123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365 |
- #!/bin/bash
- source test_tipc/utils_func.sh
- FILENAME=$1
- # MODE be one of ['lite_train_lite_infer' 'lite_train_whole_infer'
- # 'whole_train_whole_infer', 'whole_infer', 'klquant_whole_infer']
- MODE=$2
- # parse params
- dataline=$(cat ${FILENAME})
- IFS=$'\n'
- lines=(${dataline})
- # The training params
- model_name=$(func_parser_value "${lines[1]}")
- echo "ppdet python_infer: ${model_name}"
- python=$(func_parser_value "${lines[2]}")
- gpu_list=$(func_parser_value "${lines[3]}")
- train_use_gpu_key=$(func_parser_key "${lines[4]}")
- train_use_gpu_value=$(func_parser_value "${lines[4]}")
- autocast_list=$(func_parser_value "${lines[5]}")
- autocast_key=$(func_parser_key "${lines[5]}")
- epoch_key=$(func_parser_key "${lines[6]}")
- epoch_num=$(func_parser_params "${lines[6]}")
- save_model_key=$(func_parser_key "${lines[7]}")
- train_batch_key=$(func_parser_key "${lines[8]}")
- train_batch_value=$(func_parser_params "${lines[8]}")
- pretrain_model_key=$(func_parser_key "${lines[9]}")
- pretrain_model_value=$(func_parser_value "${lines[9]}")
- train_model_name=$(func_parser_value "${lines[10]}")
- train_infer_img_dir=$(func_parser_value "${lines[11]}")
- train_param_key1=$(func_parser_key "${lines[12]}")
- train_param_value1=$(func_parser_value "${lines[12]}")
- trainer_list=$(func_parser_value "${lines[14]}")
- norm_key=$(func_parser_key "${lines[15]}")
- norm_trainer=$(func_parser_value "${lines[15]}")
- pact_key=$(func_parser_key "${lines[16]}")
- pact_trainer=$(func_parser_value "${lines[16]}")
- fpgm_key=$(func_parser_key "${lines[17]}")
- fpgm_trainer=$(func_parser_value "${lines[17]}")
- distill_key=$(func_parser_key "${lines[18]}")
- distill_trainer=$(func_parser_value "${lines[18]}")
- trainer_key1=$(func_parser_key "${lines[19]}")
- trainer_value1=$(func_parser_value "${lines[19]}")
- trainer_key2=$(func_parser_key "${lines[20]}")
- trainer_value2=$(func_parser_value "${lines[20]}")
- # eval params
- eval_py=$(func_parser_value "${lines[23]}")
- eval_key1=$(func_parser_key "${lines[24]}")
- eval_value1=$(func_parser_value "${lines[24]}")
- # export params
- save_export_key=$(func_parser_key "${lines[27]}")
- save_export_value=$(func_parser_value "${lines[27]}")
- export_weight_key=$(func_parser_key "${lines[28]}")
- export_weight_value=$(func_parser_value "${lines[28]}")
- norm_export=$(func_parser_value "${lines[29]}")
- pact_export=$(func_parser_value "${lines[30]}")
- fpgm_export=$(func_parser_value "${lines[31]}")
- distill_export=$(func_parser_value "${lines[32]}")
- export_key1=$(func_parser_key "${lines[33]}")
- export_value1=$(func_parser_value "${lines[33]}")
- export_onnx_key=$(func_parser_key "${lines[34]}")
- export_value2=$(func_parser_value "${lines[34]}")
- kl_quant_export=$(func_parser_value "${lines[35]}")
- # parser inference model
- infer_mode_list=$(func_parser_value "${lines[37]}")
- infer_is_quant_list=$(func_parser_value "${lines[38]}")
- # parser inference
- inference_py=$(func_parser_value "${lines[39]}")
- use_gpu_key=$(func_parser_key "${lines[40]}")
- use_gpu_list=$(func_parser_value "${lines[40]}")
- use_mkldnn_key=$(func_parser_key "${lines[41]}")
- use_mkldnn_list=$(func_parser_value "${lines[41]}")
- cpu_threads_key=$(func_parser_key "${lines[42]}")
- cpu_threads_list=$(func_parser_value "${lines[42]}")
- batch_size_key=$(func_parser_key "${lines[43]}")
- batch_size_list=$(func_parser_value "${lines[43]}")
- use_trt_key=$(func_parser_key "${lines[44]}")
- use_trt_list=$(func_parser_value "${lines[44]}")
- precision_key=$(func_parser_key "${lines[45]}")
- precision_list=$(func_parser_value "${lines[45]}")
- infer_model_key=$(func_parser_key "${lines[46]}")
- image_dir_key=$(func_parser_key "${lines[47]}")
- infer_img_dir=$(func_parser_value "${lines[47]}")
- save_log_key=$(func_parser_key "${lines[48]}")
- benchmark_key=$(func_parser_key "${lines[49]}")
- benchmark_value=$(func_parser_value "${lines[49]}")
- infer_key1=$(func_parser_key "${lines[50]}")
- infer_value1=$(func_parser_value "${lines[50]}")
- LOG_PATH="./test_tipc/output/${model_name}/${MODE}"
- mkdir -p ${LOG_PATH}
- status_log="${LOG_PATH}/results_python.log"
- line_num=`grep -n -w "to_static_train_benchmark_params" $FILENAME | cut -d ":" -f 1`
- to_static_key=$(func_parser_key "${lines[line_num]}")
- to_static_trainer=$(func_parser_value "${lines[line_num]}")
- function func_inference(){
- IFS='|'
- _python=$1
- _script=$2
- _model_dir=$3
- _log_path=$4
- _img_dir=$5
- _flag_quant=$6
- _gpu=$7
- # inference
- for use_gpu in ${use_gpu_list[*]}; do
- if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
- for use_mkldnn in ${use_mkldnn_list[*]}; do
- if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
- continue
- fi
- for threads in ${cpu_threads_list[*]}; do
- for batch_size in ${batch_size_list[*]}; do
- _save_log_path="${_log_path}/python_infer_cpu_gpus_${gpu}_usemkldnn_${use_mkldnn}_threads_${threads}_mode_paddle_batchsize_${batch_size}.log"
- set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
- set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
- set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
- set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
- set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
- set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
- command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
- eval $command
- last_status=${PIPESTATUS[0]}
- eval "cat ${_save_log_path}"
- status_check $last_status "${command}" "${status_log}" "${model_name}" "${_save_log_path}"
- done
- done
- done
- elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
- for precision in ${precision_list[*]}; do
- if [[ ${precision} != "paddle" ]]; then
- if [[ ${_flag_quant} = "False" ]] && [[ ${precision} = "trt_int8" ]]; then
- continue
- fi
- if [[ ${_flag_quant} = "True" ]] && [[ ${precision} != "trt_int8" ]]; then
- continue
- fi
- fi
- for batch_size in ${batch_size_list[*]}; do
- _save_log_path="${_log_path}/python_infer_gpu_gpus_${gpu}_mode_${precision}_batchsize_${batch_size}.log"
- set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
- set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
- set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
- set_precision=$(func_set_params "${precision_key}" "${precision}")
- set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
- set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
- command="${_python} ${_script} ${use_gpu_key}=${use_gpu} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
- eval $command
- last_status=${PIPESTATUS[0]}
- eval "cat ${_save_log_path}"
- status_check $last_status "${command}" "${status_log}" "${model_name}" "${_save_log_path}"
- done
- done
- else
- echo "Does not support hardware other than CPU and GPU Currently!"
- fi
- done
- }
- if [ ${MODE} = "whole_infer" ] || [ ${MODE} = "klquant_whole_infer" ]; then
- # set CUDA_VISIBLE_DEVICES
- GPUID=$3
- if [ ${#GPUID} -le 0 ];then
- env=" "
- else
- env="export CUDA_VISIBLE_DEVICES=${GPUID}"
- fi
- eval $env
- Count=0
- gpu=0
- IFS="|"
- infer_quant_flag=(${infer_is_quant_list})
- for infer_mode in ${infer_mode_list[*]}; do
- if [ ${infer_mode} = "null" ]; then
- continue
- fi
- if [ ${MODE} = "klquant_whole_infer" ] && [ ${infer_mode} != "kl_quant" ]; then
- continue
- fi
- if [ ${MODE} = "whole_infer" ] && [ ${infer_mode} = "kl_quant" ]; then
- continue
- fi
- # run export
- case ${infer_mode} in
- norm) run_export=${norm_export} ;;
- pact) run_export=${pact_export} ;;
- fpgm) run_export=${fpgm_export} ;;
- distill) run_export=${distill_export} ;;
- kl_quant) run_export=${kl_quant_export} ;;
- *) echo "Undefined infer_mode!"; exit 1;
- esac
- set_export_weight=$(func_set_params "${export_weight_key}" "${export_weight_value}")
- set_save_export_dir=$(func_set_params "${save_export_key}" "${save_export_value}")
- set_filename=$(func_set_params "filename" "${model_name}")
- export_cmd="${python} ${run_export} ${set_export_weight} ${set_filename} ${set_save_export_dir} "
- echo $export_cmd
- eval $export_cmd
- status_check $? "${export_cmd}" "${status_log}" "${model_name}"
- #run inference
- save_export_model_dir="${save_export_value}/${model_name}"
- is_quant=${infer_quant_flag[Count]}
- func_inference "${python}" "${inference_py}" "${save_export_model_dir}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant} "{gpu}"
- Count=$((${Count} + 1))
- done
- else
- IFS="|"
- Count=0
- for gpu in ${gpu_list[*]}; do
- use_gpu=${train_use_gpu_value}
- Count=$((${Count} + 1))
- ips=""
- if [ ${gpu} = "-1" ];then
- env=""
- use_gpu=False
- elif [ ${#gpu} -le 1 ];then
- env="export CUDA_VISIBLE_DEVICES=${gpu}"
- eval ${env}
- elif [ ${#gpu} -le 15 ];then
- IFS=","
- array=(${gpu})
- env="export CUDA_VISIBLE_DEVICES=${array[0]}"
- IFS="|"
- else
- IFS=";"
- array=(${gpu})
- ips=${array[0]}
- gpu=${array[1]}
- IFS="|"
- env=" "
- fi
- for autocast in ${autocast_list[*]}; do
- for trainer in ${trainer_list[*]}; do
- flag_quant=False
- set_to_static=""
- if [ ${trainer} = "${norm_key}" ]; then
- run_train=${norm_trainer}
- run_export=${norm_export}
- elif [ ${trainer} = "${pact_key}" ]; then
- run_train=${pact_trainer}
- run_export=${pact_export}
- flag_quant=True
- elif [ ${trainer} = "${fpgm_key}" ]; then
- run_train=${fpgm_trainer}
- run_export=${fpgm_export}
- elif [ ${trainer} = "${distill_key}" ]; then
- run_train=${distill_trainer}
- run_export=${distill_export}
- elif [ ${trainer} = "${trainer_key1}" ]; then
- run_train=${trainer_value1}
- run_export=${export_value1}
- elif [ ${trainer} = "${trainer_key2}" ]; then
- run_train=${trainer_value2}
- run_export=${export_value2}
- elif [ ${trainer} = "${to_static_key}" ]; then
- run_train=${norm_trainer}
- run_export=${norm_export}
- set_to_static=${to_static_trainer}
- else
- continue
- fi
- if [ ${run_train} = "null" ]; then
- continue
- fi
- set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
- set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
- set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
- set_filename=$(func_set_params "filename" "${model_name}")
- set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}")
- set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
- save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"
- if [ ${autocast} = "amp" ] || [ ${autocast} = "fp16" ]; then
- set_autocast="--amp"
- set_amp_level="amp_level=O2"
- else
- set_autocast=" "
- set_amp_level=" "
- fi
- if [ ${MODE} = "benchmark_train" ]; then
- set_shuffle="TrainReader.shuffle=False"
- set_enable_ce="--enable_ce=True"
- else
- set_shuffle=" "
- set_enable_ce=" "
- fi
- set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
- nodes="1"
- if [ ${#gpu} -le 2 ];then # train with cpu or single gpu
- cmd="${python} ${run_train} LearningRate.base_lr=0.0001 log_iter=1 ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_filename} ${set_shuffle} ${set_amp_level} ${set_enable_ce} ${set_autocast} ${set_to_static} ${set_train_params1}"
- elif [ ${#ips} -le 15 ];then # train with multi-gpu
- cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} log_iter=1 ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_filename} ${set_shuffle} ${set_amp_level} ${set_enable_ce} ${set_autocast} ${set_to_static} ${set_train_params1}"
- else # train with multi-machine
- IFS=","
- ips_array=(${ips})
- nodes=${#ips_array[@]}
- save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}"
- IFS="|"
- set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
- cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} log_iter=1 ${set_use_gpu} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_filename} ${set_shuffle} ${set_amp_level} ${set_enable_ce} ${set_autocast} ${set_to_static} ${set_train_params1}"
- fi
- # run train
- train_log_path="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}.log"
- eval "${cmd} > ${train_log_path} 2>&1"
- last_status=$?
- cat ${train_log_path}
- status_check $last_status "${cmd}" "${status_log}" "${model_name}" "${train_log_path}"
- set_eval_trained_weight=$(func_set_params "${export_weight_key}" "${save_log}/${model_name}/${train_model_name}")
- # run eval
- if [ ${eval_py} != "null" ]; then
- set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
- eval_log_path="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}_eval.log"
- eval_cmd="${python} ${eval_py} ${set_eval_trained_weight} ${set_use_gpu} ${set_eval_params1}"
- eval "${eval_cmd} > ${eval_log_path} 2>&1"
- last_status=$?
- cat ${eval_log_path}
- status_check $last_status "${eval_cmd}" "${status_log}" "${model_name}" "${eval_log_path}"
- fi
- # run export model
- if [ ${run_export} != "null" ]; then
- save_export_model_dir="${save_log}/${model_name}"
- set_export_weight=$(func_set_params "${export_weight_key}" "${save_log}/${model_name}/${train_model_name}")
- set_save_export_dir=$(func_set_params "${save_export_key}" "${save_log}")
- if [ ${export_onnx_key} = "export_onnx" ]; then
- # run export onnx model for rcnn
- export_log_path_onnx=${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}_onnx_export.log
- export_cmd="${python} ${run_export} ${set_export_weight} ${set_filename} export_onnx=True ${set_save_export_dir} >${export_log_path_onnx} 2>&1"
- eval $export_cmd
- status_check $? "${export_cmd}" "${status_log}" "${model_name}" "${export_log_path_onnx}"
- # copy model for inference benchmark
- eval "cp ${save_export_model_dir}/* ${save_log}/"
- fi
- # run export model
- export_log_path="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}_nodes_${nodes}_export.log"
- export_cmd="${python} ${run_export} ${set_export_weight} ${set_filename} ${set_save_export_dir} "
- eval "${export_cmd} > ${export_log_path} 2>&1"
- last_status=$?
- cat ${export_log_path}
- status_check $last_status "${export_cmd}" "${status_log}" "${model_name}" "${export_log_path}"
- #run inference
- if [ ${export_onnx_key} != "export_onnx" ]; then
- # copy model for inference benchmark
- eval "cp ${save_export_model_dir}/* ${save_log}/"
- fi
- eval $env
- func_inference "${python}" "${inference_py}" "${save_export_model_dir}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}" "{gpu}"
- eval "unset CUDA_VISIBLE_DEVICES"
- fi
- done # done with: for trainer in ${trainer_list[*]}; do
- done # done with: for autocast in ${autocast_list[*]}; do
- done # done with: for gpu in ${gpu_list[*]}; do
- fi # end if [ ${MODE} = "infer" ]; then
|