123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266 |
- # Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # The code is based on
- # https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/anchor_generator.py
- import math
- import paddle
- import paddle.nn as nn
- import numpy as np
- from ppdet.core.workspace import register
- __all__ = ['AnchorGenerator', 'RetinaAnchorGenerator', 'S2ANetAnchorGenerator']
- @register
- class AnchorGenerator(nn.Layer):
- """
- Generate anchors according to the feature maps
- Args:
- anchor_sizes (list[float] | list[list[float]]): The anchor sizes at
- each feature point. list[float] means all feature levels share the
- same sizes. list[list[float]] means the anchor sizes for
- each level. The sizes stand for the scale of input size.
- aspect_ratios (list[float] | list[list[float]]): The aspect ratios at
- each feature point. list[float] means all feature levels share the
- same ratios. list[list[float]] means the aspect ratios for
- each level.
- strides (list[float]): The strides of feature maps which generate
- anchors
- offset (float): The offset of the coordinate of anchors, default 0.
-
- """
- def __init__(self,
- anchor_sizes=[32, 64, 128, 256, 512],
- aspect_ratios=[0.5, 1.0, 2.0],
- strides=[16.0],
- variance=[1.0, 1.0, 1.0, 1.0],
- offset=0.):
- super(AnchorGenerator, self).__init__()
- self.anchor_sizes = anchor_sizes
- self.aspect_ratios = aspect_ratios
- self.strides = strides
- self.variance = variance
- self.cell_anchors = self._calculate_anchors(len(strides))
- self.offset = offset
- def _broadcast_params(self, params, num_features):
- if not isinstance(params[0], (list, tuple)): # list[float]
- return [params] * num_features
- if len(params) == 1:
- return list(params) * num_features
- return params
- def generate_cell_anchors(self, sizes, aspect_ratios):
- anchors = []
- for size in sizes:
- area = size**2.0
- for aspect_ratio in aspect_ratios:
- w = math.sqrt(area / aspect_ratio)
- h = aspect_ratio * w
- x0, y0, x1, y1 = -w / 2.0, -h / 2.0, w / 2.0, h / 2.0
- anchors.append([x0, y0, x1, y1])
- return paddle.to_tensor(anchors, dtype='float32')
- def _calculate_anchors(self, num_features):
- sizes = self._broadcast_params(self.anchor_sizes, num_features)
- aspect_ratios = self._broadcast_params(self.aspect_ratios, num_features)
- cell_anchors = [
- self.generate_cell_anchors(s, a)
- for s, a in zip(sizes, aspect_ratios)
- ]
- [
- self.register_buffer(
- t.name, t, persistable=False) for t in cell_anchors
- ]
- return cell_anchors
- def _create_grid_offsets(self, size, stride, offset):
- grid_height, grid_width = size[0], size[1]
- shifts_x = paddle.arange(
- offset * stride, grid_width * stride, step=stride, dtype='float32')
- shifts_y = paddle.arange(
- offset * stride, grid_height * stride, step=stride, dtype='float32')
- shift_y, shift_x = paddle.meshgrid(shifts_y, shifts_x)
- shift_x = paddle.reshape(shift_x, [-1])
- shift_y = paddle.reshape(shift_y, [-1])
- return shift_x, shift_y
- def _grid_anchors(self, grid_sizes):
- anchors = []
- for size, stride, base_anchors in zip(grid_sizes, self.strides,
- self.cell_anchors):
- shift_x, shift_y = self._create_grid_offsets(size, stride,
- self.offset)
- shifts = paddle.stack((shift_x, shift_y, shift_x, shift_y), axis=1)
- shifts = paddle.reshape(shifts, [-1, 1, 4])
- base_anchors = paddle.reshape(base_anchors, [1, -1, 4])
- anchors.append(paddle.reshape(shifts + base_anchors, [-1, 4]))
- return anchors
- def forward(self, input):
- grid_sizes = [paddle.shape(feature_map)[-2:] for feature_map in input]
- anchors_over_all_feature_maps = self._grid_anchors(grid_sizes)
- return anchors_over_all_feature_maps
- @property
- def num_anchors(self):
- """
- Returns:
- int: number of anchors at every pixel
- location, on that feature map.
- For example, if at every pixel we use anchors of 3 aspect
- ratios and 5 sizes, the number of anchors is 15.
- For FPN models, `num_anchors` on every feature map is the same.
- """
- return len(self.cell_anchors[0])
- @register
- class RetinaAnchorGenerator(AnchorGenerator):
- def __init__(self,
- octave_base_scale=4,
- scales_per_octave=3,
- aspect_ratios=[0.5, 1.0, 2.0],
- strides=[8.0, 16.0, 32.0, 64.0, 128.0],
- variance=[1.0, 1.0, 1.0, 1.0],
- offset=0.0):
- anchor_sizes = []
- for s in strides:
- anchor_sizes.append([
- s * octave_base_scale * 2**(i/scales_per_octave) \
- for i in range(scales_per_octave)])
- super(RetinaAnchorGenerator, self).__init__(
- anchor_sizes=anchor_sizes,
- aspect_ratios=aspect_ratios,
- strides=strides,
- variance=variance,
- offset=offset)
- @register
- class S2ANetAnchorGenerator(nn.Layer):
- """
- AnchorGenerator by paddle
- """
- def __init__(self, base_size, scales, ratios, scale_major=True, ctr=None):
- super(S2ANetAnchorGenerator, self).__init__()
- self.base_size = base_size
- self.scales = paddle.to_tensor(scales)
- self.ratios = paddle.to_tensor(ratios)
- self.scale_major = scale_major
- self.ctr = ctr
- self.base_anchors = self.gen_base_anchors()
- @property
- def num_base_anchors(self):
- return self.base_anchors.shape[0]
- def gen_base_anchors(self):
- w = self.base_size
- h = self.base_size
- if self.ctr is None:
- x_ctr = 0.5 * (w - 1)
- y_ctr = 0.5 * (h - 1)
- else:
- x_ctr, y_ctr = self.ctr
- h_ratios = paddle.sqrt(self.ratios)
- w_ratios = 1 / h_ratios
- if self.scale_major:
- ws = (w * w_ratios[:] * self.scales[:]).reshape([-1])
- hs = (h * h_ratios[:] * self.scales[:]).reshape([-1])
- else:
- ws = (w * self.scales[:] * w_ratios[:]).reshape([-1])
- hs = (h * self.scales[:] * h_ratios[:]).reshape([-1])
- base_anchors = paddle.stack(
- [
- x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1),
- x_ctr + 0.5 * (ws - 1), y_ctr + 0.5 * (hs - 1)
- ],
- axis=-1)
- base_anchors = paddle.round(base_anchors)
- return base_anchors
- def _meshgrid(self, x, y, row_major=True):
- yy, xx = paddle.meshgrid(y, x)
- yy = yy.reshape([-1])
- xx = xx.reshape([-1])
- if row_major:
- return xx, yy
- else:
- return yy, xx
- def forward(self, featmap_size, stride=16):
- # featmap_size*stride project it to original area
- feat_h = featmap_size[0]
- feat_w = featmap_size[1]
- shift_x = paddle.arange(0, feat_w, 1, 'int32') * stride
- shift_y = paddle.arange(0, feat_h, 1, 'int32') * stride
- shift_xx, shift_yy = self._meshgrid(shift_x, shift_y)
- shifts = paddle.stack([shift_xx, shift_yy, shift_xx, shift_yy], axis=-1)
- all_anchors = self.base_anchors[:, :] + shifts[:, :]
- all_anchors = all_anchors.cast(paddle.float32).reshape(
- [feat_h * feat_w, 4])
- all_anchors = self.rect2rbox(all_anchors)
- return all_anchors
- def valid_flags(self, featmap_size, valid_size):
- feat_h, feat_w = featmap_size
- valid_h, valid_w = valid_size
- assert valid_h <= feat_h and valid_w <= feat_w
- valid_x = paddle.zeros([feat_w], dtype='int32')
- valid_y = paddle.zeros([feat_h], dtype='int32')
- valid_x[:valid_w] = 1
- valid_y[:valid_h] = 1
- valid_xx, valid_yy = self._meshgrid(valid_x, valid_y)
- valid = valid_xx & valid_yy
- valid = paddle.reshape(valid, [-1, 1])
- valid = paddle.expand(valid, [-1, self.num_base_anchors]).reshape([-1])
- return valid
- def rect2rbox(self, bboxes):
- """
- :param bboxes: shape (L, 4) (xmin, ymin, xmax, ymax)
- :return: dbboxes: shape (L, 5) (x_ctr, y_ctr, w, h, angle)
- """
- x1, y1, x2, y2 = paddle.split(bboxes, 4, axis=-1)
- x_ctr = (x1 + x2) / 2.0
- y_ctr = (y1 + y2) / 2.0
- edges1 = paddle.abs(x2 - x1)
- edges2 = paddle.abs(y2 - y1)
- rbox_w = paddle.maximum(edges1, edges2)
- rbox_h = paddle.minimum(edges1, edges2)
- # set angle
- inds = edges1 < edges2
- inds = paddle.cast(inds, paddle.float32)
- rboxes_angle = inds * np.pi / 2.0
- rboxes = paddle.concat(
- (x_ctr, y_ctr, rbox_w, rbox_h, rboxes_angle), axis=-1)
- return rboxes
|