123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184 |
- # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- from __future__ import absolute_import
- from __future__ import division
- from __future__ import print_function
- import math
- import paddle
- import weakref
- from copy import deepcopy
- __all__ = ['ModelEMA', 'SimpleModelEMA']
- class ModelEMA(object):
- """
- Exponential Weighted Average for Deep Neutal Networks
- Args:
- model (nn.Layer): Detector of model.
- decay (int): The decay used for updating ema parameter.
- Ema's parameter are updated with the formula:
- `ema_param = decay * ema_param + (1 - decay) * cur_param`.
- Defaults is 0.9998.
- ema_decay_type (str): type in ['threshold', 'normal', 'exponential'],
- 'threshold' as default.
- cycle_epoch (int): The epoch of interval to reset ema_param and
- step. Defaults is -1, which means not reset. Its function is to
- add a regular effect to ema, which is set according to experience
- and is effective when the total training epoch is large.
- ema_black_list (set|list|tuple, optional): The custom EMA black_list.
- Blacklist of weight names that will not participate in EMA
- calculation. Default: None.
- """
- def __init__(self,
- model,
- decay=0.9998,
- ema_decay_type='threshold',
- cycle_epoch=-1,
- ema_black_list=None):
- self.step = 0
- self.epoch = 0
- self.decay = decay
- self.ema_decay_type = ema_decay_type
- self.cycle_epoch = cycle_epoch
- self.ema_black_list = self._match_ema_black_list(
- model.state_dict().keys(), ema_black_list)
- self.state_dict = dict()
- for k, v in model.state_dict().items():
- if k in self.ema_black_list:
- self.state_dict[k] = v
- else:
- self.state_dict[k] = paddle.zeros_like(v)
- self._model_state = {
- k: weakref.ref(p)
- for k, p in model.state_dict().items()
- }
- def reset(self):
- self.step = 0
- self.epoch = 0
- for k, v in self.state_dict.items():
- if k in self.ema_black_list:
- self.state_dict[k] = v
- else:
- self.state_dict[k] = paddle.zeros_like(v)
- def resume(self, state_dict, step=0):
- for k, v in state_dict.items():
- if k in self.state_dict:
- if self.state_dict[k].dtype == v.dtype:
- self.state_dict[k] = v
- else:
- self.state_dict[k] = v.astype(self.state_dict[k].dtype)
- self.step = step
- def update(self, model=None):
- if self.ema_decay_type == 'threshold':
- decay = min(self.decay, (1 + self.step) / (10 + self.step))
- elif self.ema_decay_type == 'exponential':
- decay = self.decay * (1 - math.exp(-(self.step + 1) / 2000))
- else:
- decay = self.decay
- self._decay = decay
- if model is not None:
- model_dict = model.state_dict()
- else:
- model_dict = {k: p() for k, p in self._model_state.items()}
- assert all(
- [v is not None for _, v in model_dict.items()]), 'python gc.'
- for k, v in self.state_dict.items():
- if k not in self.ema_black_list:
- v = decay * v + (1 - decay) * model_dict[k]
- v.stop_gradient = True
- self.state_dict[k] = v
- self.step += 1
- def apply(self):
- if self.step == 0:
- return self.state_dict
- state_dict = dict()
- for k, v in self.state_dict.items():
- if k in self.ema_black_list:
- v.stop_gradient = True
- state_dict[k] = v
- else:
- if self.ema_decay_type != 'exponential':
- v = v / (1 - self._decay**self.step)
- v.stop_gradient = True
- state_dict[k] = v
- self.epoch += 1
- if self.cycle_epoch > 0 and self.epoch == self.cycle_epoch:
- self.reset()
- return state_dict
- def _match_ema_black_list(self, weight_name, ema_black_list=None):
- out_list = set()
- if ema_black_list:
- for name in weight_name:
- for key in ema_black_list:
- if key in name:
- out_list.add(name)
- return out_list
- class SimpleModelEMA(object):
- """
- Model Exponential Moving Average from https://github.com/rwightman/pytorch-image-models
- Keep a moving average of everything in the model state_dict (parameters and buffers).
- This is intended to allow functionality like
- https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
- A smoothed version of the weights is necessary for some training schemes to perform well.
- This class is sensitive where it is initialized in the sequence of model init,
- GPU assignment and distributed training wrappers.
- """
- def __init__(self, model=None, decay=0.9996):
- """
- Args:
- model (nn.Module): model to apply EMA.
- decay (float): ema decay reate.
- """
- self.model = deepcopy(model)
- self.decay = decay
- def update(self, model, decay=None):
- if decay is None:
- decay = self.decay
- with paddle.no_grad():
- state = {}
- msd = model.state_dict()
- for k, v in self.model.state_dict().items():
- if paddle.is_floating_point(v):
- v *= decay
- v += (1.0 - decay) * msd[k].detach()
- state[k] = v
- self.model.set_state_dict(state)
- def resume(self, state_dict, step=0):
- state = {}
- msd = state_dict
- for k, v in self.model.state_dict().items():
- if paddle.is_floating_point(v):
- v = msd[k].detach()
- state[k] = v
- self.model.set_state_dict(state)
- self.step = step
|