12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970 |
- # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """
- This code is refer from:
- https://github.com/JiaquanYe/TableMASTER-mmocr/tree/master/mmocr/models/textrecog/losses
- """
- import paddle
- from paddle import nn
- class TableMasterLoss(nn.Layer):
- def __init__(self, ignore_index=-1):
- super(TableMasterLoss, self).__init__()
- self.structure_loss = nn.CrossEntropyLoss(
- ignore_index=ignore_index, reduction='mean')
- self.box_loss = nn.L1Loss(reduction='sum')
- self.eps = 1e-12
- def forward(self, predicts, batch):
- # structure_loss
- structure_probs = predicts['structure_probs']
- structure_targets = batch[1]
- structure_targets = structure_targets[:, 1:]
- structure_probs = structure_probs.reshape(
- [-1, structure_probs.shape[-1]])
- structure_targets = structure_targets.reshape([-1])
- structure_loss = self.structure_loss(structure_probs, structure_targets)
- structure_loss = structure_loss.mean()
- losses = dict(structure_loss=structure_loss)
- # box loss
- bboxes_preds = predicts['loc_preds']
- bboxes_targets = batch[2][:, 1:, :]
- bbox_masks = batch[3][:, 1:]
- # mask empty-bbox or non-bbox structure token's bbox.
- masked_bboxes_preds = bboxes_preds * bbox_masks
- masked_bboxes_targets = bboxes_targets * bbox_masks
- # horizon loss (x and width)
- horizon_sum_loss = self.box_loss(masked_bboxes_preds[:, :, 0::2],
- masked_bboxes_targets[:, :, 0::2])
- horizon_loss = horizon_sum_loss / (bbox_masks.sum() + self.eps)
- # vertical loss (y and height)
- vertical_sum_loss = self.box_loss(masked_bboxes_preds[:, :, 1::2],
- masked_bboxes_targets[:, :, 1::2])
- vertical_loss = vertical_sum_loss / (bbox_masks.sum() + self.eps)
- horizon_loss = horizon_loss.mean()
- vertical_loss = vertical_loss.mean()
- all_loss = structure_loss + horizon_loss + vertical_loss
- losses.update({
- 'loss': all_loss,
- 'horizon_bbox_loss': horizon_loss,
- 'vertical_bbox_loss': vertical_loss
- })
- return losses
|