123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869 |
- # copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import math
- import paddle
- from paddle import nn
- import paddle.nn.functional as F
- from paddle import ParamAttr
- import math
- from paddle.nn.initializer import TruncatedNormal, Constant, Normal
- ones_ = Constant(value=1.)
- zeros_ = Constant(value=0.)
- class CT_Head(nn.Layer):
- def __init__(self,
- in_channels,
- hidden_dim,
- num_classes,
- loss_kernel=None,
- loss_loc=None):
- super(CT_Head, self).__init__()
- self.conv1 = nn.Conv2D(
- in_channels, hidden_dim, kernel_size=3, stride=1, padding=1)
- self.bn1 = nn.BatchNorm2D(hidden_dim)
- self.relu1 = nn.ReLU()
- self.conv2 = nn.Conv2D(
- hidden_dim, num_classes, kernel_size=1, stride=1, padding=0)
- for m in self.sublayers():
- if isinstance(m, nn.Conv2D):
- n = m._kernel_size[0] * m._kernel_size[1] * m._out_channels
- normal_ = Normal(mean=0.0, std=math.sqrt(2. / n))
- normal_(m.weight)
- elif isinstance(m, nn.BatchNorm2D):
- zeros_(m.bias)
- ones_(m.weight)
- def _upsample(self, x, scale=1):
- return F.upsample(x, scale_factor=scale, mode='bilinear')
- def forward(self, f, targets=None):
- out = self.conv1(f)
- out = self.relu1(self.bn1(out))
- out = self.conv2(out)
- if self.training:
- out = self._upsample(out, scale=4)
- return {'maps': out}
- else:
- score = F.sigmoid(out[:, 0, :, :])
- return {'maps': out, 'score': score}
|