123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import copy
- import paddle
- import paddle.nn as nn
- __all__ = ['fuse_conv_bn']
- def fuse_conv_bn(model):
- is_train = False
- if model.training:
- model.eval()
- is_train = True
- fuse_list = []
- tmp_pair = [None, None]
- for name, layer in model.named_sublayers():
- if isinstance(layer, nn.Conv2D):
- tmp_pair[0] = name
- if isinstance(layer, nn.BatchNorm2D):
- tmp_pair[1] = name
- if tmp_pair[0] and tmp_pair[1] and len(tmp_pair) == 2:
- fuse_list.append(tmp_pair)
- tmp_pair = [None, None]
- model = fuse_layers(model, fuse_list)
- if is_train:
- model.train()
- return model
- def find_parent_layer_and_sub_name(model, name):
- """
- Given the model and the name of a layer, find the parent layer and
- the sub_name of the layer.
- For example, if name is 'block_1/convbn_1/conv_1', the parent layer is
- 'block_1/convbn_1' and the sub_name is `conv_1`.
- Args:
- model(paddle.nn.Layer): the model to be quantized.
- name(string): the name of a layer
- Returns:
- parent_layer, subname
- """
- assert isinstance(model, nn.Layer), \
- "The model must be the instance of paddle.nn.Layer."
- assert len(name) > 0, "The input (name) should not be empty."
- last_idx = 0
- idx = 0
- parent_layer = model
- while idx < len(name):
- if name[idx] == '.':
- sub_name = name[last_idx:idx]
- if hasattr(parent_layer, sub_name):
- parent_layer = getattr(parent_layer, sub_name)
- last_idx = idx + 1
- idx += 1
- sub_name = name[last_idx:idx]
- return parent_layer, sub_name
- class Identity(nn.Layer):
- '''a layer to replace bn or relu layers'''
- def __init__(self, *args, **kwargs):
- super(Identity, self).__init__()
- def forward(self, input):
- return input
- def fuse_layers(model, layers_to_fuse, inplace=False):
- '''
- fuse layers in layers_to_fuse
- Args:
- model(nn.Layer): The model to be fused.
- layers_to_fuse(list): The layers' names to be fused. For
- example,"fuse_list = [["conv1", "bn1"], ["conv2", "bn2"]]".
- A TypeError would be raised if "fuse" was set as
- True but "fuse_list" was None.
- Default: None.
- inplace(bool): Whether apply fusing to the input model.
- Default: False.
- Return
- fused_model(paddle.nn.Layer): The fused model.
- '''
- if not inplace:
- model = copy.deepcopy(model)
- for layers_list in layers_to_fuse:
- layer_list = []
- for layer_name in layers_list:
- parent_layer, sub_name = find_parent_layer_and_sub_name(model,
- layer_name)
- layer_list.append(getattr(parent_layer, sub_name))
- new_layers = _fuse_func(layer_list)
- for i, item in enumerate(layers_list):
- parent_layer, sub_name = find_parent_layer_and_sub_name(model, item)
- setattr(parent_layer, sub_name, new_layers[i])
- return model
- def _fuse_func(layer_list):
- '''choose the fuser method and fuse layers'''
- types = tuple(type(m) for m in layer_list)
- fusion_method = types_to_fusion_method.get(types, None)
- new_layers = [None] * len(layer_list)
- fused_layer = fusion_method(*layer_list)
- for handle_id, pre_hook_fn in layer_list[0]._forward_pre_hooks.items():
- fused_layer.register_forward_pre_hook(pre_hook_fn)
- del layer_list[0]._forward_pre_hooks[handle_id]
- for handle_id, hook_fn in layer_list[-1]._forward_post_hooks.items():
- fused_layer.register_forward_post_hook(hook_fn)
- del layer_list[-1]._forward_post_hooks[handle_id]
- new_layers[0] = fused_layer
- for i in range(1, len(layer_list)):
- identity = Identity()
- identity.training = layer_list[0].training
- new_layers[i] = identity
- return new_layers
- def _fuse_conv_bn(conv, bn):
- '''fuse conv and bn for train or eval'''
- assert(conv.training == bn.training),\
- "Conv and BN both must be in the same mode (train or eval)."
- if conv.training:
- assert bn._num_features == conv._out_channels, 'Output channel of Conv2d must match num_features of BatchNorm2d'
- raise NotImplementedError
- else:
- return _fuse_conv_bn_eval(conv, bn)
- def _fuse_conv_bn_eval(conv, bn):
- '''fuse conv and bn for eval'''
- assert (not (conv.training or bn.training)), "Fusion only for eval!"
- fused_conv = copy.deepcopy(conv)
- fused_weight, fused_bias = _fuse_conv_bn_weights(
- fused_conv.weight, fused_conv.bias, bn._mean, bn._variance, bn._epsilon,
- bn.weight, bn.bias)
- fused_conv.weight.set_value(fused_weight)
- if fused_conv.bias is None:
- fused_conv.bias = paddle.create_parameter(
- shape=[fused_conv._out_channels], is_bias=True, dtype=bn.bias.dtype)
- fused_conv.bias.set_value(fused_bias)
- return fused_conv
- def _fuse_conv_bn_weights(conv_w, conv_b, bn_rm, bn_rv, bn_eps, bn_w, bn_b):
- '''fuse weights and bias of conv and bn'''
- if conv_b is None:
- conv_b = paddle.zeros_like(bn_rm)
- if bn_w is None:
- bn_w = paddle.ones_like(bn_rm)
- if bn_b is None:
- bn_b = paddle.zeros_like(bn_rm)
- bn_var_rsqrt = paddle.rsqrt(bn_rv + bn_eps)
- conv_w = conv_w * \
- (bn_w * bn_var_rsqrt).reshape([-1] + [1] * (len(conv_w.shape) - 1))
- conv_b = (conv_b - bn_rm) * bn_var_rsqrt * bn_w + bn_b
- return conv_w, conv_b
- types_to_fusion_method = {(nn.Conv2D, nn.BatchNorm2D): _fuse_conv_bn, }
|