleet_normal_infer_python_linux_gpu_cpu.txt
为例,测试方法如下所示。
bash test_tipc/test_train_inference_python.sh test_tipc/configs/ch_PP-OCRv3_rec/train_linux_gpu_fleet_normal_infer_python_linux_gpu_cpu.txt lite_train_lite_infer
注意: 由于是多机训练,这里需要在所有的节点上均运行启动上述命令进行测试。
输出结果如下,表示命令运行成功。
Run successfully with command - ch_PP-OCRv3_rec - python3.7 -m paddle.distributed.launch --ips=192.168.0.1,192.168.0.2 --gpus=0,1 tools/train.py -c test_tipc/configs/ch_PP-OCRv3_rec/ch_PP-OCRv3_rec_distillation.yml -o Global.use_gpu=True Global.save_model_dir=./test_tipc/output/ch_PP-OCRv3_rec/lite_train_lite_infer/norm_train_gpus_0,1_autocast_fp32_nodes_2 Global.epoch_num=3 Global.auto_cast=fp32 Train.loader.batch_size_per_card=16 !
......
Run successfully with command - ch_PP-OCRv3_rec - python3.7 tools/infer/predict_rec.py --rec_image_shape="3,48,320" --use_gpu=False --enable_mkldnn=False --cpu_threads=6 --rec_model_dir=./test_tipc/output/ch_PP-OCRv3_rec/lite_train_lite_infer/norm_train_gpus_0,1_autocast_fp32_nodes_2/Student --rec_batch_num=1 --image_dir=./inference/rec_inference --benchmark=True --precision=fp32 > ./test_tipc/output/ch_PP-OCRv3_rec/lite_train_lite_infer/python_infer_cpu_usemkldnn_False_threads_6_precision_fp32_batchsize_1.log 2>&1 !
在开启benchmark参数时,可以得到测试的详细数据,包含运行环境信息(系统版本、CUDA版本、CUDNN版本、驱动版本),Paddle版本信息,参数设置信息(运行设备、线程数、是否开启内存优化等),模型信息(模型名称、精度),数据信息(batchsize、是否为动态shape等),性能信息(CPU,GPU的占用、运行耗时、预处理耗时、推理耗时、后处理耗时),内容如下所示:
[2022/06/02 22:53:35] ppocr INFO:
[2022/06/02 22:53:35] ppocr INFO: ---------------------- Env info ----------------------
[2022/06/02 22:53:35] ppocr INFO: OS_version: Ubuntu 16.04
[2022/06/02 22:53:35] ppocr INFO: CUDA_version: 10.1.243
[2022/06/02 22:53:35] ppocr INFO: CUDNN_version: 7.6.5
[2022/06/02 22:53:35] ppocr INFO: drivier_version: 460.32.03
[2022/06/02 22:53:35] ppocr INFO: ---------------------- Paddle info ----------------------
[2022/06/02 22:53:35] ppocr INFO: paddle_version: 2.3.0-rc0
[2022/06/02 22:53:35] ppocr INFO: paddle_commit: 5d4980c052583fec022812d9c29460aff7cdc18b
[2022/06/02 22:53:35] ppocr INFO: log_api_version: 1.0
[2022/06/02 22:53:35] ppocr INFO: ----------------------- Conf info -----------------------
[2022/06/02 22:53:35] ppocr INFO: runtime_device: cpu
[2022/06/02 22:53:35] ppocr INFO: ir_optim: True
[2022/06/02 22:53:35] ppocr INFO: enable_memory_optim: True
[2022/06/02 22:53:35] ppocr INFO: enable_tensorrt: False
[2022/06/02 22:53:35] ppocr INFO: enable_mkldnn: False
[2022/06/02 22:53:35] ppocr INFO: cpu_math_library_num_threads: 6
[2022/06/02 22:53:35] ppocr INFO: ----------------------- Model info ----------------------
[2022/06/02 22:53:35] ppocr INFO: model_name: rec
[2022/06/02 22:53:35] ppocr INFO: precision: fp32
[2022/06/02 22:53:35] ppocr INFO: ----------------------- Data info -----------------------
[2022/06/02 22:53:35] ppocr INFO: batch_size: 1
[2022/06/02 22:53:35] ppocr INFO: input_shape: dynamic
[2022/06/02 22:53:35] ppocr INFO: data_num: 6
[2022/06/02 22:53:35] ppocr INFO: ----------------------- Perf info -----------------------
[2022/06/02 22:53:35] ppocr INFO: cpu_rss(MB): 288.957, gpu_rss(MB): None, gpu_util: None%
[2022/06/02 22:53:35] ppocr INFO: total time spent(s): 0.4824
[2022/06/02 22:53:35] ppocr INFO: preprocess_time(ms): 0.1136, inference_time(ms): 79.5877, postprocess_time(ms): 0.6945
该信息可以在运行log中查看,以上面的ch_PP-OCRv3_rec
为例,log位置在./test_tipc/output/ch_PP-OCRv3_rec/lite_train_lite_infer/results_python.log
。
如果运行失败,也会在终端中输出运行失败的日志信息以及对应的运行命令。可以基于该命令,分析运行失败的原因。
注意: 由于分布式训练时,仅在trainer_id=0
所在的节点中保存模型,因此其他的节点中在运行模型导出与推理时会报错,为正常现象。