123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import os
- import sys
- # add python path of PadleDetection to sys.path
- parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
- sys.path.insert(0, parent_path)
- # ignore warning log
- import warnings
- warnings.filterwarnings('ignore')
- import paddle
- from ppdet.core.workspace import load_config, merge_config
- from ppdet.utils.check import check_gpu, check_version, check_config
- from ppdet.utils.cli import ArgsParser
- from ppdet.engine import Trainer
- from ppdet.slim import build_slim_model
- from ppdet.utils.logger import setup_logger
- logger = setup_logger('export_model')
- def parse_args():
- parser = ArgsParser()
- parser.add_argument(
- "--output_dir",
- type=str,
- default="output_inference",
- help="Directory for storing the output model files.")
- parser.add_argument(
- "--export_serving_model",
- type=bool,
- default=False,
- help="Whether to export serving model or not.")
- parser.add_argument(
- "--slim_config",
- default=None,
- type=str,
- help="Configuration file of slim method.")
- args = parser.parse_args()
- return args
- def run(FLAGS, cfg):
- # build detector
- trainer = Trainer(cfg, mode='test')
- # load weights
- if cfg.architecture in ['DeepSORT', 'ByteTrack']:
- trainer.load_weights_sde(cfg.det_weights, cfg.reid_weights)
- else:
- trainer.load_weights(cfg.weights)
- # export model
- trainer.export(FLAGS.output_dir)
- if FLAGS.export_serving_model:
- from paddle_serving_client.io import inference_model_to_serving
- model_name = os.path.splitext(os.path.split(cfg.filename)[-1])[0]
- inference_model_to_serving(
- dirname="{}/{}".format(FLAGS.output_dir, model_name),
- serving_server="{}/{}/serving_server".format(FLAGS.output_dir,
- model_name),
- serving_client="{}/{}/serving_client".format(FLAGS.output_dir,
- model_name),
- model_filename="model.pdmodel",
- params_filename="model.pdiparams")
- def main():
- paddle.set_device("cpu")
- FLAGS = parse_args()
- cfg = load_config(FLAGS.config)
- merge_config(FLAGS.opt)
- if FLAGS.slim_config:
- cfg = build_slim_model(cfg, FLAGS.slim_config, mode='test')
- # FIXME: Temporarily solve the priority problem of FLAGS.opt
- merge_config(FLAGS.opt)
- check_config(cfg)
- if 'use_gpu' not in cfg:
- cfg.use_gpu = False
- check_gpu(cfg.use_gpu)
- check_version()
- run(FLAGS, cfg)
- if __name__ == '__main__':
- main()
|