123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528 |
- // This code is refer from:
- // https://github.com/open-mmlab/mmcv/blob/master/mmcv/ops/csrc/pytorch/cpu/roi_align_rotated.cpp
- #include <cassert>
- #include <cmath>
- #include <vector>
- #include "paddle/extension.h"
- #define PADDLE_WITH_CUDA
- #define CHECK_INPUT_SAME(x1, x2) \
- PD_CHECK(x1.place() == x2.place(), "input must be smae pacle.")
- #define CHECK_INPUT_CPU(x) PD_CHECK(x.is_cpu(), #x " must be a CPU Tensor.")
- template <typename T> struct PreCalc {
- int pos1;
- int pos2;
- int pos3;
- int pos4;
- T w1;
- T w2;
- T w3;
- T w4;
- };
- template <typename T>
- void pre_calc_for_bilinear_interpolate(
- const int height, const int width, const int pooled_height,
- const int pooled_width, const int iy_upper, const int ix_upper,
- T roi_start_h, T roi_start_w, T bin_size_h, T bin_size_w,
- int roi_bin_grid_h, int roi_bin_grid_w, T roi_center_h, T roi_center_w,
- T cos_theta, T sin_theta, std::vector<PreCalc<T>> &pre_calc) {
- int pre_calc_index = 0;
- for (int ph = 0; ph < pooled_height; ph++) {
- for (int pw = 0; pw < pooled_width; pw++) {
- for (int iy = 0; iy < iy_upper; iy++) {
- const T yy = roi_start_h + ph * bin_size_h +
- static_cast<T>(iy + .5f) * bin_size_h /
- static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
- for (int ix = 0; ix < ix_upper; ix++) {
- const T xx = roi_start_w + pw * bin_size_w +
- static_cast<T>(ix + .5f) * bin_size_w /
- static_cast<T>(roi_bin_grid_w);
- // Rotate by theta around the center and translate
- // In image space, (y, x) is the order for Right Handed System,
- // and this is essentially multiplying the point by a rotation matrix
- // to rotate it counterclockwise through angle theta.
- T y = yy * cos_theta - xx * sin_theta + roi_center_h;
- T x = yy * sin_theta + xx * cos_theta + roi_center_w;
- // deal with: inverse elements are out of feature map boundary
- if (y < -1.0 || y > height || x < -1.0 || x > width) {
- // empty
- PreCalc<T> pc;
- pc.pos1 = 0;
- pc.pos2 = 0;
- pc.pos3 = 0;
- pc.pos4 = 0;
- pc.w1 = 0;
- pc.w2 = 0;
- pc.w3 = 0;
- pc.w4 = 0;
- pre_calc[pre_calc_index] = pc;
- pre_calc_index += 1;
- continue;
- }
- if (y < 0) {
- y = 0;
- }
- if (x < 0) {
- x = 0;
- }
- int y_low = (int)y;
- int x_low = (int)x;
- int y_high;
- int x_high;
- if (y_low >= height - 1) {
- y_high = y_low = height - 1;
- y = (T)y_low;
- } else {
- y_high = y_low + 1;
- }
- if (x_low >= width - 1) {
- x_high = x_low = width - 1;
- x = (T)x_low;
- } else {
- x_high = x_low + 1;
- }
- T ly = y - y_low;
- T lx = x - x_low;
- T hy = 1. - ly, hx = 1. - lx;
- T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
- // save weights and indices
- PreCalc<T> pc;
- pc.pos1 = y_low * width + x_low;
- pc.pos2 = y_low * width + x_high;
- pc.pos3 = y_high * width + x_low;
- pc.pos4 = y_high * width + x_high;
- pc.w1 = w1;
- pc.w2 = w2;
- pc.w3 = w3;
- pc.w4 = w4;
- pre_calc[pre_calc_index] = pc;
- pre_calc_index += 1;
- }
- }
- }
- }
- }
- template <typename T>
- void roi_align_rotated_cpu_forward(const int nthreads, const T *input,
- const T &spatial_scale, const bool aligned,
- const bool clockwise, const int channels,
- const int height, const int width,
- const int pooled_height,
- const int pooled_width,
- const int sampling_ratio, const T *rois,
- T *output) {
- int n_rois = nthreads / channels / pooled_width / pooled_height;
- // (n, c, ph, pw) is an element in the pooled output
- // can be parallelized using omp
- // #pragma omp parallel for num_threads(32)
- for (int n = 0; n < n_rois; n++) {
- int index_n = n * channels * pooled_width * pooled_height;
- const T *current_roi = rois + n * 6;
- int roi_batch_ind = current_roi[0];
- // Do not use rounding; this implementation detail is critical
- T offset = aligned ? (T)0.5 : (T)0.0;
- T roi_center_w = current_roi[1] * spatial_scale - offset;
- T roi_center_h = current_roi[2] * spatial_scale - offset;
- T roi_width = current_roi[3] * spatial_scale;
- T roi_height = current_roi[4] * spatial_scale;
- T theta = current_roi[5];
- if (clockwise) {
- theta = -theta; // If clockwise, the angle needs to be reversed.
- }
- T cos_theta = cos(theta);
- T sin_theta = sin(theta);
- if (aligned) {
- assert(roi_width >= 0 && roi_height >= 0);
- } else { // for backward-compatibility only
- roi_width = std::max(roi_width, (T)1.);
- roi_height = std::max(roi_height, (T)1.);
- }
- T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
- T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
- // We use roi_bin_grid to sample the grid and mimic integral
- int roi_bin_grid_h = (sampling_ratio > 0)
- ? sampling_ratio
- : ceilf(roi_height / pooled_height); // e.g., = 2
- int roi_bin_grid_w =
- (sampling_ratio > 0) ? sampling_ratio : ceilf(roi_width / pooled_width);
- // We do average (integral) pooling inside a bin
- const T count = std::max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4
- // we want to precalculate indices and weights shared by all channels,
- // this is the key point of optimization
- std::vector<PreCalc<T>> pre_calc(roi_bin_grid_h * roi_bin_grid_w *
- pooled_width * pooled_height);
- // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y).
- // Appropriate translation needs to be applied after.
- T roi_start_h = -roi_height / 2.0;
- T roi_start_w = -roi_width / 2.0;
- pre_calc_for_bilinear_interpolate(
- height, width, pooled_height, pooled_width, roi_bin_grid_h,
- roi_bin_grid_w, roi_start_h, roi_start_w, bin_size_h, bin_size_w,
- roi_bin_grid_h, roi_bin_grid_w, roi_center_h, roi_center_w, cos_theta,
- sin_theta, pre_calc);
- for (int c = 0; c < channels; c++) {
- int index_n_c = index_n + c * pooled_width * pooled_height;
- const T *offset_input =
- input + (roi_batch_ind * channels + c) * height * width;
- int pre_calc_index = 0;
- for (int ph = 0; ph < pooled_height; ph++) {
- for (int pw = 0; pw < pooled_width; pw++) {
- int index = index_n_c + ph * pooled_width + pw;
- T output_val = 0.;
- for (int iy = 0; iy < roi_bin_grid_h; iy++) {
- for (int ix = 0; ix < roi_bin_grid_w; ix++) {
- PreCalc<T> pc = pre_calc[pre_calc_index];
- output_val += pc.w1 * offset_input[pc.pos1] +
- pc.w2 * offset_input[pc.pos2] +
- pc.w3 * offset_input[pc.pos3] +
- pc.w4 * offset_input[pc.pos4];
- pre_calc_index += 1;
- }
- }
- output_val /= count;
- output[index] = output_val;
- } // for pw
- } // for ph
- } // for c
- } // for n
- }
- template <typename T>
- void bilinear_interpolate_gradient(const int height, const int width, T y, T x,
- T &w1, T &w2, T &w3, T &w4, int &x_low,
- int &x_high, int &y_low, int &y_high) {
- // deal with cases that inverse elements are out of feature map boundary
- if (y < -1.0 || y > height || x < -1.0 || x > width) {
- // empty
- w1 = w2 = w3 = w4 = 0.;
- x_low = x_high = y_low = y_high = -1;
- return;
- }
- if (y < 0) {
- y = 0;
- }
- if (x < 0) {
- x = 0;
- }
- y_low = (int)y;
- x_low = (int)x;
- if (y_low >= height - 1) {
- y_high = y_low = height - 1;
- y = (T)y_low;
- } else {
- y_high = y_low + 1;
- }
- if (x_low >= width - 1) {
- x_high = x_low = width - 1;
- x = (T)x_low;
- } else {
- x_high = x_low + 1;
- }
- T ly = y - y_low;
- T lx = x - x_low;
- T hy = 1. - ly, hx = 1. - lx;
- // reference in forward
- // T v1 = input[y_low * width + x_low];
- // T v2 = input[y_low * width + x_high];
- // T v3 = input[y_high * width + x_low];
- // T v4 = input[y_high * width + x_high];
- // T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
- w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx;
- return;
- }
- template <class T> inline void add(T *address, const T &val) {
- *address += val;
- }
- template <typename T>
- void roi_align_rotated_cpu_backward(
- const int nthreads,
- // may not be contiguous. should index using n_stride, etc
- const T *grad_output, const T &spatial_scale, const bool aligned,
- const bool clockwise, const int channels, const int height, const int width,
- const int pooled_height, const int pooled_width, const int sampling_ratio,
- T *grad_input, const T *rois, const int n_stride, const int c_stride,
- const int h_stride, const int w_stride) {
- for (int index = 0; index < nthreads; index++) {
- // (n, c, ph, pw) is an element in the pooled output
- int pw = index % pooled_width;
- int ph = (index / pooled_width) % pooled_height;
- int c = (index / pooled_width / pooled_height) % channels;
- int n = index / pooled_width / pooled_height / channels;
- const T *current_roi = rois + n * 6;
- int roi_batch_ind = current_roi[0];
- // Do not use rounding; this implementation detail is critical
- T offset = aligned ? (T)0.5 : (T)0.0;
- T roi_center_w = current_roi[1] * spatial_scale - offset;
- T roi_center_h = current_roi[2] * spatial_scale - offset;
- T roi_width = current_roi[3] * spatial_scale;
- T roi_height = current_roi[4] * spatial_scale;
- T theta = current_roi[5];
- if (clockwise) {
- theta = -theta; // If clockwise, the angle needs to be reversed.
- }
- T cos_theta = cos(theta);
- T sin_theta = sin(theta);
- if (aligned) {
- assert(roi_width >= 0 && roi_height >= 0);
- } else { // for backward-compatibility only
- roi_width = std::max(roi_width, (T)1.);
- roi_height = std::max(roi_height, (T)1.);
- }
- T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height);
- T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width);
- T *offset_grad_input =
- grad_input + ((roi_batch_ind * channels + c) * height * width);
- int output_offset = n * n_stride + c * c_stride;
- const T *offset_grad_output = grad_output + output_offset;
- const T grad_output_this_bin =
- offset_grad_output[ph * h_stride + pw * w_stride];
- // We use roi_bin_grid to sample the grid and mimic integral
- int roi_bin_grid_h = (sampling_ratio > 0)
- ? sampling_ratio
- : ceilf(roi_height / pooled_height); // e.g., = 2
- int roi_bin_grid_w =
- (sampling_ratio > 0) ? sampling_ratio : ceilf(roi_width / pooled_width);
- // roi_start_h and roi_start_w are computed wrt the center of RoI (x, y).
- // Appropriate translation needs to be applied after.
- T roi_start_h = -roi_height / 2.0;
- T roi_start_w = -roi_width / 2.0;
- // We do average (integral) pooling inside a bin
- const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4
- for (int iy = 0; iy < roi_bin_grid_h; iy++) {
- const T yy = roi_start_h + ph * bin_size_h +
- static_cast<T>(iy + .5f) * bin_size_h /
- static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5
- for (int ix = 0; ix < roi_bin_grid_w; ix++) {
- const T xx = roi_start_w + pw * bin_size_w +
- static_cast<T>(ix + .5f) * bin_size_w /
- static_cast<T>(roi_bin_grid_w);
- // Rotate by theta around the center and translate
- T y = yy * cos_theta - xx * sin_theta + roi_center_h;
- T x = yy * sin_theta + xx * cos_theta + roi_center_w;
- T w1, w2, w3, w4;
- int x_low, x_high, y_low, y_high;
- bilinear_interpolate_gradient(height, width, y, x, w1, w2, w3, w4,
- x_low, x_high, y_low, y_high);
- T g1 = grad_output_this_bin * w1 / count;
- T g2 = grad_output_this_bin * w2 / count;
- T g3 = grad_output_this_bin * w3 / count;
- T g4 = grad_output_this_bin * w4 / count;
- if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) {
- // atomic add is not needed for now since it is single threaded
- add(offset_grad_input + y_low * width + x_low, static_cast<T>(g1));
- add(offset_grad_input + y_low * width + x_high, static_cast<T>(g2));
- add(offset_grad_input + y_high * width + x_low, static_cast<T>(g3));
- add(offset_grad_input + y_high * width + x_high, static_cast<T>(g4));
- } // if
- } // ix
- } // iy
- } // for
- } // ROIAlignRotatedBackward
- std::vector<paddle::Tensor>
- RoIAlignRotatedCPUForward(const paddle::Tensor &input,
- const paddle::Tensor &rois, int aligned_height,
- int aligned_width, float spatial_scale,
- int sampling_ratio, bool aligned, bool clockwise) {
- CHECK_INPUT_CPU(input);
- CHECK_INPUT_CPU(rois);
- auto num_rois = rois.shape()[0];
- auto channels = input.shape()[1];
- auto height = input.shape()[2];
- auto width = input.shape()[3];
- auto output =
- paddle::empty({num_rois, channels, aligned_height, aligned_width},
- input.type(), paddle::CPUPlace());
- auto output_size = output.numel();
- PD_DISPATCH_FLOATING_TYPES(
- input.type(), "roi_align_rotated_cpu_forward", ([&] {
- roi_align_rotated_cpu_forward<data_t>(
- output_size, input.data<data_t>(),
- static_cast<data_t>(spatial_scale), aligned, clockwise, channels,
- height, width, aligned_height, aligned_width, sampling_ratio,
- rois.data<data_t>(), output.data<data_t>());
- }));
- return {output};
- }
- std::vector<paddle::Tensor> RoIAlignRotatedCPUBackward(
- const paddle::Tensor &input, const paddle::Tensor &rois,
- const paddle::Tensor &grad_output, int aligned_height, int aligned_width,
- float spatial_scale, int sampling_ratio, bool aligned, bool clockwise) {
- auto batch_size = input.shape()[0];
- auto channels = input.shape()[1];
- auto height = input.shape()[2];
- auto width = input.shape()[3];
- auto grad_input = paddle::full({batch_size, channels, height, width}, 0.0,
- input.type(), paddle::CPUPlace());
- // get stride values to ensure indexing into gradients is correct.
- int n_stride = grad_output.shape()[0];
- int c_stride = grad_output.shape()[1];
- int h_stride = grad_output.shape()[2];
- int w_stride = grad_output.shape()[3];
- PD_DISPATCH_FLOATING_TYPES(
- grad_output.type(), "roi_align_rotated_cpu_backward", [&] {
- roi_align_rotated_cpu_backward<data_t>(
- grad_output.numel(), grad_output.data<data_t>(),
- static_cast<data_t>(spatial_scale), aligned, clockwise, channels,
- height, width, aligned_height, aligned_width, sampling_ratio,
- grad_input.data<data_t>(), rois.data<data_t>(), n_stride, c_stride,
- h_stride, w_stride);
- });
- return {grad_input};
- }
- #ifdef PADDLE_WITH_CUDA
- std::vector<paddle::Tensor>
- RoIAlignRotatedCUDAForward(const paddle::Tensor &input,
- const paddle::Tensor &rois, int aligned_height,
- int aligned_width, float spatial_scale,
- int sampling_ratio, bool aligned, bool clockwise);
- #endif
- #ifdef PADDLE_WITH_CUDA
- std::vector<paddle::Tensor> RoIAlignRotatedCUDABackward(
- const paddle::Tensor &input, const paddle::Tensor &rois,
- const paddle::Tensor &grad_output, int aligned_height, int aligned_width,
- float spatial_scale, int sampling_ratio, bool aligned, bool clockwise);
- #endif
- std::vector<paddle::Tensor>
- RoIAlignRotatedForward(const paddle::Tensor &input, const paddle::Tensor &rois,
- int aligned_height, int aligned_width,
- float spatial_scale, int sampling_ratio, bool aligned,
- bool clockwise) {
- CHECK_INPUT_SAME(input, rois);
- if (input.is_cpu()) {
- return RoIAlignRotatedCPUForward(input, rois, aligned_height, aligned_width,
- spatial_scale, sampling_ratio, aligned,
- clockwise);
- #ifdef PADDLE_WITH_CUDA
- } else if (input.is_gpu()) {
- return RoIAlignRotatedCUDAForward(input, rois, aligned_height,
- aligned_width, spatial_scale,
- sampling_ratio, aligned, clockwise);
- #endif
- } else {
- PD_THROW("Unsupported device type for forward function of roi align "
- "rotated operator.");
- }
- }
- std::vector<paddle::Tensor>
- RoIAlignRotatedBackward(const paddle::Tensor &input, const paddle::Tensor &rois,
- const paddle::Tensor &grad_output, int aligned_height,
- int aligned_width, float spatial_scale,
- int sampling_ratio, bool aligned, bool clockwise) {
- CHECK_INPUT_SAME(input, rois);
- if (input.is_cpu()) {
- return RoIAlignRotatedCPUBackward(input, rois, grad_output, aligned_height,
- aligned_width, spatial_scale,
- sampling_ratio, aligned, clockwise);
- #ifdef PADDLE_WITH_CUDA
- } else if (input.is_gpu()) {
- return RoIAlignRotatedCUDABackward(input, rois, grad_output, aligned_height,
- aligned_width, spatial_scale,
- sampling_ratio, aligned, clockwise);
- #endif
- } else {
- PD_THROW("Unsupported device type for forward function of roi align "
- "rotated operator.");
- }
- }
- std::vector<std::vector<int64_t>> InferShape(std::vector<int64_t> input_shape,
- std::vector<int64_t> rois_shape) {
- return {{rois_shape[0], input_shape[1], input_shape[2], input_shape[3]}};
- }
- std::vector<std::vector<int64_t>>
- InferBackShape(std::vector<int64_t> input_shape,
- std::vector<int64_t> rois_shape) {
- return {input_shape};
- }
- std::vector<paddle::DataType> InferDtype(paddle::DataType input_dtype,
- paddle::DataType rois_dtype) {
- return {input_dtype};
- }
- PD_BUILD_OP(roi_align_rotated)
- .Inputs({"Input", "Rois"})
- .Outputs({"Output"})
- .Attrs({"aligned_height: int", "aligned_width: int", "spatial_scale: float",
- "sampling_ratio: int", "aligned: bool", "clockwise: bool"})
- .SetKernelFn(PD_KERNEL(RoIAlignRotatedForward))
- .SetInferShapeFn(PD_INFER_SHAPE(InferShape))
- .SetInferDtypeFn(PD_INFER_DTYPE(InferDtype));
- PD_BUILD_GRAD_OP(roi_align_rotated)
- .Inputs({"Input", "Rois", paddle::Grad("Output")})
- .Attrs({"aligned_height: int", "aligned_width: int", "spatial_scale: float",
- "sampling_ratio: int", "aligned: bool", "clockwise: bool"})
- .Outputs({paddle::Grad("Input")})
- .SetKernelFn(PD_KERNEL(RoIAlignRotatedBackward))
- .SetInferShapeFn(PD_INFER_SHAPE(InferBackShape));
|