Jetson端基础训练预测功能测试的主程序为test_inference_inference.sh
,由于Jetson端CPU较差,Jetson只需要测试TIPC关于GPU和TensorRT预测推理的部分即可。
正常模型
和量化模型
,这两类模型对应的预测功能汇总如下:模型类型 | device | batchsize | tensorrt | mkldnn | cpu多线程 |
---|---|---|---|---|---|
正常模型 | GPU | 1/6 | fp32/fp16 | - | - |
量化模型 | GPU | 1/6 | int8 | - | - |
环境准备只需要Python环境即可,安装PaddlePaddle等依赖参考下述文档。
pip install -r ../requirements.txt
pip install https://paddleocr.bj.bcebos.com/libs/auto_log-1.2.0-py3-none-any.whl
安装PaddleSlim (可选)
# 如果要测试量化、裁剪等功能,需要安装PaddleSlim
pip install paddleslim
先运行prepare.sh
准备数据和模型,然后运行test_inference_inference.sh
进行测试,最终在test_tipc/output
目录下生成python_infer_*.log
格式的日志文件。
test_inference_inference.sh
仅有一个模式whole_infer
,在Jetson端,仅需要测试预测推理的模式即可:
- 模式3:whole_infer,不训练,全量数据预测,走通开源模型评估、动转静,检查inference model预测时间和精度;
```shell
bash test_tipc/prepare.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/model_linux_gpu_normal_normal_infer_python_jetson.txt 'whole_infer'
# 用法1:
bash test_tipc/test_inference_inference.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/model_linux_gpu_normal_normal_infer_python_jetson.txt 'whole_infer'
# 用法2: 指定GPU卡预测,第三个传入参数为GPU卡号
bash test_tipc/test_inference_jetson.sh ./test_tipc/configs/ch_ppocr_mobile_v2.0_det/model_linux_gpu_normal_normal_infer_python_jetson.txt 'whole_infer' '1'
运行相应指令后,在test_tipc/output
文件夹下自动会保存运行日志。如whole_infer
模式下,会运行训练+inference的链条,因此,在test_tipc/output
文件夹有以下文件:
test_tipc/output/
|- results_python.log # 运行指令状态的日志
|- python_infer_gpu_usetensorrt_True_precision_fp32_batchsize_1.log # GPU上开启TensorRT,batch_size=1条件下的预测运行日志
......
其中results_python.log
中包含了每条指令的运行状态,如果运行成功会输出:
Run successfully with command - python tools/infer/predict_det.py --use_gpu=True --use_tensorrt=False --precision=fp32 --det_model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ --rec_batch_num=1 --image_dir=./inference/ch_det_data_50/all-sum-510/ --benchmark=True > ./test_tipc/output/python_infer_gpu_usetrt_False_precision_fp32_batchsize_1.log 2>&1 !
Run successfully with command - python tools/infer/predict_det.py --use_gpu=True --use_tensorrt=True --precision=fp32 --det_model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ --rec_batch_num=1 --image_dir=./inference/ch_det_data_50/all-sum-510/ --benchmark=True > ./test_tipc/output/python_infer_gpu_usetrt_True_precision_fp32_batchsize_1.log 2>&1 !
Run successfully with command - python tools/infer/predict_det.py --use_gpu=True --use_tensorrt=True --precision=fp16 --det_model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ --rec_batch_num=1 --image_dir=./inference/ch_det_data_50/all-sum-510/ --benchmark=True > ./test_tipc/output/python_infer_gpu_usetrt_True_precision_fp16_batchsize_1.log 2>&1 !
如果运行失败,会输出:
Run failed with command - python tools/infer/predict_det.py --use_gpu=True --use_tensorrt=False --precision=fp32 --det_model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ --rec_batch_num=1 --image_dir=./inference/ch_det_data_50/all-sum-510/ --benchmark=True > ./test_tipc/output/python_infer_gpu_usetrt_False_precision_fp32_batchsize_1.log 2>&1 !
Run failed with command - python tools/infer/predict_det.py --use_gpu=True --use_tensorrt=True --precision=fp32 --det_model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ --rec_batch_num=1 --image_dir=./inference/ch_det_data_50/all-sum-510/ --benchmark=True > ./test_tipc/output/python_infer_gpu_usetrt_True_precision_fp32_batchsize_1.log 2>&1 !
Run failed with command - python tools/infer/predict_det.py --use_gpu=True --use_tensorrt=True --precision=fp16 --det_model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ --rec_batch_num=1 --image_dir=./inference/ch_det_data_50/all-sum-510/ --benchmark=True > ./test_tipc/output/python_infer_gpu_usetrt_True_precision_fp16_batchsize_1.log 2>&1 !
可以很方便的根据results_python.log
中的内容判定哪一个指令运行错误。
使用compare_results.py脚本比较模型预测的结果是否符合预期,主要步骤包括:
运行命令:
python test_tipc/compare_results.py --gt_file=./test_tipc/results/python_*.txt --log_file=./test_tipc/output/python_*.log --atol=1e-3 --rtol=1e-3
参数介绍:
正常运行效果如下:
Assert allclose passed! The results of python_infer_gpu_usetrt_True_precision_fp32_batchsize_1.log and ./test_tipc/results/python_ppocr_det_mobile_results_fp32.txt are consistent!
出现不一致结果时的运行输出:
......
Traceback (most recent call last):
File "test_tipc/compare_results.py", line 140, in <module>
format(filename, gt_filename))
ValueError: The results of python_infer_gpu_usetrt_True_precision_fp32_batchsize_1.log and the results of ./test_tipc/results/python_ppocr_det_mobile_results_fp32.txt are inconsistent!
本文档为功能测试用,更丰富的训练预测使用教程请参考:
模型训练
基于Python预测引擎推理