123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import os
- import json
- import argparse
- import numpy as np
- def save_json(path, images, annotations, categories):
- new_json = {
- 'images': images,
- 'annotations': annotations,
- 'categories': categories,
- }
- with open(path, 'w') as f:
- json.dump(new_json, f)
- print('{} saved, with {} images and {} annotations.'.format(
- path, len(images), len(annotations)))
- def gen_semi_data(data_dir,
- json_file,
- percent=10.0,
- seed=1,
- seed_offset=0,
- txt_file=None):
- json_name = json_file.split('/')[-1].split('.')[0]
- json_file = os.path.join(data_dir, json_file)
- anno = json.load(open(json_file, 'r'))
- categories = anno['categories']
- all_images = anno['images']
- all_anns = anno['annotations']
- print(
- 'Totally {} images and {} annotations, about {} gts per image.'.format(
- len(all_images), len(all_anns), len(all_anns) / len(all_images)))
- if txt_file:
- print('Using percent {} and seed {}.'.format(percent, seed))
- txt_file = os.path.join(data_dir, txt_file)
- sup_idx = json.load(open(txt_file, 'r'))[str(percent)][str(seed)]
- # max(sup_idx) = 117262 # 10%, sup_idx is not image_id
- else:
- np.random.seed(seed + seed_offset)
- sup_len = int(percent / 100.0 * len(all_images))
- sup_idx = np.random.choice(
- range(len(all_images)), size=sup_len, replace=False)
- labeled_images, labeled_anns = [], []
- labeled_im_ids = []
- unlabeled_images, unlabeled_anns = [], []
- for i in range(len(all_images)):
- if i in sup_idx:
- labeled_im_ids.append(all_images[i]['id'])
- labeled_images.append(all_images[i])
- else:
- unlabeled_images.append(all_images[i])
- for an in all_anns:
- im_id = an['image_id']
- if im_id in labeled_im_ids:
- labeled_anns.append(an)
- else:
- continue
- save_path = '{}/{}'.format(data_dir, 'semi_annotations')
- if not os.path.exists(save_path):
- os.mkdir(save_path)
- sup_name = '{}.{}@{}.json'.format(json_name, seed, int(percent))
- sup_path = os.path.join(save_path, sup_name)
- save_json(sup_path, labeled_images, labeled_anns, categories)
- unsup_name = '{}.{}@{}-unlabeled.json'.format(json_name, seed, int(percent))
- unsup_path = os.path.join(save_path, unsup_name)
- save_json(unsup_path, unlabeled_images, unlabeled_anns, categories)
- if __name__ == '__main__':
- parser = argparse.ArgumentParser()
- parser.add_argument('--data_dir', type=str, default='./dataset/coco')
- parser.add_argument(
- '--json_file', type=str, default='annotations/instances_train2017.json')
- parser.add_argument('--percent', type=float, default=10.0)
- parser.add_argument('--seed', type=int, default=1)
- parser.add_argument('--seed_offset', type=int, default=0)
- parser.add_argument('--txt_file', type=str, default='COCO_supervision.txt')
- args = parser.parse_args()
- print(args)
- gen_semi_data(args.data_dir, args.json_file, args.percent, args.seed,
- args.seed_offset, args.txt_file)
|