123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/JiaquanYe/TableMASTER-mmocr/blob/master/mmocr/models/textrecog/decoders/master_decoder.py
- """
- import copy
- import math
- import paddle
- from paddle import nn
- from paddle.nn import functional as F
- class TableMasterHead(nn.Layer):
- """
- Split to two transformer header at the last layer.
- Cls_layer is used to structure token classification.
- Bbox_layer is used to regress bbox coord.
- """
- def __init__(self,
- in_channels,
- out_channels=30,
- headers=8,
- d_ff=2048,
- dropout=0,
- max_text_length=500,
- loc_reg_num=4,
- **kwargs):
- super(TableMasterHead, self).__init__()
- hidden_size = in_channels[-1]
- self.layers = clones(
- DecoderLayer(headers, hidden_size, dropout, d_ff), 2)
- self.cls_layer = clones(
- DecoderLayer(headers, hidden_size, dropout, d_ff), 1)
- self.bbox_layer = clones(
- DecoderLayer(headers, hidden_size, dropout, d_ff), 1)
- self.cls_fc = nn.Linear(hidden_size, out_channels)
- self.bbox_fc = nn.Sequential(
- # nn.Linear(hidden_size, hidden_size),
- nn.Linear(hidden_size, loc_reg_num),
- nn.Sigmoid())
- self.norm = nn.LayerNorm(hidden_size)
- self.embedding = Embeddings(d_model=hidden_size, vocab=out_channels)
- self.positional_encoding = PositionalEncoding(d_model=hidden_size)
- self.SOS = out_channels - 3
- self.PAD = out_channels - 1
- self.out_channels = out_channels
- self.loc_reg_num = loc_reg_num
- self.max_text_length = max_text_length
- def make_mask(self, tgt):
- """
- Make mask for self attention.
- :param src: [b, c, h, l_src]
- :param tgt: [b, l_tgt]
- :return:
- """
- trg_pad_mask = (tgt != self.PAD).unsqueeze(1).unsqueeze(3)
- tgt_len = paddle.shape(tgt)[1]
- trg_sub_mask = paddle.tril(
- paddle.ones(
- ([tgt_len, tgt_len]), dtype=paddle.float32))
- tgt_mask = paddle.logical_and(
- trg_pad_mask.astype(paddle.float32), trg_sub_mask)
- return tgt_mask.astype(paddle.float32)
- def decode(self, input, feature, src_mask, tgt_mask):
- # main process of transformer decoder.
- x = self.embedding(input) # x: 1*x*512, feature: 1*3600,512
- x = self.positional_encoding(x)
- # origin transformer layers
- for i, layer in enumerate(self.layers):
- x = layer(x, feature, src_mask, tgt_mask)
- # cls head
- for layer in self.cls_layer:
- cls_x = layer(x, feature, src_mask, tgt_mask)
- cls_x = self.norm(cls_x)
- # bbox head
- for layer in self.bbox_layer:
- bbox_x = layer(x, feature, src_mask, tgt_mask)
- bbox_x = self.norm(bbox_x)
- return self.cls_fc(cls_x), self.bbox_fc(bbox_x)
- def greedy_forward(self, SOS, feature):
- input = SOS
- output = paddle.zeros(
- [input.shape[0], self.max_text_length + 1, self.out_channels])
- bbox_output = paddle.zeros(
- [input.shape[0], self.max_text_length + 1, self.loc_reg_num])
- max_text_length = paddle.to_tensor(self.max_text_length)
- for i in range(max_text_length + 1):
- target_mask = self.make_mask(input)
- out_step, bbox_output_step = self.decode(input, feature, None,
- target_mask)
- prob = F.softmax(out_step, axis=-1)
- next_word = prob.argmax(axis=2, dtype="int64")
- input = paddle.concat(
- [input, next_word[:, -1].unsqueeze(-1)], axis=1)
- if i == self.max_text_length:
- output = out_step
- bbox_output = bbox_output_step
- return output, bbox_output
- def forward_train(self, out_enc, targets):
- # x is token of label
- # feat is feature after backbone before pe.
- # out_enc is feature after pe.
- padded_targets = targets[0]
- src_mask = None
- tgt_mask = self.make_mask(padded_targets[:, :-1])
- output, bbox_output = self.decode(padded_targets[:, :-1], out_enc,
- src_mask, tgt_mask)
- return {'structure_probs': output, 'loc_preds': bbox_output}
- def forward_test(self, out_enc):
- batch_size = out_enc.shape[0]
- SOS = paddle.zeros([batch_size, 1], dtype='int64') + self.SOS
- output, bbox_output = self.greedy_forward(SOS, out_enc)
- output = F.softmax(output)
- return {'structure_probs': output, 'loc_preds': bbox_output}
- def forward(self, feat, targets=None):
- feat = feat[-1]
- b, c, h, w = feat.shape
- feat = feat.reshape([b, c, h * w]) # flatten 2D feature map
- feat = feat.transpose((0, 2, 1))
- out_enc = self.positional_encoding(feat)
- if self.training:
- return self.forward_train(out_enc, targets)
- return self.forward_test(out_enc)
- class DecoderLayer(nn.Layer):
- """
- Decoder is made of self attention, srouce attention and feed forward.
- """
- def __init__(self, headers, d_model, dropout, d_ff):
- super(DecoderLayer, self).__init__()
- self.self_attn = MultiHeadAttention(headers, d_model, dropout)
- self.src_attn = MultiHeadAttention(headers, d_model, dropout)
- self.feed_forward = FeedForward(d_model, d_ff, dropout)
- self.sublayer = clones(SubLayerConnection(d_model, dropout), 3)
- def forward(self, x, feature, src_mask, tgt_mask):
- x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, tgt_mask))
- x = self.sublayer[1](
- x, lambda x: self.src_attn(x, feature, feature, src_mask))
- return self.sublayer[2](x, self.feed_forward)
- class MultiHeadAttention(nn.Layer):
- def __init__(self, headers, d_model, dropout):
- super(MultiHeadAttention, self).__init__()
- assert d_model % headers == 0
- self.d_k = int(d_model / headers)
- self.headers = headers
- self.linears = clones(nn.Linear(d_model, d_model), 4)
- self.attn = None
- self.dropout = nn.Dropout(dropout)
- def forward(self, query, key, value, mask=None):
- B = query.shape[0]
- # 1) Do all the linear projections in batch from d_model => h x d_k
- query, key, value = \
- [l(x).reshape([B, 0, self.headers, self.d_k]).transpose([0, 2, 1, 3])
- for l, x in zip(self.linears, (query, key, value))]
- # 2) Apply attention on all the projected vectors in batch
- x, self.attn = self_attention(
- query, key, value, mask=mask, dropout=self.dropout)
- x = x.transpose([0, 2, 1, 3]).reshape([B, 0, self.headers * self.d_k])
- return self.linears[-1](x)
- class FeedForward(nn.Layer):
- def __init__(self, d_model, d_ff, dropout):
- super(FeedForward, self).__init__()
- self.w_1 = nn.Linear(d_model, d_ff)
- self.w_2 = nn.Linear(d_ff, d_model)
- self.dropout = nn.Dropout(dropout)
- def forward(self, x):
- return self.w_2(self.dropout(F.relu(self.w_1(x))))
- class SubLayerConnection(nn.Layer):
- """
- A residual connection followed by a layer norm.
- Note for code simplicity the norm is first as opposed to last.
- """
- def __init__(self, size, dropout):
- super(SubLayerConnection, self).__init__()
- self.norm = nn.LayerNorm(size)
- self.dropout = nn.Dropout(dropout)
- def forward(self, x, sublayer):
- return x + self.dropout(sublayer(self.norm(x)))
- def masked_fill(x, mask, value):
- mask = mask.astype(x.dtype)
- return x * paddle.logical_not(mask).astype(x.dtype) + mask * value
- def self_attention(query, key, value, mask=None, dropout=None):
- """
- Compute 'Scale Dot Product Attention'
- """
- d_k = value.shape[-1]
- score = paddle.matmul(query, key.transpose([0, 1, 3, 2]) / math.sqrt(d_k))
- if mask is not None:
- # score = score.masked_fill(mask == 0, -1e9) # b, h, L, L
- score = masked_fill(score, mask == 0, -6.55e4) # for fp16
- p_attn = F.softmax(score, axis=-1)
- if dropout is not None:
- p_attn = dropout(p_attn)
- return paddle.matmul(p_attn, value), p_attn
- def clones(module, N):
- """ Produce N identical layers """
- return nn.LayerList([copy.deepcopy(module) for _ in range(N)])
- class Embeddings(nn.Layer):
- def __init__(self, d_model, vocab):
- super(Embeddings, self).__init__()
- self.lut = nn.Embedding(vocab, d_model)
- self.d_model = d_model
- def forward(self, *input):
- x = input[0]
- return self.lut(x) * math.sqrt(self.d_model)
- class PositionalEncoding(nn.Layer):
- """ Implement the PE function. """
- def __init__(self, d_model, dropout=0., max_len=5000):
- super(PositionalEncoding, self).__init__()
- self.dropout = nn.Dropout(p=dropout)
- # Compute the positional encodings once in log space.
- pe = paddle.zeros([max_len, d_model])
- position = paddle.arange(0, max_len).unsqueeze(1).astype('float32')
- div_term = paddle.exp(
- paddle.arange(0, d_model, 2) * -math.log(10000.0) / d_model)
- pe[:, 0::2] = paddle.sin(position * div_term)
- pe[:, 1::2] = paddle.cos(position * div_term)
- pe = pe.unsqueeze(0)
- self.register_buffer('pe', pe)
- def forward(self, feat, **kwargs):
- feat = feat + self.pe[:, :paddle.shape(feat)[1]] # pe 1*5000*512
- return self.dropout(feat)
|