1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768 |
- ''' Document Localization using Recursive CNN
- Maintainer : Khurram Javed
- Email : kjaved@ualberta.ca '''
- import os
- import cv2
- import numpy as np
- import dataprocessor
- from utils import utils
- def args_processor():
- import argparse
- parser = argparse.ArgumentParser()
- parser.add_argument("-i", "--input-dir", help="Path to data files (Extract images using video_to_image.py first")
- parser.add_argument("-o", "--output-dir", help="Directory to store results")
- parser.add_argument("--dataset", default="smartdoc", help="'smartdoc' or 'selfcollected' dataset")
- return parser.parse_args()
- if __name__ == '__main__':
- args = args_processor()
- input_directory = args.input_dir
- if not os.path.isdir(args.output_dir):
- os.mkdir(args.output_dir)
- import csv
- # Dataset iterator
- if args.dataset=="smartdoc":
- dataset_test = dataprocessor.dataset.SmartDocDirectories(input_directory)
- elif args.dataset=="selfcollected":
- dataset_test = dataprocessor.dataset.SelfCollectedDataset(input_directory)
- else:
- print ("Incorrect dataset type; please choose between smartdoc or selfcollected")
- assert(False)
- with open(os.path.join(args.output_dir, 'gt.csv'), 'a', newline='') as csvfile:
- spamwriter = csv.writer(csvfile, delimiter=',',
- quotechar='|')
- # Counter for file naming
- counter = 0
- for data_elem in dataset_test.myData:
- img_path = data_elem[0]
- target = data_elem[1].reshape((4, 2))
- img = cv2.imread(img_path)
- if args.dataset=="selfcollected":
- target = target / (img.shape[1], img.shape[0])
- target = target * (1920, 1920)
- img = cv2.resize(img, (1920, 1920))
- corner_cords = target
- for angle in range(0, 90, 1):
- print(angle)
- img_rotate, gt_rotate = utils.rotate(img, corner_cords, angle)
- for random_crop in range(0, 1):
- img_list, gt_list = utils.get_corners(img_rotate, gt_rotate)
- for a in range(0, 4):
- counter += 1
- f_name = str(counter).zfill(8)
- print(gt_list[a])
- gt_store = list(np.array(gt_list[a]) / (300, 300))
- img_store = cv2.resize(img_list[a], (64, 64))
- # cv2.circle(img_store, tuple(list((np.array(gt_store)*64).astype(int))), 2, (255, 0, 0), 2)
- cv2.imwrite(os.path.join(args.output_dir, f_name + ".jpg"),
- img_store, [int(cv2.IMWRITE_JPEG_QUALITY), 80])
- spamwriter.writerow((f_name + ".jpg", tuple(gt_store)))
|