123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import sys
- # add python path of PadleDetection to sys.path
- parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
- sys.path.insert(0, parent_path)
- # ignore warning log
- import warnings
- warnings.filterwarnings('ignore')
- import paddle
- from ppdet.core.workspace import load_config, merge_config
- from ppdet.engine import Trainer, TrainerCot, init_parallel_env, set_random_seed, init_fleet_env
- from ppdet.engine.trainer_ssod import Trainer_DenseTeacher
- from ppdet.slim import build_slim_model
- from ppdet.utils.cli import ArgsParser, merge_args
- import ppdet.utils.check as check
- from ppdet.utils.logger import setup_logger
- logger = setup_logger('train')
- def parse_args():
- parser = ArgsParser()
- parser.add_argument(
- "--eval",
- action='store_true',
- default=False,
- help="Whether to perform evaluation in train")
- parser.add_argument(
- "-r", "--resume", default=None, help="weights path for resume")
- parser.add_argument(
- "--slim_config",
- default=None,
- type=str,
- help="Configuration file of slim method.")
- parser.add_argument(
- "--enable_ce",
- type=bool,
- default=False,
- help="If set True, enable continuous evaluation job."
- "This flag is only used for internal test.")
- parser.add_argument(
- "--amp",
- action='store_true',
- default=False,
- help="Enable auto mixed precision training.")
- parser.add_argument(
- "--fleet", action='store_true', default=False, help="Use fleet or not")
- parser.add_argument(
- "--use_vdl",
- type=bool,
- default=False,
- help="whether to record the data to VisualDL.")
- parser.add_argument(
- '--vdl_log_dir',
- type=str,
- default="vdl_log_dir/scalar",
- help='VisualDL logging directory for scalar.')
- parser.add_argument(
- "--use_wandb",
- type=bool,
- default=False,
- help="whether to record the data to wandb.")
- parser.add_argument(
- '--save_prediction_only',
- action='store_true',
- default=False,
- help='Whether to save the evaluation results only')
- parser.add_argument(
- '--profiler_options',
- type=str,
- default=None,
- help="The option of profiler, which should be in "
- "format \"key1=value1;key2=value2;key3=value3\"."
- "please see ppdet/utils/profiler.py for detail.")
- parser.add_argument(
- '--save_proposals',
- action='store_true',
- default=False,
- help='Whether to save the train proposals')
- parser.add_argument(
- '--proposals_path',
- type=str,
- default="sniper/proposals.json",
- help='Train proposals directory')
- parser.add_argument(
- "--to_static",
- action='store_true',
- default=False,
- help="Enable dy2st to train.")
- args = parser.parse_args()
- return args
- def run(FLAGS, cfg):
- # init fleet environment
- if cfg.fleet:
- init_fleet_env(cfg.get('find_unused_parameters', False))
- else:
- # init parallel environment if nranks > 1
- init_parallel_env()
- if FLAGS.enable_ce:
- set_random_seed(0)
- # build trainer
- ssod_method = cfg.get('ssod_method', None)
- if ssod_method is not None:
- if ssod_method == 'DenseTeacher':
- trainer = Trainer_DenseTeacher(cfg, mode='train')
- else:
- raise ValueError(
- "Semi-Supervised Object Detection only support DenseTeacher now."
- )
- elif cfg.get('use_cot', False):
- trainer = TrainerCot(cfg, mode='train')
- else:
- trainer = Trainer(cfg, mode='train')
- # load weights
- if FLAGS.resume is not None:
- trainer.resume_weights(FLAGS.resume)
- elif 'pretrain_weights' in cfg and cfg.pretrain_weights:
- trainer.load_weights(cfg.pretrain_weights)
- # training
- trainer.train(FLAGS.eval)
- def main():
- FLAGS = parse_args()
- cfg = load_config(FLAGS.config)
- merge_args(cfg, FLAGS)
- merge_config(FLAGS.opt)
- # disable npu in config by default
- if 'use_npu' not in cfg:
- cfg.use_npu = False
- # disable xpu in config by default
- if 'use_xpu' not in cfg:
- cfg.use_xpu = False
- if 'use_gpu' not in cfg:
- cfg.use_gpu = False
- # disable mlu in config by default
- if 'use_mlu' not in cfg:
- cfg.use_mlu = False
- if cfg.use_gpu:
- place = paddle.set_device('gpu')
- elif cfg.use_npu:
- place = paddle.set_device('npu')
- elif cfg.use_xpu:
- place = paddle.set_device('xpu')
- elif cfg.use_mlu:
- place = paddle.set_device('mlu')
- else:
- place = paddle.set_device('cpu')
- if FLAGS.slim_config:
- cfg = build_slim_model(cfg, FLAGS.slim_config)
- # FIXME: Temporarily solve the priority problem of FLAGS.opt
- merge_config(FLAGS.opt)
- check.check_config(cfg)
- check.check_gpu(cfg.use_gpu)
- check.check_npu(cfg.use_npu)
- check.check_xpu(cfg.use_xpu)
- check.check_mlu(cfg.use_mlu)
- check.check_version()
- run(FLAGS, cfg)
- if __name__ == "__main__":
- main()
|