123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319 |
- # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/LBH1024/CAN/models/can.py
- https://github.com/LBH1024/CAN/models/counting.py
- https://github.com/LBH1024/CAN/models/decoder.py
- https://github.com/LBH1024/CAN/models/attention.py
- """
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import paddle.nn as nn
- import paddle
- import math
- '''
- Counting Module
- '''
- class ChannelAtt(nn.Layer):
- def __init__(self, channel, reduction):
- super(ChannelAtt, self).__init__()
- self.avg_pool = nn.AdaptiveAvgPool2D(1)
- self.fc = nn.Sequential(
- nn.Linear(channel, channel // reduction),
- nn.ReLU(), nn.Linear(channel // reduction, channel), nn.Sigmoid())
- def forward(self, x):
- b, c, _, _ = x.shape
- y = paddle.reshape(self.avg_pool(x), [b, c])
- y = paddle.reshape(self.fc(y), [b, c, 1, 1])
- return x * y
- class CountingDecoder(nn.Layer):
- def __init__(self, in_channel, out_channel, kernel_size):
- super(CountingDecoder, self).__init__()
- self.in_channel = in_channel
- self.out_channel = out_channel
- self.trans_layer = nn.Sequential(
- nn.Conv2D(
- self.in_channel,
- 512,
- kernel_size=kernel_size,
- padding=kernel_size // 2,
- bias_attr=False),
- nn.BatchNorm2D(512))
- self.channel_att = ChannelAtt(512, 16)
- self.pred_layer = nn.Sequential(
- nn.Conv2D(
- 512, self.out_channel, kernel_size=1, bias_attr=False),
- nn.Sigmoid())
- def forward(self, x, mask):
- b, _, h, w = x.shape
- x = self.trans_layer(x)
- x = self.channel_att(x)
- x = self.pred_layer(x)
- if mask is not None:
- x = x * mask
- x = paddle.reshape(x, [b, self.out_channel, -1])
- x1 = paddle.sum(x, axis=-1)
- return x1, paddle.reshape(x, [b, self.out_channel, h, w])
- '''
- Attention Decoder
- '''
- class PositionEmbeddingSine(nn.Layer):
- def __init__(self,
- num_pos_feats=64,
- temperature=10000,
- normalize=False,
- scale=None):
- super().__init__()
- self.num_pos_feats = num_pos_feats
- self.temperature = temperature
- self.normalize = normalize
- if scale is not None and normalize is False:
- raise ValueError("normalize should be True if scale is passed")
- if scale is None:
- scale = 2 * math.pi
- self.scale = scale
- def forward(self, x, mask):
- y_embed = paddle.cumsum(mask, 1, dtype='float32')
- x_embed = paddle.cumsum(mask, 2, dtype='float32')
- if self.normalize:
- eps = 1e-6
- y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
- x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
- dim_t = paddle.arange(self.num_pos_feats, dtype='float32')
- dim_d = paddle.expand(paddle.to_tensor(2), dim_t.shape)
- dim_t = self.temperature**(2 * (dim_t / dim_d).astype('int64') /
- self.num_pos_feats)
- pos_x = paddle.unsqueeze(x_embed, [3]) / dim_t
- pos_y = paddle.unsqueeze(y_embed, [3]) / dim_t
- pos_x = paddle.flatten(
- paddle.stack(
- [
- paddle.sin(pos_x[:, :, :, 0::2]),
- paddle.cos(pos_x[:, :, :, 1::2])
- ],
- axis=4),
- 3)
- pos_y = paddle.flatten(
- paddle.stack(
- [
- paddle.sin(pos_y[:, :, :, 0::2]),
- paddle.cos(pos_y[:, :, :, 1::2])
- ],
- axis=4),
- 3)
- pos = paddle.transpose(
- paddle.concat(
- [pos_y, pos_x], axis=3), [0, 3, 1, 2])
- return pos
- class AttDecoder(nn.Layer):
- def __init__(self, ratio, is_train, input_size, hidden_size,
- encoder_out_channel, dropout, dropout_ratio, word_num,
- counting_decoder_out_channel, attention):
- super(AttDecoder, self).__init__()
- self.input_size = input_size
- self.hidden_size = hidden_size
- self.out_channel = encoder_out_channel
- self.attention_dim = attention['attention_dim']
- self.dropout_prob = dropout
- self.ratio = ratio
- self.word_num = word_num
- self.counting_num = counting_decoder_out_channel
- self.is_train = is_train
- self.init_weight = nn.Linear(self.out_channel, self.hidden_size)
- self.embedding = nn.Embedding(self.word_num, self.input_size)
- self.word_input_gru = nn.GRUCell(self.input_size, self.hidden_size)
- self.word_attention = Attention(hidden_size, attention['attention_dim'])
- self.encoder_feature_conv = nn.Conv2D(
- self.out_channel,
- self.attention_dim,
- kernel_size=attention['word_conv_kernel'],
- padding=attention['word_conv_kernel'] // 2)
- self.word_state_weight = nn.Linear(self.hidden_size, self.hidden_size)
- self.word_embedding_weight = nn.Linear(self.input_size,
- self.hidden_size)
- self.word_context_weight = nn.Linear(self.out_channel, self.hidden_size)
- self.counting_context_weight = nn.Linear(self.counting_num,
- self.hidden_size)
- self.word_convert = nn.Linear(self.hidden_size, self.word_num)
- if dropout:
- self.dropout = nn.Dropout(dropout_ratio)
- def forward(self, cnn_features, labels, counting_preds, images_mask):
- if self.is_train:
- _, num_steps = labels.shape
- else:
- num_steps = 36
- batch_size, _, height, width = cnn_features.shape
- images_mask = images_mask[:, :, ::self.ratio, ::self.ratio]
- word_probs = paddle.zeros((batch_size, num_steps, self.word_num))
- word_alpha_sum = paddle.zeros((batch_size, 1, height, width))
- hidden = self.init_hidden(cnn_features, images_mask)
- counting_context_weighted = self.counting_context_weight(counting_preds)
- cnn_features_trans = self.encoder_feature_conv(cnn_features)
- position_embedding = PositionEmbeddingSine(256, normalize=True)
- pos = position_embedding(cnn_features_trans, images_mask[:, 0, :, :])
- cnn_features_trans = cnn_features_trans + pos
- word = paddle.ones([batch_size, 1], dtype='int64') # init word as sos
- word = word.squeeze(axis=1)
- for i in range(num_steps):
- word_embedding = self.embedding(word)
- _, hidden = self.word_input_gru(word_embedding, hidden)
- word_context_vec, _, word_alpha_sum = self.word_attention(
- cnn_features, cnn_features_trans, hidden, word_alpha_sum,
- images_mask)
- current_state = self.word_state_weight(hidden)
- word_weighted_embedding = self.word_embedding_weight(word_embedding)
- word_context_weighted = self.word_context_weight(word_context_vec)
- if self.dropout_prob:
- word_out_state = self.dropout(
- current_state + word_weighted_embedding +
- word_context_weighted + counting_context_weighted)
- else:
- word_out_state = current_state + word_weighted_embedding + word_context_weighted + counting_context_weighted
- word_prob = self.word_convert(word_out_state)
- word_probs[:, i] = word_prob
- if self.is_train:
- word = labels[:, i]
- else:
- word = word_prob.argmax(1)
- word = paddle.multiply(
- word, labels[:, i]
- ) # labels are oneslike tensor in infer/predict mode
- return word_probs
- def init_hidden(self, features, feature_mask):
- average = paddle.sum(paddle.sum(features * feature_mask, axis=-1),
- axis=-1) / paddle.sum(
- (paddle.sum(feature_mask, axis=-1)), axis=-1)
- average = self.init_weight(average)
- return paddle.tanh(average)
- '''
- Attention Module
- '''
- class Attention(nn.Layer):
- def __init__(self, hidden_size, attention_dim):
- super(Attention, self).__init__()
- self.hidden = hidden_size
- self.attention_dim = attention_dim
- self.hidden_weight = nn.Linear(self.hidden, self.attention_dim)
- self.attention_conv = nn.Conv2D(
- 1, 512, kernel_size=11, padding=5, bias_attr=False)
- self.attention_weight = nn.Linear(
- 512, self.attention_dim, bias_attr=False)
- self.alpha_convert = nn.Linear(self.attention_dim, 1)
- def forward(self,
- cnn_features,
- cnn_features_trans,
- hidden,
- alpha_sum,
- image_mask=None):
- query = self.hidden_weight(hidden)
- alpha_sum_trans = self.attention_conv(alpha_sum)
- coverage_alpha = self.attention_weight(
- paddle.transpose(alpha_sum_trans, [0, 2, 3, 1]))
- alpha_score = paddle.tanh(
- paddle.unsqueeze(query, [1, 2]) + coverage_alpha + paddle.transpose(
- cnn_features_trans, [0, 2, 3, 1]))
- energy = self.alpha_convert(alpha_score)
- energy = energy - energy.max()
- energy_exp = paddle.exp(paddle.squeeze(energy, -1))
- if image_mask is not None:
- energy_exp = energy_exp * paddle.squeeze(image_mask, 1)
- alpha = energy_exp / (paddle.unsqueeze(
- paddle.sum(paddle.sum(energy_exp, -1), -1), [1, 2]) + 1e-10)
- alpha_sum = paddle.unsqueeze(alpha, 1) + alpha_sum
- context_vector = paddle.sum(
- paddle.sum((paddle.unsqueeze(alpha, 1) * cnn_features), -1), -1)
- return context_vector, alpha, alpha_sum
- class CANHead(nn.Layer):
- def __init__(self, in_channel, out_channel, ratio, attdecoder, **kwargs):
- super(CANHead, self).__init__()
- self.in_channel = in_channel
- self.out_channel = out_channel
- self.counting_decoder1 = CountingDecoder(self.in_channel,
- self.out_channel, 3) # mscm
- self.counting_decoder2 = CountingDecoder(self.in_channel,
- self.out_channel, 5)
- self.decoder = AttDecoder(ratio, **attdecoder)
- self.ratio = ratio
- def forward(self, inputs, targets=None):
- cnn_features, images_mask, labels = inputs
- counting_mask = images_mask[:, :, ::self.ratio, ::self.ratio]
- counting_preds1, _ = self.counting_decoder1(cnn_features, counting_mask)
- counting_preds2, _ = self.counting_decoder2(cnn_features, counting_mask)
- counting_preds = (counting_preds1 + counting_preds2) / 2
- word_probs = self.decoder(cnn_features, labels, counting_preds,
- images_mask)
- return word_probs, counting_preds, counting_preds1, counting_preds2
|